1
|
Ma Z, Meng Y, Li F, Ungerfeld E, Lv J, Liu B, Li S, Wang X. Effects of an essential oil blend rich in cinnamaldehyde and carvacrol on rumen biohydrogenation and fatty acid profile in the longissimus lumborum of growing lambs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9581-9591. [PMID: 39109694 DOI: 10.1002/jsfa.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Essential oils extracted from cinnamon bark and oregano are rich in cinnamaldehyde and carvacrol and show potential for promoting animal performance. However, their impact on rumen biohydrogenation and the fatty acid composition of meat has not been reported. The hypothesis of this study was that a blend of essential oils rich in cinnamaldehyde and carvacrol would inhibit rumen biohydrogenation and promote the accumulation of polyunsaturated fatty acids (PUFAs) in lamb meat. The present study evaluated the effect of a blend essential oil (EO) rich in cinnamaldehyde and carvacrol on the nutrient digestibility, rumen biohydrogenation, growth performance, and fatty acid profile of the longissimus lumborum of lambs. RESULTS Sixty male lambs with an average age of 84 ± 0.98 days and initial body mass of 25.4 ± 0.29 kg (mean ± standard deviation) were assigned randomly to four diets, and supplemented with 0 (EO0), 30 (EO30), 60 (EO60), and 120 (EO120) mg kg-1 dry matter of EO for 60 days. Although dry matter and neutral detergent fiber digestibility all showed a linear decrease (P ≤ 0.02) with increasing quantities of EO, final body mass and average daily gain increased linearly (P = 0.04), and average daily weight gain (ADG)/dry matter intake (DMI) tended to increase linearly (P = 0.07). Increasing EO supplementation resulted in a linear decrease in total volatile fatty acid concentration, acetate molar percentage, and acetate-to-propionate ratio (P ≤ 0.03), with the EO120 treatment being lower than the other EO treatments (P ≤ 0.05). Seven lambs from the EO120 treatment and seven lambs from the EO0 treatment were randomly slaughtered. It was observed that the proportions of C18:2n6c and PUFA in longissimus lumborum were higher in the EO120 treatment than the EO0 treatment (P ≤ 0.05). The relative abundance of Firmicutes in the rumen was decreased by the EO120 treatment in comparison with the EO0 treatment (P ≤ 0.05). Furthermore, the predicted relative abundances of genes encoding for conjugated linoleic acid reductase tended to decrease with the EO120 treatment (P = 0.06). CONCLUSIONS We demonstrated that supplementation of the EO blend rich in cinnamaldehyde and carvacrol can enhance lamb growth performance and promote the deposition of desirable PUFAs in meat. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Gansu Herbivorous Animal Husbandry Technology Center, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yarong Meng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Gansu Herbivorous Animal Husbandry Technology Center, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fei Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Gansu Herbivorous Animal Husbandry Technology Center, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Emilio Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Vilcún, Chile
| | - Jirong Lv
- DadHank (Chengdu) Biotech Corp, Chengdu, China
| | - Baocang Liu
- Xinjiang Tycoon Group Aksu Feed Corp, Aksu, China
| | - Shirong Li
- Animal Husbandry and Veterinary Workstation, Minqin County, China
| | - Xinji Wang
- Animal Husbandry and Veterinary Workstation, Minqin County, China
| |
Collapse
|
2
|
Toral PG, Hervás G, Frutos P. Invited review: Research on ruminal biohydrogenation-Achievements, gaps in knowledge, and future approaches from the perspective of dairy science. J Dairy Sci 2024; 107:10115-10140. [PMID: 39154717 DOI: 10.3168/jds.2023-24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Scientific knowledge about ruminal biohydrogenation (BH) has improved greatly since this metabolic process was empirically confirmed in 1951. For years, BH had mostly been perceived as a process to be avoided to increase the postruminal flow of UFA from the diet. Two milestones changed this perception and stimulated great interest in BH intermediates themselves: In 1987, the in vitro anticarcinogenic properties of CLA were described, and in 2000, the inhibition of milk fat synthesis by trans-10,cis-12 CLA was confirmed. Since then, numerous BH metabolites have been described in small and large ruminants, and the major deviation from the common BH pathway (i.e., the trans-10 shift) has been reasonably well established. However, there are some less well-characterized alterations, and the comprehensive description of new BH intermediates (e.g., using isotopic tracers) has not been coupled with research on their biological effects. In this regard, the low quality of some published fatty acid profiles may also be limiting the advance of knowledge in BH. Furthermore, although BH seems to no longer be considered a metabolic niche inhabited by a few bacterial species with a highly specific metabolic capability, researchers have failed to elucidate which specific microbial groups are involved in the process and the basis for alterations in BH pathways (i.e., changes in microbial populations or their activity). Unraveling both issues may be beneficial for the description of new microbial enzymes involved in ruminal lipid metabolism that have industrial interest. From the perspective of dairy science, other knowledge gaps that require additional research in the coming years are evaluation of the relationship between BH and feed efficiency and enteric methane emissions, as well as improving our understanding of how alterations in BH are involved in milk fat depression. Addressing these issues will have relevant practical implications in dairy science.
Collapse
Affiliation(s)
- P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| |
Collapse
|
3
|
Guo Q, Li T, Qu Y, Liang M, Ha Y, Zhang Y, Wang Q. New research development on trans fatty acids in food: Biological effects, analytical methods, formation mechanism, and mitigating measures. Prog Lipid Res 2023; 89:101199. [PMID: 36402189 DOI: 10.1016/j.plipres.2022.101199] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The trans fatty acids (TFAs) in food are mainly generated from the ruminant animals (meat and milk) and processed oil or oil products. Excessive intake of TFAs (>1% of total energy intake) caused more than 500,000 deaths from coronary heart disease and increased heart disease risk by 21% and mortality by 28% around the world annually, which will be eliminated in industrially-produced trans fat from the global food supply by 2023. Herein, we aim to provide a comprehensive overview of the biological effects, analytical methods, formation and mitigation measures of TFAs in food. Especially, the research progress on the rapid, easy-to-use, and newly validated analytical methods, new formation mechanism, kinetics, possible mitigation mechanism, and new or improved mitigation measures are highlighted. We also offer perspectives on the challenges, opportunities, and new directions for future development, which will contribute to the advances in TFAs research.
Collapse
Affiliation(s)
- Qin Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China.
| | - Tian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yang Qu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Manzhu Liang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yiming Ha
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yu Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, PR China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China.
| |
Collapse
|
4
|
Sakah Kaunda J, Xu YJ, Zhang RH, Zhang XJ, Li XL, Xiao WL. Diterpenoids from Strophioblachia glandulosa and Their NLRP3 Inflammasome Inhibitory Effects. Chem Biodivers 2022; 19:e202200838. [PMID: 36305699 DOI: 10.1002/cbdv.202200838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 12/27/2022]
Abstract
Our study on the roots and leaves of the never-hitherto-chemically studied S. glandulosa led to the isolation of five new diterpenes, referred to as stroglandulons A-E (1-5), alongside 18 known constituents (6-23). The structures of the new compounds were elucidated on the basis of their spectroscopic data, while the known ones were determined based on the comparison of their data with the literature values. Compounds 1-5 were evaluated for their inhibitory effects against NLRP3 inflammasome activation; compound 5 showed inhibition by an IC50 value of 6.12±0.03 μM.
Collapse
Affiliation(s)
- Joseph Sakah Kaunda
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Yao-Jun Xu
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Rui-Han Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Xing-Jie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
5
|
Rasi S, Vainio M, Blasco L, Kahala M, Leskinen H, Tampio E. Changes in volatile fatty acid production and microbiome during fermentation of food waste from hospitality sector. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114640. [PMID: 35124316 DOI: 10.1016/j.jenvman.2022.114640] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Due to the increasing demand for low carbon-footprint bioproducts in the markets, innovative processes technologies and products are needed. The objective of this study was to assess the quality and potential of food waste (FW) from the hospitality sector to produce volatile fatty acids (VFAs). A batch type acid fermentation system was used to study VFA production in different process conditions (a decreased pH and increased organic loading rate). The evolution of VFAs and long-chain fatty acids was followed. Amplicon sequencing of the 16S rRNA gene was used to investigate the bacterial and archaeal community, and elucidate microbial communities in different FW and process conditions. The results show that high VFA concentrations (of up to 18 g/L) were achieved in overloaded conditions, which were also affected by the activity and composition of the inoculum. FW played an important role in modulating microbial composition, especially the bacterial communities belonging to the lactic acid bacteria group.
Collapse
Affiliation(s)
- S Rasi
- Natural Resources Institute Finland (Luke), Production Systems, Survontie 9 A, FI-40500, Jyväskylä, Finland.
| | - M Vainio
- Natural Resources Institute Finland (Luke), Production Systems, Tietotie 4, FI-31600, Jokioinen, Finland.
| | - L Blasco
- Natural Resources Institute Finland (Luke), Production Systems, Tietotie 4, FI-31600, Jokioinen, Finland.
| | - M Kahala
- Natural Resources Institute Finland (Luke), Production Systems, Tietotie 4, FI-31600, Jokioinen, Finland.
| | - H Leskinen
- Natural Resources Institute Finland (Luke), Production Systems, Tietotie 4, FI-31600, Jokioinen, Finland.
| | - E Tampio
- Natural Resources Institute Finland (Luke), Production Systems, Latokartanonkaari 9, FI-00790, Helsinki, Finland.
| |
Collapse
|
6
|
Hervás G, Boussalia Y, Labbouz Y, Della Badia A, Toral P, Frutos P. Insect oils and chitosan in sheep feeding: Effects on in vitro ruminal biohydrogenation and fermentation. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Toral PG, Hervás G, Frutos P. Effect of lipid supplementation on the endogenous synthesis of milk cis-9,trans-11 conjugated linoleic acid in dairy sheep and goats: A tracer assay with 13C-vaccenic acid. J Dairy Sci 2021; 105:255-268. [PMID: 34763909 DOI: 10.3168/jds.2021-20728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
A major proportion of milk rumenic acid (RA; cis-9,trans-11 CLA) is synthesized through mammary Δ9-desaturation of vaccenic acid (VA; trans-11 18:1). Diet composition may determine the relative contribution of this endogenous synthesis to milk RA content, with effects that might differ between ruminant species. However, this hypothesis is mostly based on estimated values, proxies of stearoyl-CoA desaturase (SCD) activity, and indirect comparisons between publications in the literature. With the aim of providing new insights into this issue, in vivo Δ9-desaturation of 13C-labeled VA (measured via milk 13C-VA and -RA secretion) was directly compared in sheep and goats fed a diet without lipid supplementation or including 2% of linseed oil. Four Assaf sheep and 4 Murciano-Granadina goats were used in a replicated 2 × 2 crossover design to test the effects of the 2 dietary treatments during 2 consecutive 25-d periods. On d 22 of each period, 500 mg of 13C-VA were i.v. injected to each animal. Dairy performance, milk fatty acid profile, including isotope analysis, and mammary mRNA abundance of genes coding for SCD were examined on d 21 to 25 of each period. Supplementation with linseed oil improved milk fat concentration and increased the content of milk VA and RA. However, the isotopic tracer assay suggested no variation in the relative proportion of VA desaturated to milk RA, and the percentage of this CLA isomer deriving from SCD activity would remain constant regardless of dietary treatment. These results put into question a major effect of lipid supplementation on the endogenous synthesis of milk RA and support that mammary Δ9-desaturation capacity would not represent a limiting factor when designing feeding strategies to increase milk RA content. The lack of diet-induced effects was common to caprines and ovines, but inherent interspecies differences in mammary lipogenesis were found. Thus, the higher proportions of VA desaturation and endogenous synthesis of milk RA in sheep supported a greater SCD activity compared with goats, a finding that was not associated with the similar mRNA abundance of SCD1 in the 2 species. On the other hand, transfer efficiency of the isotopic tracer to milk was 37% higher in caprine than in ovine, suggesting a greater efficiency in mammary fatty acid uptake from plasma in caprine.
Collapse
Affiliation(s)
- P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| |
Collapse
|
8
|
Salami SA, Valenti B, Luciano G, Lanza M, Umezurike-Amahah NM, Kerry JP, O’Grady MN, Newbold CJ, Priolo A. Dietary cardoon meal modulates rumen biohydrogenation and bacterial community in lambs. Sci Rep 2021; 11:16180. [PMID: 34376766 PMCID: PMC8355377 DOI: 10.1038/s41598-021-95691-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023] Open
Abstract
Cardoon meal is a by-product of oil extraction from the seeds of Cynara cardunculus and can serve as a novel alternative feedstuff for ruminants. This study examined the rumen fermentation, biohydrogenation of fatty acids (FA) and microbial community in lambs fed a concentrate diet containing 15% dehydrated lucerne (CON, n = 8) or cardoon meal (CMD, n = 7) for 75 days pre-slaughter. Diets did not influence rumen fermentation characteristics and the abundance of bacteria, methanogens, fungi, or protozoa. Rumen digesta in CMD-fed lambs displayed a higher concentration of total saturated FA and lower total odd- and branched-chain FA and monounsaturated FA. Feeding CMD decreased total trans-18:1 isomer and the ratio of trans-10 to trans-11 C18:1, known as the "trans-10 shift". Amplicon sequencing indicated that the rumen bacterial community in CMD-fed lambs had lower diversity and a higher relative phyla abundance of Proteobacteria at the expense of Bacteroidetes and Fibrobacteres. At the genus level, CMD mediated specific shifts from Prevotella, Alloprevotella, Solobacterium and Fibrobacter to Ruminobacter, suggesting that these genera may play important roles in biohydrogenation. Overall, these results demonstrate that cardoon meal can be used as a feedstuff for ruminants without negatively affecting rumen fermentation and microbiota but its impact on biohydrogenation may influence the FA composition in meat or milk.
Collapse
Affiliation(s)
- Saheed A. Salami
- grid.8158.40000 0004 1757 1969Department Di3A, Animal Production Science, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy ,grid.7872.a0000000123318773School of Food and Nutritional Sciences, College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
| | - Bernardo Valenti
- grid.9027.c0000 0004 1757 3630Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Giuseppe Luciano
- grid.8158.40000 0004 1757 1969Department Di3A, Animal Production Science, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Massimiliano Lanza
- grid.8158.40000 0004 1757 1969Department Di3A, Animal Production Science, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Ngozi M. Umezurike-Amahah
- grid.8158.40000 0004 1757 1969Department Di3A, Animal Production Science, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Joseph P. Kerry
- grid.7872.a0000000123318773School of Food and Nutritional Sciences, College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
| | - Michael N. O’Grady
- grid.7872.a0000000123318773School of Food and Nutritional Sciences, College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
| | - Charles J. Newbold
- grid.426884.40000 0001 0170 6644Scotland’s Rural College, Peter Wilson Building, King’s Buildings, Edinburgh, EH9 3JG UK
| | - Alessandro Priolo
- grid.8158.40000 0004 1757 1969Department Di3A, Animal Production Science, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy
| |
Collapse
|
9
|
Zhang Z, Niu X, Li F, Li F, Guo L. Ruminal cellulolytic bacteria abundance leads to the variation in fatty acids in the rumen digesta and meat of fattening lambs. J Anim Sci 2020; 98:5873880. [PMID: 32687154 DOI: 10.1093/jas/skaa228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/14/2020] [Indexed: 02/03/2023] Open
Abstract
Ruminal cellulolytic bacteria could be a diagnostic tool for determining the subacute rumen acidosis (SARA) risk in individual ruminants; however, a limited number of studies have investigated the effects of the abundance of ruminal cellulolytic bacteria on the fatty acid (FA) composition of the rumen digesta and the muscle of sheep. Thus, the objective of this study was to evaluate the effect of the variation of rumen cellulolytic bacteria on the rumen fermentation, rumen digesta, and muscle FA composition of fattening lambs fed an identical diet. Forty-eight lambs were reared in individual units and fed a high-concentrate diet consisting of 20% forage and 80% concentrate. All lambs were adapted to diets and facilities for 14 d, and sampling was for 63 d. At the end of the experiment, the rumen fluid, rumen digesta, and longissimus dorsi were collected after slaughter for the measurement of volatile fatty acids, ruminal bacterial DNA, rumen digesta, and muscle FAs. The lambs were classified into the lower cellulolytic bacteria (LCB, n = 10) group and the higher cellulolytic bacteria (HCB, n = 10) group according to the abundance of pH-sensitive cellulolytic bacteria (Ruminococcus albus, Ruminococcus flavefaciens, Fibrobacter succinogenes, and Butyrivibrio fibrisolvens) in the rumen. Ruminal acetate concentration was positively correlated with the number of R. flavefaciens, F. Succinogenes, and B. fibrisolvens (P < 0.05, r > 0.296), whereas propionate and valerate concentrations were negatively correlated with the amount of F. succinogenes and B. fibrisolvens (P < 0.05, r > 0.348). Compared with the LCB group, the acetate (P = 0.018) as well as acetate to propionate ratio (P = 0.012) in the HCB group was higher, but the valerate ratio was lower (P = 0.002). The proportions of even-chain FAs and odd- and branched-chain fatty acid in the rumen digesta of lambs with the HCB were higher (P < 0.05), while the polyunsaturated fatty acids decreased than those in the LCB lambs (P < 0.05), but those FA proportions in the meat were similar between the two groups. The proportion of C17:0 in the meat of lambs in the HCB group was lower than that of lambs in the LCB group (P = 0.033). The proportions of conjugated linoleic acid in rumen digesta and meat were both higher in the HCB group than that in the LCB group (P = 0.046). These results indicated that the ruminal cellulolytic bacteria can alter the FA compositions in rumen digesta and further influenced the FA compositions in the meat of sheep.
Collapse
Affiliation(s)
- Zhian Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
- Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Xiaolin Niu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
- Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Fei Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
- Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
- Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Long Guo
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
- Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| |
Collapse
|
10
|
Vahvaselkä M, Leskinen H, Mäkilä L, Kallio H, Laakso S, Yang B. Microbial enrichment of blackcurrant press residue with conjugated linoleic and linolenic acids. J Appl Microbiol 2020; 130:1602-1610. [PMID: 33030792 DOI: 10.1111/jam.14888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022]
Abstract
AIMS The aim of the study was to investigate the isomerization of linoleic (LA) and linolenic acids (LNAs) into their conjugated isomers by Propionibacterium freudenreichii DSM 20270 and utilize this feature for microbial enrichment of blackcurrant press residue (BCPR) with health-beneficial conjugated fatty acids. METHODS AND RESULTS First, the ability of P. freudenreichii to isomerize 0·4 mg ml-1 of LA and LNA was studied in lactate growth medium. Free LA and α-LNA were efficiently converted into conjugated linoleic (CLA) and α-linolenic acid (α-CLNA), being the predominant isomers c9,t11-CLA and c9,t11,c15-CLNA, respectively. The bioconversion of α-LNA by P. freudenreichii was more efficient in terms of formation rate, yield and isomer-specificity. Thereafter, free LA and LNAs obtained from hydrolysed BCPR neutral lipids, by lipolytically active oat flour, were subjected to microbial isomerization in BCPR slurries. In 10% (w/v) slurries, a simultaneous enrichment in c9,t11-CLA and c9,t11,c15-CLNA of up to 0·51 and 0·29 mg ml-1 was observed from starting levels of 0·96 mg LA ml-1 and 0·37 mg α-LNA ml-1 respectively. CONCLUSIONS This study shows that growing cultures of P. freudenreichii DSM 20270 are able to simultaneously enrich BCPR with health-beneficial conjugated isomers of LA and α-LNA. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates that microbial isomerization technique can be utilized to enrich lipid-containing plant materials with bioactive compounds and thereby enable valorization of low value plant-based side streams from food industry into value-added food ingredients.
Collapse
Affiliation(s)
- M Vahvaselkä
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.,Biorefinery and Bioproducts, Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - H Leskinen
- Milk Production, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - L Mäkilä
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - H Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - S Laakso
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - B Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Dewanckele L, Jeyanathan J, Vlaeminck B, Fievez V. Identifying and exploring biohydrogenating rumen bacteria with emphasis on pathways including trans-10 intermediates. BMC Microbiol 2020; 20:198. [PMID: 32635901 PMCID: PMC7339423 DOI: 10.1186/s12866-020-01876-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/25/2020] [Indexed: 01/03/2023] Open
Abstract
Background Bacteria involved in ruminal formation of trans-10 intermediates are unclear. Therefore, this study aimed at identifying rumen bacteria that produce trans-10 intermediates from 18-carbon unsaturated fatty acids. Results Pure cultures of 28 rumen bacterial species were incubated individually in the presence of 40 μg/mL 18:3n-3, 18:2n-6 or trans-11 18:1 under control or lactate-enriched (200 mM Na lactate) conditions for 24 h. Of the 28 strains, Cutibacterium acnes (formerly Propionibacterium acnes) was the only bacterium found to produce trans-10 intermediates from 18:3n-3 and 18:2n-6, irrespective of the growth condition. To further assess the potential importance of this species in the trans-11 to trans-10 shift, different biomass ratios of Butyrivibrio fibrisolvens (as a trans-11 producer) and C. acnes were incubated in different growth media (control, low pH and 22:6n-3 enriched media) containing 40 μg/mL 18:2n-6. Under control conditions, a trans-10 shift, defined in the current study as trans-10/trans-11 ≥ 0.9, occurred when the biomass of C. acnes represented between 90 and 98% of the inoculum. A low pH or addition of 22:6n-3 inhibited cis-9, trans-11 CLA and trans-10, cis-12 CLA formation by B. fibrisolvens and C. acnes, respectively, whereby C. acnes seemed to be more tolerant. This resulted in a decreased biomass of C. acnes required at inoculation to induce a trans-10 shift to 50% (low pH) and 90% (22:6n-3 addition). Conclusions Among the bacterial species studied,C. acnes was the only bacterium that have the metabolic ability to produce trans-10 intermediates from 18:3n-3 and 18:2n-6. Nevertheless, this experiment revealed that it is unlikely that C. acnes is the only or predominant species involved in the trans-11 to trans-10 shift in vivo.
Collapse
Affiliation(s)
- Lore Dewanckele
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Jeyamalar Jeyanathan
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Bruno Vlaeminck
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium.,Present address: Research Group Marine Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium.
| |
Collapse
|
12
|
Dewanckele L, Toral PG, Vlaeminck B, Fievez V. Invited review: Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update. J Dairy Sci 2020; 103:7655-7681. [PMID: 32600765 DOI: 10.3168/jds.2019-17662] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/18/2020] [Indexed: 12/22/2022]
Abstract
To meet the energy requirements of high-yielding dairy cows, grains and fats have increasingly been incorporated in ruminant diets. Moreover, lipid supplements have been included in ruminant diets under experimental or practical conditions to increase the concentrations of bioactive n-3 fatty acids and conjugated linoleic acids in milk and meat. Nevertheless, those feeding practices have dramatically increased the incidence of milk fat depression in dairy cattle. Although induction of milk fat depression may be a management tool, most often, diet-induced milk fat depression is unintended and associated with a direct economic loss. In this review, we give an update on the role of fatty acids, particularly originating from rumen biohydrogenation, as well as of rumen microbes in diet-induced milk fat depression. Although this syndrome seems to be multi-etiological, the best-known causal factor remains the shift in rumen biohydrogenation pathway from the formation of mainly trans-11 intermediates toward greater accumulation of trans-10 intermediates, referred to as the trans-11 to trans-10 shift. The microbial etiology of this trans-11 to trans-10 shift is not well understood yet and it seems that unraveling the microbial mechanisms of diet-induced milk fat depression is challenging. Potential strategies to avoid diet-induced milk fat depression are supplementation with rumen stabilizers, selection toward more tolerant animals, tailored management of cows at risk, selection toward more efficient fiber-digesting cows, or feeding less concentrates and grains.
Collapse
Affiliation(s)
- L Dewanckele
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - B Vlaeminck
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - V Fievez
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium.
| |
Collapse
|
13
|
Toral P, Hervás G, Frutos P. In vitro biohydrogenation of 13C-labeled α-linolenic acid in response to ruminal alterations associated with diet-induced milk fat depression in ewes. J Dairy Sci 2019; 102:1213-1223. [DOI: 10.3168/jds.2018-15536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/10/2018] [Indexed: 01/19/2023]
|
14
|
Rioux V, Legrand P. Fatty Acid Desaturase 3 (FADS3) Is a Specific ∆13-Desaturase of Ruminant trans-Vaccenic Acid. Lifestyle Genom 2019; 12:18-24. [PMID: 32911476 DOI: 10.1159/000502356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
In mammalian species, the Fatty Acid Desaturase (FADS) gene cluster includes FADS1 (∆5-desaturase), FADS2 (∆6-desaturase), and a third gene member, named FADS3. According to its high degree of nucleotide sequence homology with both FADS1and FADS2, FADS3 was promptly suspected by researchers in the field to code for a new mammalian membrane-bound fatty acid desaturase. However, no catalytic activity was attributed to the FADS3 protein for a decade, until the rat FADS3 protein was shown in vitro to be able to catalyze the unexpected ∆13-desaturation of trans-vaccenic acid, producing the trans11,cis13-conjugated linoleic acid isomer. This review summarizes the recent investigations establishing the FADS3 enzyme as a reliable mammalian trans-vaccenate ∆13-desaturase in vivo and tries to identify further unresolved issues that need to be addressed.
Collapse
Affiliation(s)
- Vincent Rioux
- Laboratoire de Biochimie et Nutrition Humaine, Agrocampus Ouest, Rennes, France,
| | - Philippe Legrand
- Laboratoire de Biochimie et Nutrition Humaine, Agrocampus Ouest, Rennes, France
| |
Collapse
|
15
|
Garcia C, Guillocheau E, Richard L, Drouin G, Catheline D, Legrand P, Rioux V. Conversion of dietary trans-vaccenic acid to trans11,cis13-conjugated linoleic acid in the rat lactating mammary gland by Fatty Acid Desaturase 3-catalyzed methyl-end Δ13-desaturation. Biochem Biophys Res Commun 2018; 505:385-391. [PMID: 30262139 DOI: 10.1016/j.bbrc.2018.09.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 01/04/2023]
Abstract
In vitro, the rat Fatty Acid Desaturase 3 (FADS3) gene was shown to code for an enzyme able to catalyze the unexpected Δ13-desaturation of trans-vaccenic acid, producing the trans11,cis13-conjugated linoleic acid (CLA) isomer. FADS3 may therefore be the first methyl-end trans-vaccenate Δ13-desaturase functionally characterized in mammals, but the proof of this concept is so far lacking in vivo. The present study therefore aimed at investigating further the putative in vivo synthesis of trans11,cis13-CLA from dietary trans-vaccenic acid in rodents. During one week of pregnancy and two weeks post-partum, Sprague-Dawley female rats were fed two diets either high (10.0% of fatty acids and 3.8% of energy intake) or low (0.4% of fatty acids and 0.2% of energy intake) in trans-vaccenic acid. The trans11,cis13-CLA was specifically detected, formally identified and reproducibly quantified (0.06% of total fatty acids) in the mammary gland phospholipids of lactating female rats fed the high trans-vaccenic acid-enriched diet. This result was consistent with FADS3 mRNA expression being significantly higher in the lactating mammary gland than in the liver. Although the apparent metabolic conversion is low, this physiological evidence demonstrates the existence of this new pathway described in the lactating mammary gland and establishes the FADS3 enzyme as a reliable mammalian trans-vaccenate Δ13-desaturase in vivo.
Collapse
Affiliation(s)
- Cyrielle Garcia
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest, Rennes, France
| | - Etienne Guillocheau
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest, Rennes, France; French Dairy Interbranch Organization (CNIEL), Technical and Scientific Department, Paris, France
| | - Léo Richard
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest, Rennes, France
| | - Gaëtan Drouin
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest, Rennes, France
| | - Daniel Catheline
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest, Rennes, France
| | - Philippe Legrand
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest, Rennes, France
| | - Vincent Rioux
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest, Rennes, France.
| |
Collapse
|
16
|
Meynadier A, Zened A, Farizon Y, Chemit ML, Enjalbert F. Enzymatic Study of Linoleic and Alpha-Linolenic Acids Biohydrogenation by Chloramphenicol-Treated Mixed Rumen Bacterial Species. Front Microbiol 2018; 9:1452. [PMID: 30018607 PMCID: PMC6037716 DOI: 10.3389/fmicb.2018.01452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
In the rumen, dietary polyunsaturated fatty acids (PUFA) are reduced by a multistage reaction called biohydrogenation (BH). BH leads to a high proportion of saturated fat in ruminant products, but also products some potential bioactive intermediates like conjugated linoleic and linolenic acids. BH is composed of two kinds of reactions: first an isomerization of PUFA followed by reductions (two for linoleic acid, C18:2n-6; three for α-linolenic acid, C18:3n-3). There is little knowledge about BH enzymes as BH bacterial species are the subject of a lot of studies. Nevertheless, both aspects must be explored to control BH and enhance the fatty acids profile of ruminant products. In the present study, an alternative approach was developed to study the enzymes produced in vivo by mixed ruminal bacteria, using inactivation of bacteria by chloramphenicol, an inhibitor of protein synthesis in prokaryotes, before in vitro incubation. To study C18:2n-6 and C18:3n-3 BH several experiments were used: (1) with different incubation durations (0 to 3) to estimate average rates and efficiencies of all BH reactions, and intermediates production; and (2) with different initial quantities of PUFA (0.25 to 2 mg) to estimate Michaelis–Menten enzymatic parameters, Km and Vmax. A last experiment explored the effect of pH buffer and donor cow diet on C18:2n-6 isomerization pathways. Concerning C18:2n-6 BH, this study confirmed the high saturability of its isomerization, the inhibition of both trans11 and trans10 pathways by a low pH, and the last reduction to stearic acid as the limiting-step. Concerning C18:3n-3, its BH was faster than C18:2n-6, in particular its isomerization (Vmax = 3.4 vs. 0.6 mM/h, respectively), and the limiting-step was the second reduction to t11-C18:1. Besides, our mixed isomerases had a higher affinity for C18:2n-6 than for C18:3n-3 (Km = 2.0 × 10-3 vs. 4.3 × 10-3 M, respectively), but due to their high saturability by C18:2n-6, they had a lower efficiency to isomerize C18:2n-6 than C18:3n-3. Chloramphenicol-treated ruminal fluid would be a meaningful method to study the BH enzymes activities.
Collapse
Affiliation(s)
| | - Asma Zened
- GenPhySE, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - Yves Farizon
- GenPhySE, INRA, ENVT, Université de Toulouse, Toulouse, France
| | | | | |
Collapse
|
17
|
Białek M, Czauderna M, Białek A. Partial replacement of rapeseed oil with fish oil, and dietary antioxidants supplementation affects concentrations of biohydrogenation products and conjugated fatty acids in rumen and selected lamb tissues. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Toral P, Hervás G, Leskinen H, Shingfield K, Frutos P. In vitro ruminal biohydrogenation of eicosapentaenoic (EPA), docosapentaenoic (DPA), and docosahexaenoic acid (DHA) in cows and ewes: Intermediate metabolites and pathways. J Dairy Sci 2018; 101:6109-6121. [DOI: 10.3168/jds.2017-14183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
|
19
|
Kairenius P, Leskinen H, Toivonen V, Muetzel S, Ahvenjärvi S, Vanhatalo A, Huhtanen P, Wallace R, Shingfield K. Effect of dietary fish oil supplements alone or in combination with sunflower and linseed oil on ruminal lipid metabolism and bacterial populations in lactating cows. J Dairy Sci 2018; 101:3021-3035. [DOI: 10.3168/jds.2017-13776] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/14/2017] [Indexed: 11/19/2022]
|
20
|
Pachikian BD, Druart C, Catry E, Bindels LB, Neyrinck AM, Larondelle Y, Cani PD, Delzenne NM. Implication of trans-11,trans-13 conjugated linoleic acid in the development of hepatic steatosis. PLoS One 2018; 13:e0192447. [PMID: 29389988 PMCID: PMC5794163 DOI: 10.1371/journal.pone.0192447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
SCOPE Conjugated linoleic acids are linoleic acid isomers found in the diet that can also be produced through bacterial metabolism of polyunsaturated fatty acids. Our objective was to evaluate the contribution of fatty acid metabolites produced from polyunsaturated fatty acids by the gut microbiota in vivo to regulation of hepatic lipid metabolism and steatosis. METHODS AND RESULTS In mice with depleted n-3 polyunsaturated fatty acids, we observed an accumulation of trans-11,trans-13 CLA and cis-9,cis-11 conjugated linoleic acids in the liver tissue that were associated with an increased triglyceride content and expression of lipogenic genes. We used an in vitro model to evaluate the impact of these two conjugated linoleic acids on hepatic lipid metabolism. In HepG2 cells, we observed that only trans-11,trans-13 conjugated linoleic acids recapitulated triglyceride accumulation and increased lipogenic gene expression, which is a phenomenon that may implicate the nuclear factors sterol regulatory element binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP). CONCLUSION The trans-11,trans-13 conjugated linoleic acids can stimulate hepatic lipogenesis, which supports the conclusion that gut microbiota and related metabolites should be considered in the treatment of non-alcoholic liver disease.
Collapse
Affiliation(s)
- Barbara D. Pachikian
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Céline Druart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Emilie Catry
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Yvan Larondelle
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Université catholique de Louvain, WELBIO, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
21
|
Aldai N, Delmonte P, Alves SP, Bessa RJB, Kramer JKG. Evidence for the Initial Steps of DHA Biohydrogenation by Mixed Ruminal Microorganisms from Sheep Involves Formation of Conjugated Fatty Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:842-855. [PMID: 29291262 DOI: 10.1021/acs.jafc.7b04563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Incubation of DHA with sheep rumen fluid resulted in 80% disappearance in 6 h. The products were analyzed as their fatty acid (FA) methyl esters by GC-FID on SP-2560 and SLB-IL111 columns. The GC-online reduction × GC and GC-MS techniques demonstrated that all DHA metabolites retained the C22 structure (no evidence of chain-shortening). Two new transient DHA products were identified: mono-trans methylene interrupted-DHA and monoconjugated DHA (MC-DHA) isomers. Identification of MC-DHA was confirmed by their predicted elution using equivalent chain length differences from C18 FA, their molecular ions, and the 22:5 products formed which were the most abundant at 6 h. The 22:5 structures were established by fragmentation of their 4,4-dimethyloxazoline derivatives, and all 22:5 products contained an isolated double bond, suggesting formation via MC-DHA. The most abundant c4,c7,c10,t14,c19-22:5 appeared to be formed by unknown isomerases. Results suggest that the initial biohydrogenation of DHA was analogous to that of C18 FA.
Collapse
Affiliation(s)
- Noelia Aldai
- Department of Pharmacy and Food Sciences, University of the Basque Country (UPV/EHU) , Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Pierluigi Delmonte
- Office of Regulatory Science, Centre for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, Maryland 20740, United States
| | - Susana P Alves
- CIISA, Faculty of Veterinary Medicine, University of Lisbon , Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Rui J B Bessa
- CIISA, Faculty of Veterinary Medicine, University of Lisbon , Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - John K G Kramer
- Guelph Food Research Centre, Agriculture and Agri-Food Canada , Guelph N1G 5C9, Ontario, Canada
| |
Collapse
|
22
|
Enjalbert F, Combes S, Zened A, Meynadier A. Rumen microbiota and dietary fat: a mutual shaping. J Appl Microbiol 2017; 123:782-797. [DOI: 10.1111/jam.13501] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023]
Affiliation(s)
- F. Enjalbert
- GenPhySE; Université de Toulouse, INRA, INPT, ENVT; Castanet Tolosan France
| | - S. Combes
- GenPhySE; Université de Toulouse, INRA, INPT, ENVT; Castanet Tolosan France
| | - A. Zened
- GenPhySE; Université de Toulouse, INRA, INPT, ENVT; Castanet Tolosan France
| | - A. Meynadier
- GenPhySE; Université de Toulouse, INRA, INPT, ENVT; Castanet Tolosan France
| |
Collapse
|
23
|
Gómez-Cortés P, Cívico A, de la Fuente MA, Juárez M, Sánchez NN, Blanco FP, Marín ALM. Dietary linseed oil increases trans-10,cis-15 18:2 in caprine milk fat. J Dairy Sci 2017; 100:4235-4240. [PMID: 28434741 DOI: 10.3168/jds.2016-12424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/26/2017] [Indexed: 12/17/2022]
Abstract
Trans-10,cis-15 18:2 has been recently detected and characterized in digestive contents and meat and adipose tissue of ruminants, but its presence in milk and dairy products is hardly known. The aim of this study was to quantify trans-10,cis-15 18:2 in milk fat, better understand its metabolic origin, and help to elucidate the mechanisms of rumen biohydrogenation when the diet composition might affect ruminal environment. To address these objectives, 16 dairy goats were allocated to 2 simultaneous experiments (2 groups of goats and 2 treatments in each experiment). Experimental treatments consisted of basal diets with the same forage-to-concentrate ratio (33/67) and 2 starch-to-nonforage neutral detergent fiber (NDF) ratios (0.8 and 3.1), which were supplemented or not with 30 g/d of linseed oil for 25 d in a crossover design. Trans-10,cis-15 18:2 contents in milk fat were determined by gas chromatography fitted with an extremely polar capillary column (SLB-IL111). Levels of trans-10,cis-15 18:2 in individual milk fat samples ranged from 0 to 0.2% of total fatty acids, and its content in milk fat increased 8 fold due to linseed oil supplementation, substantiating the predominant role of α-linolenic acid in its formation. The trans-10,cis-15 18:2 levels in milk fat were similar in both experiments, despite the fact starch-to-nonforage NDF ratio of their respective basal diets greatly differed. In conclusion, trans-10,cis-15 18:2 was clearly related to linseed oil supplementation, and its increase in milk fat was comparable when the basal diets were rich in either nonforage NDF or starch.
Collapse
Affiliation(s)
- P Gómez-Cortés
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - A Cívico
- Departamento de Producción Animal, Universidad de Córdoba, Ctra. Madrid-Cádiz km 396, 14071 Córdoba, Spain
| | - M A de la Fuente
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - M Juárez
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - N Núñez Sánchez
- Departamento de Producción Animal, Universidad de Córdoba, Ctra. Madrid-Cádiz km 396, 14071 Córdoba, Spain
| | - F Peña Blanco
- Departamento de Producción Animal, Universidad de Córdoba, Ctra. Madrid-Cádiz km 396, 14071 Córdoba, Spain
| | - A L Martínez Marín
- Departamento de Producción Animal, Universidad de Córdoba, Ctra. Madrid-Cádiz km 396, 14071 Córdoba, Spain.
| |
Collapse
|
24
|
Halmemies-Beauchet-Filleau A, Shingfield KJ, Simpura I, Kokkonen T, Jaakkola S, Toivonen V, Vanhatalo A. Effect of incremental amounts of camelina oil on milk fatty acid composition in lactating cows fed diets based on a mixture of grass and red clover silage and concentrates containing camelina expeller. J Dairy Sci 2016; 100:305-324. [PMID: 27865509 DOI: 10.3168/jds.2016-11438] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/30/2016] [Indexed: 12/30/2022]
Abstract
Camelina is an ancient oilseed crop that produces an oil rich in cis-9,cis-12 18:2 (linoleic acid, LA) and cis-9,cis-12,cis-15 18:3 (α-linolenic acid, ALA); however, reports on the use of camelina oil (CO) for ruminants are limited. The present study investigated the effects of incremental CO supplementation on animal performance, milk fatty acid (FA) composition, and milk sensory quality. Eight Finnish Ayrshire cows (91d in milk) were used in replicated 4×4 Latin squares with 21-d periods. Treatments comprised 4 concentrates (12kg/d on an air-dry basis) based on cereals and camelina expeller containing 0 (control), 2, 4, or 6% CO on an air-dry basis. Cows were offered a mixture of grass and red clover silage (RCS; 1:1 on a dry matter basis) ad libitum. Incremental CO supplementation linearly decreased silage and total dry matter intake, and linearly increased LA, ALA, and total FA intake. Treatments had no effect on whole-tract apparent organic matter or fiber digestibility and did not have a major influence on rumen fermentation. Supplements of CO quadratically decreased daily milk and lactose yields and linearly decreased milk protein yield and milk taste panel score from 4.2 to 3.6 [on a scale of 1 (poor) to 5 (excellent)], without altering milk fat yield. Inclusion of CO linearly decreased the proportions of saturated FA synthesized de novo (4:0 to 16:0), without altering milk fat 18:0, cis-9 18:1, LA, and ALA concentrations. Milk fat 18:0 was low (<5g/100g of FA) across all treatments. Increases in CO linearly decreased the proportions of total saturates from 58 to 45g/100g of FA and linearly enriched trans-11 18:1, cis-9,trans-11 18:2, and trans-11,cis-15 18:2 from 5.2, 2.6, and 1.7 to 11, 4.3, and 5.8g/100g of FA, respectively. Furthermore, CO quadratically decreased milk fat trans-10 18:1 and linearly decreased trans-10,cis-12 18:2 concentration. Overall, milk FA composition on all treatments suggested that one or more components in camelina seeds may inhibit the complete reduction of 18-carbon unsaturates in the rumen. In conclusion, CO decreased the secretion of saturated FA in milk and increased those of the trans-11 biohydrogenation pathway or their desaturation products. Despite increasing the intake of 18-carbon unsaturated FA, CO had no effect on the secretions of 18:0, cis-9 18:1, LA, or ALA in milk. Concentrates containing camelina expeller and 2% CO could be used for the commercial production of low-saturated milk from grass- and RCS-based diets without major adverse effects on animal performance.
Collapse
Affiliation(s)
- A Halmemies-Beauchet-Filleau
- Department of Agricultural Sciences, Animal Science, Helsinki, PO Box 28, FI-00014 University of Helsinki, Finland.
| | - K J Shingfield
- Green Technology, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom
| | - I Simpura
- Department of Agricultural Sciences, Animal Science, Helsinki, PO Box 28, FI-00014 University of Helsinki, Finland
| | - T Kokkonen
- Department of Agricultural Sciences, Animal Science, Helsinki, PO Box 28, FI-00014 University of Helsinki, Finland
| | - S Jaakkola
- Department of Agricultural Sciences, Animal Science, Helsinki, PO Box 28, FI-00014 University of Helsinki, Finland
| | - V Toivonen
- Green Technology, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - A Vanhatalo
- Department of Agricultural Sciences, Animal Science, Helsinki, PO Box 28, FI-00014 University of Helsinki, Finland
| |
Collapse
|