1
|
Zhao J, Alimu A, Li Y, Lin Z, Li J, Wang X, Wang Y, Lv G, Lin H, Lin Z. Potential Anti-Obesity Effect of Hazel Leaf Extract in Mice and Network Pharmacology of Selected Polyphenols. Pharmaceuticals (Basel) 2024; 17:1349. [PMID: 39458990 PMCID: PMC11510286 DOI: 10.3390/ph17101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Obesity is gradually becoming a widespread health problem, and treatment using natural compounds has seen an increasing trend. As a by-product of hazelnut, hazel leaf is usually disposed of as waste, but it is widely used in traditional and folk medicines around the world. Aim of this study: Based on previous studies, the effects of the regulation of lipid metabolism and the mechanism of hazel leaf polyphenol extraction obesity were investigated. Methods: In this study, a high-fat diet-fed mouse model of obesity and 3T3-L1 preadipocytes were established. The ameliorative effects of the hazel leaf polyphenol extract on obesity and the regulating lipid metabolisms were explored based on network pharmacology, gut microbiota, and molecular docking. Results: Network pharmacology showed that hazel leaf polyphenols may play a role by targeting key targets, including PPARγ, and regulating the PPAR signaling pathway. They significantly improved body weight gain, the liver index, and adiposity and lipid levels; regulated the gut microbiota and short-chain fatty acid contents; down-regulated the expression of lipid synthesis proteins SREBP1c, PPARγ, and C/EBP-α; and up-regulated the expression of p-AMPK in obese mice. They inhibited the differentiation of 3T3-L1 cells, and the expression of related proteins is consistent with the results in vivo. The molecular docking results indicated that gallic acid, quercetin-3-O-beta-D-glucopyranoside, quercetin, myricetin, and luteolin-7-O-glucoside in the hazel leaf polyphenol extract had strong binding activities with PPARγ, C/EBP-α, and AMPK. Conclusions: The results demonstrate that the hazel leaf polyphenol extract can improve obesity by regulating lipid metabolism, which provides a valuable basis for developing health products made from hazel leaf polyphenols in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (J.Z.); (A.A.); (Y.L.); (Z.L.); (J.L.); (X.W.); (Y.W.); (G.L.)
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (J.Z.); (A.A.); (Y.L.); (Z.L.); (J.L.); (X.W.); (Y.W.); (G.L.)
| |
Collapse
|
2
|
Zhang R, Li Q, Gu Y, Liao W. Harnessing the Power of Fermented Tea to Improve Gut Microbiota and Combat Obesity Epidemic. BIOLOGY 2024; 13:779. [PMID: 39452088 PMCID: PMC11504357 DOI: 10.3390/biology13100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The global rise in obesity rates has prompted a thorough evaluation of dietary strategies that may alleviate this metabolic issue. Fermented tea, a beverage rich in polyphenols and catechins, has emerged as a viable therapeutic option for obesity management. This review discusses the role of fermented tea in modulating the gut microbiome, a critical factor in energy regulation and obesity. We explore how the bioactive components in fermented tea influence gut health and their implications for metabolic health. Fermented tea may inhibit weight gain and fat accumulation in obese animal models, likely by promoting beneficial bacteria and suppressing harmful species. Changes in the production of short-chain fatty acids and improvements in gut barrier integrity are linked to enhanced insulin sensitivity and reduced inflammatory markers, essential for effective obesity management. However, barriers remain in applying these findings in clinical settings, such as the need for standardized fermentation techniques and accurate dosage assessments. This review underscores the therapeutic potential of fermented tea in obesity treatment and advocates for further research to enhance its integration with public health initiatives.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China;
- Basic Medical School, Hubei University of Science and Technology, Xianning 437100, China
| | - Qiling Li
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuxuan Gu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Wenli Liao
- Basic Medical School, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
3
|
Moon YJ, Kim HS, Kim MJ, Im HY, Lee YH. Synergistic Effects of Heat-Treated Green Tea Extract and Enzymatically-Modified Isoquercitrin in Preventing Obesity. Nutrients 2023; 15:2931. [PMID: 37447257 DOI: 10.3390/nu15132931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Previous research has shown that both heat-treated green tea extract (HTGT) and enzymatically modified isoquercitrin (EMIQ) have anti-obesity effects. Given the absence of in vivo evidence demonstrating their synergistic effects, our study aimed to elucidate the combined obesity prevention potential of HTGT and EMIQ in mice. Mice were treated with these compounds for 8 weeks, while being fed a high-fat diet, to investigate their preventive anti-obesity effects. We demonstrated that the co-treatment of HTGT and EMIQ results in a synergistic anti-obesity effect, as determined by a Kruskal-Wallis test. Furthermore, the combined treatment of HTGT and EMIQ was more effective than orlistat in reducing body weight gain and adipocyte hypertrophy induced by high-fat diet. The co-treatment also significantly reduced total body fat mass and abdominal fat volume. Additionally, the group receiving the co-treatment exhibited increased energy expenditure and higher glucose intolerance. We observed a dose-dependent upregulation of genes associated with mitochondrial oxidative metabolism and PKA signaling, which is linked to lipolysis, in response to the co-treatment. The co-treatment group displayed elevated cAMP levels and AMPK activation in adipose tissue and increased excretion of fecal lipids. The results indicate that the co-treatment of HTGT and EMIQ holds the potential to be a promising combination therapy for combating obesity. To further validate the anti-obesity effect of the combined treatment of HTGT and EMIQ in human subjects, additional clinical studies are warranted.
Collapse
Affiliation(s)
- Ye-Jin Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee-Seong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ji Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeon-Yeong Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Gu L, Liu X, Wu S, Chu K, Bao JJ. A cross-sectional study on the tea consumption effects of ankle-brachial index. Vascular 2023; 31:341-349. [PMID: 34957865 DOI: 10.1177/17085381211064745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This thesis aims to explore the relationship between tea consumption and ankle-brachial index (ABI) and further studies the relationship between tea consumption and lower extremity atherosclerosis. METHODS This is a cross-sectional, epidemiological survey of 17,373 subjects selected from the staff of Kailuan Group who had come to Kailuan General Hospital for a health examination from January 2016 to December 2017. Tea consumption was obtained by questionnaires. ABI was measured using an automated analyzer. The other data, such as age, gender, body mass index (BMI), and so on, was collected on the same day of the health examination results. The relationship between tea drinking habits and ABI was studied using logistic regression and multivariate linear regression analysis. RESULTS Among the 17,373 analyzed subjects, the difference in age, gender, BMI, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), uric acid (UA), C-reactive protein (CRP), fasting blood-glucose (Fbg), and ABI was statistically significant in the tea-drinking group and the nontea-drinking group (p < 0.05). Multiple logistic regression models revealed that tea consumption was a positive predictor for ABI (odds ratio (OR) = 0.782, confidence interval (CI), 0.615-0.994) (p < 0.05). Multivariate linear regression analysis of the ABI value showed that frequent tea-drinking has a positive correlation with the ABI value (p < 0.05). CONCLUSIONS The higher tea consumption is significantly associated with higher ABI which means less risk for lower extremity atherosclerosis.
Collapse
Affiliation(s)
- Lishuang Gu
- Department of Ultrasound, Beijing Hospital of Traditional Chinese Medicine, 546663Capital Medical University, Beijing, China
| | - Xuemei Liu
- Department of Ultrasound, Beijing Hospital of Traditional Chinese Medicine, 546663Capital Medical University, Beijing, China
| | - Shouling Wu
- Department of Cardiology, 159361Kailuan General Hospital, Tangshan, China
| | - Kaiyun Chu
- Department of Ultrasound, Beijing Hospital of Traditional Chinese Medicine, 546663Capital Medical University, Beijing, China
| | - Jing-Jing Bao
- Department of Ultrasound, Beijing Hospital of Traditional Chinese Medicine, 546663Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Jin P, Chen L, Zhong J, Yuan T, Gan L, Huang J, Wang L, Fan H, Lin C. Screening and identification of lipase inhibitors extracted from Dioscorea nipponica Makino by UV-vis and HPLC coupled to UPLC-Q-TOF-MS/MS. Int J Biol Macromol 2023; 230:123427. [PMID: 36706882 DOI: 10.1016/j.ijbiomac.2023.123427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Dioscoreae nipponica Makino (D. nipponica) as the rhizome of dioscoreaceae rich in steroidal saponins, has been reported to have the hypolipidemic effects etc. However, it is still unclear which exact active components are primary responsible for the beneficial effects. This study was conducted to fish out the lipase inhibitors from D. nipponica, and evaluate the inhibitory activity on porcine pancreatic lipase (PPL) through in vitro kinetic assay using p-nitrophenyl palmitate as substrate. Accordingly, the ethanolic extract was subjected to D101 macroporous resin purification for spectrophotometric screening, high performance liquid chromatography (HPLC) separation and structural characterization by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Through orlistat validation, the PPL inhibitory activity and IC50 value of the extract were respectively 68.34 ± 1.47 % and 107.05 μg/mL under the optimized inhibition conditions. From 6 steroidal saponins identified, the inhibitory components named the protodioscin, protogracillin, dioscin and gracillin were fished out by grouping separation and HPLC analysis. Furthermore, dioscin and gracillin with the parent structure of diogenin were confirmed as the major inhibitors by virtue of stability tests based on transformation of protodioscin and protogracillin. Finally, the inhibitory mechanism of the major inhibitors toward PPL was further clarified by kinetic analysis and molecular docking analysis. The proposed method not only revealed the PPL inhibitory components in D. nipponica, but also provided an effective approach to hierarchical screening of PPL inhibitors from natural plants.
Collapse
Affiliation(s)
- Peiyi Jin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei 516600, China
| | - Linzhou Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinjian Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tiefeng Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lin Gan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jilong Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liping Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Science (China national Analytical Center), Guangzhou 510070, China.
| | - Huajun Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chen Lin
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Science (China national Analytical Center), Guangzhou 510070, China
| |
Collapse
|
6
|
Hou Y, An Z, Hou X, Guan Y, Song G. A bibliometric analysis and visualization of literature on non-fasting lipid research from 2012 to 2022. Front Endocrinol (Lausanne) 2023; 14:1136048. [PMID: 37152935 PMCID: PMC10154597 DOI: 10.3389/fendo.2023.1136048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Background Non-fasting lipid assessment can help predict cardiovascular disease risks and is linked to multiple diseases, particularly diabetes. The significance of non-fasting lipid levels in routine screening and postprandial lipid tests for potential dyslipidemia has not been conclusively determined. Various new lipid-lowering strategies have been developed to improve non-fasting dyslipidemia. Therefore, analysis of scientific outputs over the past decade is essential to reveal trends, hotspots, and frontier areas for future research in this field. Methods The Science Citation Index Expanded in the Web of Science Core Collection database was searched for publications related to non-fasting lipid research from 2012 to 2022. The regional distributions, authors, disciplines, journals, references, and keywords of the studies were analyzed using the bibliometric software VOSviewer and CiteSpace. Results A total of 4160 articles and reviews that met the inclusion criteria were included in this study. The output trend was established to be stable and the number of citation indices has been persistently increasing. A total of 104 countries/regions, 4668 organizations, and 20782 authors were involved in this research area. In terms of country, the United States had the largest number of publications (979). The University of Copenhagen was the most productive institution, publishing 148 papers. Professor Børge G Nordestgaard has made the most significant contribution to this field. Nutrients was the most productive journal while the American Journal of Clinical Nutrition was the highest co-cited journal. Analysis of co-cited references indicated that lipid-lowering strategies, statin therapy, high-fat meals, insulin resistance, physical exercise, and fructose were hotspots. Analysis of co-cited keywords revealed that apolipoprotein B, especially apolipoprotein B48, is becoming a key research focus. The keywords "gut microbiota" and "meal timing" were the most extensively studied. Conclusion The causal relationship between non-fasting dyslipidemia and diseases is currently being explored and the standards for non-fasting or postprandial lipid assessment are continuously being updated. Among the hotspots, lipid-lowering strategies are a potential research direction. Apolipoprotein B48, gut microbiota, and chrononutrition are the research frontiers. This initial bibliometric analysis of non-fasting lipids will enable researchers to monitor swift transformations and recognize novel concepts for upcoming research.
Collapse
Affiliation(s)
- Yilin Hou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zehua An
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaoyu Hou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yunpeng Guan
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Guangyao Song
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- *Correspondence: Guangyao Song,
| |
Collapse
|
7
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
8
|
Liao W, Liu S, Chen Y, Kong Y, Wang D, Wang Y, Ling T, Xie Z, Khalilova I, Huang J. Effects of Keemun and Dianhong Black Tea in Alleviating Excess Lipid Accumulation in the Liver of Obese Mice: A Comparative Study. Front Nutr 2022; 9:849582. [PMID: 35369079 PMCID: PMC8967360 DOI: 10.3389/fnut.2022.849582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Graphical AbstractSchematic diagram of the effects of two black teas in alleviating excess hepatic lipid accumulation.
Collapse
Affiliation(s)
- Wenjing Liao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Suyu Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunxi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yashuai Kong
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tiejun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Irada Khalilova
- Life Sciences Department, Center for Cell Pathology Research, Khazar University, Baku, Azerbaijan
| | - Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- *Correspondence: Jinbao Huang
| |
Collapse
|
9
|
Baruah R, Ray M, Halami PM. Preventive and Therapeutic aspects of Fermented Foods. J Appl Microbiol 2022; 132:3476-3489. [PMID: 35000256 DOI: 10.1111/jam.15444] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
In recent times, the status of some fermented foods which are considered as functional foods that confer health benefits in certain disease conditions has grown rapidly. The health benefits of fermented foods are due to the presence of probiotic microbes and the bioactive compound formed during fermentation. Microbes involved and metabolites produced by them are highly species-specific and contribute to the authenticity of the fermented foods. Several studies pertaining to the effect of fermented foods on various disease conditions have been conducted in recent years using both animal models and clinical trials on humans. This review focuses on the impact of fermented foods on conditions like diabetes, cardiovascular disease (CVD), obesity, gastrointestinal disorder, cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Rwivoo Baruah
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Mousumi Ray
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Prakash M Halami
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| |
Collapse
|
10
|
Ma H, Hu Y, Zhang B, Shao Z, Roura E, Wang S. Tea polyphenol – gut microbiota interactions: hints on improving the metabolic syndrome in a multi-element and multi-target manner. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Li BY, Li HY, Zhou DD, Huang SY, Luo M, Gan RY, Mao QQ, Saimaiti A, Shang A, Li HB. Effects of Different Green Tea Extracts on Chronic Alcohol Induced-Fatty Liver Disease by Ameliorating Oxidative Stress and Inflammation in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5188205. [PMID: 35003517 PMCID: PMC8731271 DOI: 10.1155/2021/5188205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/06/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
Abstract
Alcoholic fatty liver disease (AFLD) is a common chronic liver disease and has become a critical global public health problem. Green tea is a popular drink worldwide and contains several bioactive compounds. Different green teas could contain diverse compounds and possess distinct bioactivities. In the present study, the effects of 10 green teas on chronic alcohol induced-fatty liver disease in mice were explored and compared. The results showed that several green teas significantly reduced triacylglycerol levels in serum and liver as well as the aminotransferase activities in mice at a dose of 200 mg/kg, suggesting that they possess hepatoprotective effects. Moreover, several green teas remarkably decreased the expression of cytochrome P450 2E1, the levels of malondialdehyde and 4-hydroxynonenoic acid, and the contents of proinflammatory cytokines, indicating that they could alleviate oxidation damage and inflammation induced by chronic alcohol exposure. In addition, Seven Star Matcha Tea and Selenium-Enriched Matcha Tea could increase glutathione level. Furthermore, the main phytochemical components in green teas were determined and quantified by high-performance liquid chromatography, and the correlation analysis showed that gallic acid, gallocatechin, catechin, chlorogenic acid, and epigallocatechin gallate might at least partially contribute to protective effects on AFLD. In conclusion, Selenium-Enriched Chaoqing Green Tea, Xihu Longjing Tea, Taiping Houkui Tea, and Selenium-Enriched Matcha Tea showed the strongest preventive effects on AFLD. This research also provides the public with new insights about the effects of different green teas on AFLD.
Collapse
Affiliation(s)
- Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
12
|
Jeong HW, Lee JH, Choi JK, Rha CS, Lee JD, Park J, Park M. Antihypertriglyceridemia activities of naturally fermented green tea, Heukcha, extract through modulation of lipid metabolism in rats fed a high-fructose diet. Food Sci Biotechnol 2021; 30:1581-1591. [PMID: 34868706 DOI: 10.1007/s10068-021-00992-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Hypertriglyceridemia, a symptom of elevated triglyceride level in the blood, is a potent risk factor for cardiovascular and metabolic disorders. Among the numerous treatments to regulate circulating triglyceride levels, fibrates are widely used to treat hypertriglyceridemia, although they also have side effects such as hepatotoxicity and gallstone formation. In the present study, we aimed to investigate the blood triglyceride-lowering effects of a naturally fermented green tea extract (NFGT) and the underlying mechanisms on hypertriglyceridemia in vitro and in vivo models. NFGT suppressed the expression of lipogenic genes, while augmented expression of fatty acid oxidation-related genes in cultured cells, leading to the significant decrease of intracellular triglyceride content. NFGT treated group in fructose-induced hypertriglyceridemic rat model significantly decreased plasma and hepatic triglyceride, which was accompanied by an increase in excretion of fecal fat. Taken together, we propose that NFGT could be potentially a novel functional ingredient to prevent or treat hypertriglyceridemia.
Collapse
Affiliation(s)
- Hyun Woo Jeong
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Ji-Hae Lee
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Jin Kyu Choi
- QA Team, Aestura Corporation, Ansung, Republic of Korea
| | - Chan-Su Rha
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Jung Dae Lee
- Osulloc R&D Center, Osulloc Farm Corporation, Jeju, Republic of Korea
| | - Jaehong Park
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Miyoung Park
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| |
Collapse
|
13
|
Li R, Xue Z, Jia Y, Wang Y, Li S, Zhou J, Liu J, Zhang M, He C, Chen H. Polysaccharides from mulberry (Morus alba L.) leaf prevents obesity by inhibiting pancreatic lipase in high-fat diet induced mice. Int J Biol Macromol 2021; 192:452-460. [PMID: 34634334 DOI: 10.1016/j.ijbiomac.2021.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/02/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic lipase (PL) is a key enzyme related to the prevention and treatment of obesity. The aim of the study was to evaluate the inhibitory effects of mulberry leaf polysaccharides (MLP) on PL and possible interaction mechanism, inhibition on lipid accumulation in vitro and in vivo. The results revealed that MLP had obvious inhibitory effects on PL (P < 0.05). The interaction of MLP-PL complexes was in a spontaneous way driven by enthalpy, and hydrogen bonds were the main factors in the binding. MLP could significantly inhibit the development of lipid accumulation in HepG2 cells (P < 0.05). Furthermore, consumption of high-fat diet containing MLP showed protective effects on liver and adipose tissue damages in mice, and inhibited the lipid absorption in digestive tract. MLP also significantly reduced the increased expression level of pancreatic digestive enzymes (P < 0.05). The study indicated that the anti-obesity effect of MLP might be caused by inhibition of lipid absorption via reducing PL activity.
Collapse
Affiliation(s)
- Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
14
|
Kang M, Kim EH, Jeong J, Ha H. Heukcha, naturally post-fermented green tea extract, ameliorates diet-induced hypercholesterolemia and NAFLD in hamster. J Food Sci 2021; 86:5016-5025. [PMID: 34642957 DOI: 10.1111/1750-3841.15929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022]
Abstract
Hypercholesterolemia, characterized by an increase in plasma low-density lipoprotein (LDL) cholesterol and total cholesterol (TC), is the leading cause of non-alcoholic fatty liver disease (NAFLD). The present study examined the effect of Heukcha extract (HCE), a naturally post-fermented green tea extract, on diet-induced hypercholesterolemia and related NAFLD in hamsters that metabolize lipids in a similar fashion to humans. The 10-week-old golden Syrian hamsters were fed a normal diet (ND) or a high cholesterol diet (HCD) containing 0.2% cholesterol and 10% lard, and some were also given HCE (200 or 500 mg/kg/day) orally for 12 weeks. The HCE did not affect the body weight gain, food intake, or the calorie intake. HCD significantly (p < 0.05) increased LDL (0.9 to 2.1 mmol/L), TC (2.7 to 7.8 mmol/L), and triglyceride (TG; 2.3 to 4.0 mmol/L), which was significantly decreased by 27.7%, 17.3%, and 60%, respectively, by HCE. HDL was significantly increased by HCD (0.6 to 1.6 mmol/L), but it was not affected by HCE administration. Furthermore, HCE suppressed HCD-induced liver oxidative stress, fibrosis, and lipid accumulation almost to control levels. Interestingly, HCE significantly increased the protein level of cholesterol 7 alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for bile acid synthesis, by 1.5-fold in the liver. The present data suggest that HCE could be a functional food ingredient that can suppress the occurrence of diet-induced hypercholesterolemia and NAFLD, possibly by increasing the expression of CYP7A1.
Collapse
Affiliation(s)
- Minji Kang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Ee Hyun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jeewon Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
15
|
Li B, Mao Q, Gan R, Cao S, Xu X, Luo M, Li H, Li H. Protective effects of tea extracts against alcoholic fatty liver disease in mice via modulating cytochrome P450 2E1 expression and ameliorating oxidative damage. Food Sci Nutr 2021; 9:5626-5640. [PMID: 34646532 PMCID: PMC8498066 DOI: 10.1002/fsn3.2526] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022] Open
Abstract
The alcoholic fatty liver disease (AFLD) has been a severe public health problem. Oxidative stress is involved in the initiation and progression of AFLD. Tea is a popular beverage worldwide with strong antioxidant activity. In this research, our purpose is to explore and compare the effects of 12 selected teas on AFLD. The ethanol liquid diet was used to feed the mice, and 12 tea extracts were administrated at 200 mg/kg body weight every day for 4 weeks. The results showed that the application of several tea extracts exhibited different inhibitory effects on lipid accumulation induced by sub-acute alcohol consumption based on the determination of triglyceride concentration and the histological alteration in the liver. In addition, several teas significantly decreased serum alanine aminotransferase and aspartate aminotransferase activities, inhibited the cytochrome P450 2E1 expression, and promoted alcohol metabolism (p < .05). Besides, compared with the model group, several teas obviously elevated superoxide dismutase and glutathione peroxidase activities as well as glutathione content, and remarkably decreased malondialdehyde level (p < .05). In general, Fried Green Tea, Fenghuang Narcissus Oolong Tea, and Pu-erh Dark Tea possessed potential preventive effects on AFLD. Moreover, the main phytochemicals in the three tea extracts were determined and quantified via high-performance liquid chromatography, and the most commonly detected ingredients were catechins and caffeine, which could exert the protective effects on AFLD.
Collapse
Affiliation(s)
- Bang‐Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and HealthDepartment of NutritionSchool of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Qian‐Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and HealthDepartment of NutritionSchool of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Ren‐You Gan
- Research Center for Plants and Human HealthInstitute of Urban AgricultureChinese Academy of Agricultural SciencesChengduChina
| | - Shi‐Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and HealthDepartment of NutritionSchool of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Xiao‐Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and HealthDepartment of NutritionSchool of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and HealthDepartment of NutritionSchool of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Hang‐Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and HealthDepartment of NutritionSchool of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Hua‐Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and HealthDepartment of NutritionSchool of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
16
|
Pérez-Burillo S, Navajas-Porras B, López-Maldonado A, Hinojosa-Nogueira D, Pastoriza S, Rufián-Henares JÁ. Green Tea and Its Relation to Human Gut Microbiome. Molecules 2021; 26:molecules26133907. [PMID: 34206736 PMCID: PMC8271705 DOI: 10.3390/molecules26133907] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Green tea can influence the gut microbiota by either stimulating the growth of specific species or by hindering the development of detrimental ones. At the same time, gut bacteria can metabolize green tea compounds and produce smaller bioactive molecules. Accordingly, green tea benefits could be due to beneficial bacteria or to microbial bioactive metabolites. Therefore, the gut microbiota is likely to act as middle man for, at least, some of the green tea benefits on health. Many health promoting effects of green tea seems to be related to the inter-relation between green tea and gut microbiota. Green tea has proven to be able to correct the microbial dysbiosis that appears during several conditions such as obesity or cancer. On the other hand, tea compounds influence the growth of bacterial species involved in inflammatory processes such as the release of LPS or the modulation of IL production; thus, influencing the development of different chronic diseases. There are many studies trying to link either green tea or green tea phenolic compounds to health benefits via gut microbiota. In this review, we tried to summarize the most recent research in the area.
Collapse
Affiliation(s)
- Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (B.N.-P.); (A.L.-M.); (D.H.-N.); (S.P.)
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (B.N.-P.); (A.L.-M.); (D.H.-N.); (S.P.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Alicia López-Maldonado
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (B.N.-P.); (A.L.-M.); (D.H.-N.); (S.P.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (B.N.-P.); (A.L.-M.); (D.H.-N.); (S.P.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (B.N.-P.); (A.L.-M.); (D.H.-N.); (S.P.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (B.N.-P.); (A.L.-M.); (D.H.-N.); (S.P.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-24-28-41
| |
Collapse
|
17
|
Bhardwaj M, Yadav P, Vashishth D, Sharma K, Kumar A, Chahal J, Dalal S, Kataria SK. A Review on Obesity Management through Natural Compounds and a Green Nanomedicine-Based Approach. Molecules 2021; 26:3278. [PMID: 34071722 PMCID: PMC8198321 DOI: 10.3390/molecules26113278] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a serious health complication in almost every corner of the world. Excessive weight gain results in the onset of several other health issues such as type II diabetes, cancer, respiratory diseases, musculoskeletal disorders (especially osteoarthritis), and cardiovascular diseases. As allopathic medications and derived pharmaceuticals are partially successful in overcoming this health complication, there is an incessant need to develop new alternative anti-obesity strategies with long term efficacy and less side effects. Plants harbor secondary metabolites such as phenolics, flavonoids, terpenoids and other specific compounds that have been shown to have effective anti-obesity properties. Nanoencapsulation of these secondary metabolites enhances the anti-obesity efficacy of these natural compounds due to their speculated property of target specificity and enhanced efficiency. These nanoencapsulated and naive secondary metabolites show anti-obesity properties mainly by inhibiting the lipid and carbohydrate metabolizing enzymes, suppression of adipogenesis and appetite, and enhancing energy metabolism. This review focuses on the plants and their secondary metabolites, along with their nanoencapsulation, that have anti-obesity effects, with their possible acting mechanisms, for better human health.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (M.B.); (P.Y.); (D.V.)
| | - Poonam Yadav
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (M.B.); (P.Y.); (D.V.)
| | - Divya Vashishth
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (M.B.); (P.Y.); (D.V.)
| | - Kavita Sharma
- Department of Zoology, Gaur Brahman Degree College, Rohtak 124001, India;
| | - Ajay Kumar
- Department of Zoology, Maharaja Neempal Singh Government College, Bhiwani 127021, India;
| | - Jyoti Chahal
- Department of Zoology, Hindu Girls College, Sonipat 131001, India;
| | - Sunita Dalal
- Department of Biotechnology, Kurukshetra University, Kurukshetra 136119, India;
| | - Sudhir Kumar Kataria
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (M.B.); (P.Y.); (D.V.)
| |
Collapse
|
18
|
Zhou MX, Tian X, Wu ZQ, Li K, Li ZJ. Fuzhuan brick tea supplemented with areca nuts: Effects on serum and gut microbiota in mice. J Food Biochem 2021; 45:e13737. [PMID: 33876445 DOI: 10.1111/jfbc.13737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 11/28/2022]
Abstract
Areca nut and Fuzhuan brick tea, a type of natural plant products, have obvious effects of fat reduction and weight loss; however, there is no report on their synergistic effect. This study investigated the effects of Fuzhuan brick tea supplemented with different concentrations of areca nut (5% (LAF), 10% (MAF), and 20% (HAF)) on serum and gut microbiota in Kunming (KM) mice. The results showed that Fuzhuan brick tea supplemented with areca nuts (AFTs) could reduce weight, prevent the accumulation of fat, inhibit the increase in the levels of serum triglyceride, total cholesterol, low-density lipoprotein cholesterol, blood glucose, free fatty acid, insulin, and total bile acid, alleviate the decrease in high-density lipoprotein cholesterol level, and regulate the composition of gut microbiota by high-fat diet intervention. The HAF group with 20% areca nut content showed the best effect. These results could provide a novel approach to prevent obesity and hyperlipidemia. PRACTICAL APPLICATIONS: Consumption of areca nut and tea is widespread in Asia and other regions. As a controversial raw material, the damage due to areca nut to oral mucosa health has often aroused public concern and heated discussion; however, its medicinal value has been confirmed in terms of its pharmacological effects in various aspects. Fuzhuan brick tea, a type of traditional postfermented dark tea, has been confirmed to exert effects of antiobesity. Therefore, the areca nut and Fuzhuan brick tea, as a type of natural plant products, have obvious effects of fat reduction and weight loss; however, their synergistic effect has not been reported. To our knowledge, this study is the first to explore the effects of the Fuzhuan brick tea supplemented with areca nuts (AFTs) on serum and gut microbiota in mice. On the premise of exerting their beneficial effects (especially in terms of easing food stagnation and eliminating indigestion) and reducing their toxic and side effects, the effects of AFTs on health were further clarified, which could provide a novel direction for the development and utilization of areca nut. Moreover, our research would increase public understanding of areca nut and provide guidance to the Fuzhuan brick tea processing industry.
Collapse
Affiliation(s)
- Ming-Xi Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xing Tian
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China.,College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhong-Qin Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zong-Jun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
19
|
Lu Y, Ding H, Jiang X, Zhang H, Ma A, Hu Y, Li Z. Effects of the extract from peanut meal fermented with Bacillus natto and Monascus on lipid metabolism and intestinal barrier function of hyperlipidemic mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2561-2569. [PMID: 33063356 DOI: 10.1002/jsfa.10884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hyperlipidemia is one of the metabolic disorders that poses a great threat to human health. This study is aimed at investigating the potential hypolipidemic properties of extract from peanut meal fermented with Bacillus natto and Monascus in mice fed with a high-fat diet. Herein, 60 male C57BL/6J mice were randomly divided into six groups: four control groups, comprised of a normal group, a model (M) group, a positive control group (atorvastatin 10 mg kg-1 ), and a nonfermented peanut meal extract group (150 mg kg-1 ), and two experimental groups, comprised of a fermented peanut meal extract low-dose group (50 mg kg-1 ) and a fermented peanut meal extract high-dose group (FH, 150 mg kg-1 ). RESULTS Body weight (P = 0.001) and levels of serum total cholesterol (P = 0.007), triacylglycerol (P = 0.040), low-density lipoprotein cholesterol (P < 0.001), and leptin (P < 0.001) were remarkably decreased in the FH group, whereas the serum high-density lipoprotein cholesterol levels were increased (P < 0.001) by 78.3% compared with the M group. Ileum tissue stained with hematoxylin and eosin showed that the ileal villus detachments in mice were improved, and the villus height was increased by supplementation with extract from fermented peanut meal. Moreover, the expressions of intestinal ZO-1 (P = 0.003) and occludin (P = 0.013) were elevated in the FH group, compared with the M group. CONCLUSION Extract of peanut meal fermented by B. natto and Monascus can effectively improve hyperlipidemia caused by a high-fat diet in mice, via regulating leptin and blood lipid levels, and protect the intestinal mucosal barrier, which provides evidence for its anti-hyperlipidemia effects and is a research basis for potential industrial development. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaqian Lu
- School of Public Health, Medical College, Qingdao University, Qingdao, China
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Haoyue Ding
- School of Public Health, Medical College, Qingdao University, Qingdao, China
| | - Xiaoyang Jiang
- School of Public Health, Medical College, Qingdao University, Qingdao, China
| | - Huiwen Zhang
- School of Public Health, Medical College, Qingdao University, Qingdao, China
| | - Aiguo Ma
- School of Public Health, Medical College, Qingdao University, Qingdao, China
| | - Yingfen Hu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Zichao Li
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Cai J, Chen Z, Wu W, Lin Q, Liang Y. High animal protein diet and gut microbiota in human health. Crit Rev Food Sci Nutr 2021; 62:6225-6237. [PMID: 33724115 DOI: 10.1080/10408398.2021.1898336] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of the intestinal flora in health and disease has become a research hotspot. Compared with carbohydrates and fats, proteins are metabolized primarily by microbial fermentation in the intestine. The production of protein fermentation products and metabolites depends on the composition, diversity, and metabolism of the gut microbiota. Several protein fermentation products, including indoles, phenols, polyamines, hydrogen sulfide (H2S), amines, and carnitine, are toxic. This study analyzes the relationship between high-protein diets (HPDs), the intestinal microbiota, and human health and disease. Long-term HPDs increase the risk of intestinal diseases, type 2 diabetes (T2DM), obesity, central nervous system (CNS) diseases, and cardiovascular diseases (CVD) by producing toxic metabolites in the colon, including amines, H2S, and ammonia. Short-term HPDs have little effect on the metabolism of healthy individuals under 65 years old. However, meeting the protein requirements of individuals over 65 years old using HPDs is more challenging. The adverse effects of HPDs on athletes are minimal. Natural compounds (plant extracts, whose main constituents are polysaccharides and polyphenols), prebiotics, probiotics, and regular physical exercise improve gut dysbiosis and reduce disease risk.
Collapse
Affiliation(s)
- Jie Cai
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhongxu Chen
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Wei Wu
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
21
|
Chupeerach C, Aursalung A, Watcharachaisoponsiri T, Whanmek K, Thiyajai P, Yosphan K, Sritalahareuthai V, Sahasakul Y, Santivarangkna C, Suttisansanee U. The Effect of Steaming and Fermentation on Nutritive Values, Antioxidant Activities, and Inhibitory Properties of Tea Leaves. Foods 2021; 10:117. [PMID: 33429899 PMCID: PMC7827290 DOI: 10.3390/foods10010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/08/2023] Open
Abstract
Fermented tea (Cha-miang in Thai) is a local product made by traditional food preservation processes in Northern Thailand that involve steaming fresh tea leaves followed by fermenting in the dark. Information on changes in nutritive values, bioactive compounds, antioxidant activities, and health properties that occur during the steaming and fermenting processes of tea leaves is, however, limited. Changes in nutritive values, phenolics, antioxidant activities, and in vitro health properties through inhibition of key enzymes that control obesity (lipase), diabetes (α-amylase and α-glucosidase), hypertension (angiotensin-converting enzyme (ACE)), and Alzheimer's disease (cholinesterases (ChEs) and β-secretase (BACE-1)) of fermented tea were compared to the corresponding fresh and steamed tea leaves. Results showed that energy, carbohydrate, and vitamin B1 increased after steaming, while most nutrients including protein, dietary fiber, vitamins (B2, B3, and C), and minerals (Na, K, Ca, Mg, Fe, and Zn) decreased after the steaming process. After fermentation, energy, fat, sodium, potassium, and iron contents increased, while calcium and vitamins (B1, B2, B3, and C) decreased compared to steamed tea leaves. However, the contents of vitamin B1 and iron were insignificantly different between fresh and fermented tea leaves. Five flavonoids (quercetin, kaempferol, cyanidin, myricetin, and apigenin) and three phenolic acids (gallic acid, caffeic acid, and p-coumaric acid) were identified in the tea samples. Total phenolic content (TPC) and antioxidant activities increased significantly after steaming and fermentation, suggesting structural changes in bioactive compounds during these processes. Steamed tea exhibited high inhibition against lipase, α-amylase, and α-glucosidase, while fermented tea possessed high anti-ChE and anti-ACE activities. Fresh tea exhibited high BACE-1 inhibitory activity. Results suggest that tea preparations (steaming and fermentation) play a significant role in the amounts of nutrients and bioactive compounds, which, in turn, affect the in vitro health properties. Knowledge gained from this research will support future investigations on in vivo health properties of fermented tea, as well as promote future food development of fermented tea as a healthy food.
Collapse
Affiliation(s)
- Chaowanee Chupeerach
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Amornrat Aursalung
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Thareerat Watcharachaisoponsiri
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Kanyawee Whanmek
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Parunya Thiyajai
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Kachakot Yosphan
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Varittha Sritalahareuthai
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Yuraporn Sahasakul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Chalat Santivarangkna
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
22
|
Zhang T, Zhao W, Xie B, Liu H. Effects of Auricularia auricula and its polysaccharide on diet-induced hyperlipidemia rats by modulating gut microbiota. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
23
|
Matacchione G, Gurău F, Baldoni S, Prattichizzo F, Silvestrini A, Giuliani A, Pugnaloni A, Espinosa E, Amenta F, Bonafè M, Procopio AD, Rippo MR, Olivieri F, Sabbatinelli J. Pleiotropic effects of polyphenols on glucose and lipid metabolism: Focus on clinical trials. Ageing Res Rev 2020; 61:101074. [PMID: 32335301 DOI: 10.1016/j.arr.2020.101074] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Epidemiological evidence from observational studies suggests that dietary polyphenols (PPs) - phytochemicals found in a variety of plant-based foods - can reduce the risk of developing type 2 diabetes mellitus (T2DM). Clinical trials have also indicated that PPs may help manage the two key features of T2DM, hyperglycemia and dyslipidemia. Since the incidence of T2DM is dramatically increasing worldwide, identifying food-based approaches that can reduce the risk of developing it and help manage its main risk factors in early-stage disease has clinical and socioeconomic relevance. After a brief overview of current epidemiological data on the incidence of T2DM in individuals consuming PP-rich diets, we review the evidence from clinical trials investigating PP-enriched foods and/or PP-based nutraceutical compounds, report their main results, and highlight the knowledge gaps that should be bridged to enhance our understanding of the role of PPs in T2DM development and management.
Collapse
|
24
|
Li L, Ma H, Liu T, Ding Z, Liu W, Gu Q, Mu Y, Xu J, Seeram NP, Huang X, Xu J. Glucitol-core containing gallotannins-enriched red maple (Acer rubrum) leaves extract alleviated obesity via modulating short-chain fatty acid production in high-fat diet-fed mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
25
|
Bo S, Fadda M, Fedele D, Pellegrini M, Ghigo E, Pellegrini N. A Critical Review on the Role of Food and Nutrition in the Energy Balance. Nutrients 2020; 12:E1161. [PMID: 32331288 PMCID: PMC7231187 DOI: 10.3390/nu12041161] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
The mass media has increasingly frequently suggested to the general population that specific foods or nutritional schemes are able to affect both human metabolism and energy expenditure, thus facilitating weight loss. This critical review is aimed at assessing available evidence on the roles of nutrients, food and dietary regimens in energy intake and energy expenditure. We queried the National Library of Medicine, the Cochrane Library, Excerpta Medica dataBASEand the Cumulative Index to Nursing and Allied Health Literature database, and a search strategy was performed by using database-specific subject headings and keywords. We found that available scientific evidence on these topics is scarce, and that the limited number of available studies often have poor methodological quality. Only a few foods show beneficial effects on metabolism and energy expenditure, as the human energy balance is complex and multifactorial. Finally, microbiota may interfere with the intake, use and expenditure of energy in the human body. Conclusive evidence is still lacking, and, at present, it is not possible to identify a food or a diet with a significant impact on human energy expenditure.
Collapse
Affiliation(s)
- Simona Bo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Maurizio Fadda
- Dietetic and Clinical Nutrition Unit, S. Giovanni Battista Hospital, Città della Salute e della Scienza, 10126 Turin, Italy; (M.F.); (D.F.)
| | - Debora Fedele
- Dietetic and Clinical Nutrition Unit, S. Giovanni Battista Hospital, Città della Salute e della Scienza, 10126 Turin, Italy; (M.F.); (D.F.)
| | - Marianna Pellegrini
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| |
Collapse
|
26
|
Moszak M, Szulińska M, Bogdański P. You Are What You Eat-The Relationship between Diet, Microbiota, and Metabolic Disorders-A Review. Nutrients 2020; 12:E1096. [PMID: 32326604 PMCID: PMC7230850 DOI: 10.3390/nu12041096] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota (GM) is defined as the community of microorganisms (bacteria, archaea, fungi, viruses) colonizing the gastrointestinal tract. GM regulates various metabolic pathways in the host, including those involved in energy homeostasis, glucose and lipid metabolism, and bile acid metabolism. The relationship between alterations in intestinal microbiota and diseases associated with civilization is well documented. GM dysbiosis is involved in the pathogenesis of diverse diseases, such as metabolic syndrome, cardiovascular diseases, celiac disease, inflammatory bowel disease, and neurological disorders. Multiple factors modulate the composition of the microbiota and how it physically functions, but one of the major factors triggering GM establishment is diet. In this paper, we reviewed the current knowledge about the relationship between nutrition, gut microbiota, and host metabolic status. We described how macronutrients (proteins, carbohydrates, fat) and different dietary patterns (e.g., Western-style diet, vegetarian diet, Mediterranean diet) interact with the composition and activity of GM, and how gut bacterial dysbiosis has an influence on metabolic disorders, such as obesity, type 2 diabetes, and hyperlipidemia.
Collapse
Affiliation(s)
- Małgorzata Moszak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 61-569 Poznań, Poland; (M.S.); (P.B.)
| | | | | |
Collapse
|
27
|
Cao SY, Li BY, Gan RY, Mao QQ, Wang YF, Shang A, Meng JM, Xu XY, Wei XL, Li HB. The In Vivo Antioxidant and Hepatoprotective Actions of Selected Chinese Teas. Foods 2020; 9:262. [PMID: 32121649 PMCID: PMC7143450 DOI: 10.3390/foods9030262] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Tea is a popular beverage and shows very strong in vitro antioxidant activity. However, the relationship among in vitro and in vivo antioxidant activities in teas is seldom reported. In this study, in vivo antioxidant and hepatoprotective activities of 32 selected Chinese teas were evaluated on a mouse model with acute alcohol-induced liver injury. The results showed that most teas significantly reduced the levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, triacylglycerol, and total bilirubin in the sera of mice at a dose of 400 mg/kg. In addition, most teas greatly decreased the malondialdehyde level and increased the levels of superoxide dismutase, glutathione peroxidase, and glutathione in the liver of mice, indicating the antioxidant and hepatoprotective activities of teas. Furthermore, the in vivo antioxidant activity of dark tea was stronger than that of green tea, opposite to the results of the in vitro study. Among these 32 teas, Black Fu Brick Tea, Pu-erh Tea, and Qing Brick Tea showed the strongest antioxidant and hepatoprotective activities. Moreover, total phenolic content as well as the contents of epicatechin, gallocatechin gallate, and chlorogenic acid were found to contribute, at least partially, to the antioxidant and hepatoprotective actions of these teas. Overall, teas are good dietary components with antioxidant and hepatoprotective actions.
Collapse
Affiliation(s)
- Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Yuan-Feng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China;
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Jin-Ming Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| |
Collapse
|
28
|
Shirsath NR, Goswami AK. Natural Phytochemicals and Their Therapeutic Role in Management of Several Diseases: A Review. CURRENT TRADITIONAL MEDICINE 2020. [DOI: 10.2174/2215083805666190807111817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction:These days, a lot of people face some health-related problems in day to day life. The conventional synthetic medicine is not effective enough to cure them alone. The conventional therapy for the management of these health-related issues involves the use of hazardous synthetic chemicals and surgical diagnosis, which have lots of serious side effects. It is necessary to conduct research on herbal medicines, this is an alternative approach to avoid the side effects of synthetic medicines to achieve high effectiveness, low cost and improve patient compliance.Methods:The present survey is an analysis of some of the available data on the use of plants with their biological source, active phytochemicals constituents and a probable activity/ mechanism of action of several classes of drugs. This work also focused on highlighting the advantages of natural medicines for maximum utilization.Results:This article aims to increase awareness about natural medicine and help people find a suitable herbal medicine for the treatment of specific diseases.Conclusion:This article also exhibits the scope for further process in the development of new natural substance for the management of several diseases.
Collapse
Affiliation(s)
- Nitin R. Shirsath
- University Institute of Chemical Technology (UICT), Kavayitri Bahinabai Chaudhari North Maharashtra University (KBCNMU), Jalgaon, Maharashtra-425001, India
| | - Ajaygiri K. Goswami
- University Institute of Chemical Technology (UICT), Kavayitri Bahinabai Chaudhari North Maharashtra University (KBCNMU), Jalgaon, Maharashtra-425001, India
| |
Collapse
|
29
|
Liu YC, Li XY, Shen L. Modulation effect of tea consumption on gut microbiota. Appl Microbiol Biotechnol 2019; 104:981-987. [PMID: 31853562 DOI: 10.1007/s00253-019-10306-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 01/09/2023]
Abstract
Tea is one of the most popular beverages in the world and possesses a wide range of beneficial effects for human health. The modulation of tea on gut microbiota has gained much interest in recent years. The present study discussed the modulation effect of various types of tea on gut microbiota, which plays crucial roles in human health, as investigated by in vitro animal and human studies. The currently available findings from a total of 23 studies support the modulation effects of tea liquid, tea extract, and its major active components, including polyphenols, polysaccharides, and teasaponin, on gut microbiota. Overall, tea possesses prebiotic-like effect and can alleviate the gut microbiota dysbiosis induced by high-fat diet in gut microbiota, despite the detailed bacterial taxa may alter depending on the types of tea supplemented. Current evidence implies that the modulation effect on gut microbiota may be an important action mechanism underlying the beneficial effect of tea consumption in daily life and also the great potential of strategically chosen tea extract to develop functional foods.
Collapse
Affiliation(s)
- Yu-Chuan Liu
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Zibo Key Laboratory for Neurodegenerative Diseases Drug development, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, People's Republic of China
| | - Xin-Yu Li
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Zibo Key Laboratory for Neurodegenerative Diseases Drug development, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China. .,Zibo Key Laboratory for Neurodegenerative Diseases Drug development, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, People's Republic of China.
| |
Collapse
|
30
|
Liu D, Huang J, Luo Y, Wen B, Wu W, Zeng H, Zhonghua L. Fuzhuan Brick Tea Attenuates High-Fat Diet-Induced Obesity and Associated Metabolic Disorders by Shaping Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13589-13604. [PMID: 31735025 DOI: 10.1021/acs.jafc.9b05833] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An increasing amount of evidence suggests that the metabolic improvement of high-fat diet (HFD)-induced obese mice by Fuzhuan brick tea (FBT) is associated with gut microbiota. However, the causalities between FBT and gut microbiota have not yet been elucidated and the underlying mechanisms of action remain unclear. To impart direct evidence for the essential role of gut microbiota in the attenuation of obesity by FBT, the effects of FBT on healthy mice and microbiota-depleted mice that were treated with antibiotics were compared in an HFD-induced obesity mouse model. The results showed that FBT dramatically ameliorated obesity, serum lipid parameters, blood glucose homeostasis, hepatic steatosis, adipocyte hypertrophy, and tissue inflammation. However, the microbiota-depleted mice with single bacterium (Escherichia-Shigella) after antibiotic treatment were resistant to FBT-induced antiobesity and metabolic improvement. The beneficial effects of FBT resulted from its shift on gut microbiota composition and structure in mice. HFD-induced increase in the phyla Firmicutes/Bacteroidetes (F/B) ratio was remarkably restored by FBT. Furthermore, FBT-induced increase in abundances of beneficial bacteria Clostridiaceae, Bacteroidales, and Lachnospiraceae and decreases in harmful Ruminococcaceae, Peptococcaceae, Peptostreptococcaceae, and Erysipelotrichaceae were causal antecedents for FBT to reduce obesity and improve metabolic disorders.
Collapse
Affiliation(s)
- Dongmin Liu
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
- Changsha University of Science & Technology , Changsha 410114 , China
| | - Jianan Huang
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients , Changsha 410128 , China
| | - Yong Luo
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
| | - Beibei Wen
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
| | - Wenliang Wu
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
- Tea Research Institute , Hunan Academy of Agricultural Sciences , Changsha 410125 , China
| | - Hongliang Zeng
- Research Institute of Chinese Medicine , Hunan Academy of Chinese Medicine , Changsha , Hunan 410013 , China
| | - Liu Zhonghua
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients , Changsha 410128 , China
| |
Collapse
|
31
|
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int J Mol Sci 2019; 20:6196. [PMID: 31817990 PMCID: PMC6941079 DOI: 10.3390/ijms20246196] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Atanas G. Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| |
Collapse
|
32
|
Cao SY, Zhao CN, Xu XY, Tang GY, Corke H, Gan RY, Li HB. Dietary plants, gut microbiota, and obesity: Effects and mechanisms. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Cao SY, Zhao CN, Gan RY, Xu XY, Wei XL, Corke H, Atanasov AG, Li HB. Effects and Mechanisms of Tea and Its Bioactive Compounds for the Prevention and Treatment of Cardiovascular Diseases: An Updated Review. Antioxidants (Basel) 2019; 8:E166. [PMID: 31174371 PMCID: PMC6617169 DOI: 10.3390/antiox8060166] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVDs) are critical global public health issues with high morbidity and mortality. Epidemiological studies have revealed that regular tea drinking is inversely associated with the risk of CVDs. Additionally, substantial in vitro and in vivo experimental studies have shown that tea and its bioactive compounds are effective in protecting against CVDs. The relevant mechanisms include reducing blood lipid, alleviating ischemia/reperfusion injury, inhibiting oxidative stress, enhancing endothelial function, attenuating inflammation, and protecting cardiomyocyte function. Moreover, some clinical trials also proved the protective role of tea against CVDs. In order to provide a better understanding of the relationship between tea and CVDs, this review summarizes the effects of tea and its bioactive compounds against CVDs and discusses potential mechanisms of action based on evidence from epidemiological, experimental, and clinical studies.
Collapse
Affiliation(s)
- Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland.
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria.
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
34
|
Xia Y, Tan D, Akbary R, Kong J, Seviour R, Kong Y. Aqueous raw and ripe Pu-erh tea extracts alleviate obesity and alter cecal microbiota composition and function in diet-induced obese rats. Appl Microbiol Biotechnol 2019; 103:1823-1835. [PMID: 30610284 DOI: 10.1007/s00253-018-09581-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/31/2022]
Abstract
Pu-erh tea is attracting increased attention worldwide because of its unique flavor and health effects, but its impact on the composition and function of the gut microbiota remains unclear. The aim of this study was to investigate the effects of aqueous extracts of fermented (ripe) and non-fermented (raw) Pu-erh teas on the composition and function of the intestinal microbiota of rats with diet-induced obesity. We conducted a comparative metagenomic and meta-proteomic investigation of the microbial communities in cecal samples taken from obese rats treated with or without extracts of raw or ripe Pu-erh teas. By analyzing the composition and diversity of 16S rRNA amplicons and expression profiles of 814 distinct proteins, we found that despite differences in the chemical compositions of raw and ripe Pu-erh teas, administration of either tea at two doses (0.15- and 0.40-g/kg body weight) significantly (P < 0.05) increased microbial diversity and changed the composition of cecal microbiota by increasing the relative abundances of Firmicutes and decreasing those of Bacteroidetes. Community metabolic processes, including sucrose metabolism, glycolysis, and syntheses of proteins, rRNAs, and antibiotics were significantly (P < 0.05) promoted or had a tendency (0.10 < P < 0.05) to be promoted due to the enrichment of relevant enzymes. Furthermore, evidence at population, molecular, and metabolic levels indicated that polyphenols of raw Pu-erh tea and their metabolites potentially promote Akkermansia muciniphila growth by stimulating a type II and III secretion system protein, the elongation factor Tu, and a glyceraldehyde-3-phosphate dehydrogenase. This study provides new evidence for the prebiotic effects of Pu-erh tea.
Collapse
Affiliation(s)
- Yun Xia
- Department of Life Science and Technology, Kunming University, Kunming, China
| | - Donghong Tan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, China
| | - Roya Akbary
- Biology Department, Toronto University, Toronto, Canada
| | - James Kong
- Computer Science, York University, York, Canada
| | - Robert Seviour
- Microbiology Department, La Trobe University, Bundoora, Victoria, 3228, Australia
| | - Yunhong Kong
- Department of Life Science and Technology, Kunming University, Kunming, China.
| |
Collapse
|
35
|
Karri S, Sharma S, Hatware K, Patil K. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomed Pharmacother 2018; 110:224-238. [PMID: 30481727 DOI: 10.1016/j.biopha.2018.11.076] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
In the present scenario, obesity is a challenging health problem and its prevalence along with comorbidities are on the rise around the world. According to world health organization and organisation for economic co-operation and development epidemiology reports, overweight and obesity are the fifth foremost causes of deaths globally. The increasing rate of obesity is becoming a mammoth problem which enormously affects an individual's quality of life. The conventional therapy of obesity mainly involves synthetic moieties and surgical procedures, which has many harmful side effects and chances of recurrence with severity. Hence, the Present review is a metanalysis of all the available data on the use of the plants with their biological source, active phytochemical constituents and a probable mechanism of action as natural anti-obesity agents. The metanalysis of data during the period of 2000-2018 was performed with the help of scientific data search engine National Center for Biotechnology Information (NCBI/PubMed). This data reveals the need and scope of further research in the development of new natural phytoconstituents for the management of obesity.
Collapse
Affiliation(s)
- Sravani Karri
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Sanjay Sharma
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India.
| | - Ketan Hatware
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Kiran Patil
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| |
Collapse
|
36
|
Causes and solutions to “globesity”: The new fa(s)t alarming global epidemic. Food Chem Toxicol 2018; 121:173-193. [DOI: 10.1016/j.fct.2018.08.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/10/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
|
37
|
Kim YJ, Hwang SH, Jia Y, Seo WD, Lee SJ. Barley sprout extracts reduce hepatic lipid accumulation in ethanol-fed mice by activating hepatic AMP-activated protein kinase. Food Res Int 2017; 101:209-217. [DOI: 10.1016/j.foodres.2017.08.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
|