1
|
Zheng S, Yan J, Wang J, Wang X, Kang YE, Koo BS, Shan Y, Liu L. Unveiling the Effects of Cruciferous Vegetable Intake on Different Cancers: A Systematic Review and Dose-Response Meta-analysis. Nutr Rev 2025; 83:842-858. [PMID: 39348271 DOI: 10.1093/nutrit/nuae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
CONTEXT Epidemiological studies indicated that cruciferous vegetable intake is associated with positive health outcomes. However, the role of cruciferous vegetables may have differential impacts on various cancers. OBJECTIVE This meta-analysis aims to review recent epidemiological studies on the link between cruciferous vegetables and various cancers. It seeks to identify the optimal intake dose and timing of cruciferous vegetables influencing their association with cancer risk. DATA SOURCES Studies on cruciferous vegetables and cancer were searched in PubMed, NCBI, Web of Science, and Elsevier databases from 1978 to June 2023. DATA EXTRACTION Extracted data from 226 relevant case-control and cohort studies were expressed by standardized mean difference and 95% CI, followed by the subgroup analysis to eliminate heterogeneity. RESULTS Intake of cruciferous vegetables can prevent cancers, with an odds ratio of 0.77 and risk ratio (RR) of 0.96. The intake levels of cruciferous vegetables associated with the risk of colorectal cancer, lung cancer, upper gastrointestinal cancer, gynecological cancer (ovarian cancer and endometrial cancer), bladder cancer, renal cancer, and prostate cancer were found to be 5.41 servings/week, 5.41 servings/week, 5.5 servings/week, 7.4 servings/week, 5.5 servings/week, 4.85 servings/week, and 3 servings/week, respectively. In a cohort followed for 2 to 15 years, limited consumption of cruciferous vegetables was correlated with a higher cancer RR. In the Asian population, cruciferous vegetables had a significant relationship with lung cancer, head and neck squamous cell carcinoma, and esophageal cancer. Conversely, cruciferous vegetables are predominantly associated with colorectal, renal, gynecological, and prostate cancer in the American population. CONCLUSION This study highlights the complex link between cruciferous vegetables and cancer, influenced by factors such as cancer type, region, intake level, and follow-up duration.
Collapse
Affiliation(s)
- Sicong Zheng
- Department of Nutrition, Public Health and Management College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jielin Yan
- Department of Nutrition, Public Health and Management College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaxin Wang
- Department of Nutrition, Public Health and Management College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Southern Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, Zhejiang 325809, China
| | - Xinyi Wang
- Department of Nutrition, Public Health and Management College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Southern Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, Zhejiang 325809, China
| | - Yea Eun Kang
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon 35015, Republic of Korea
| | - Yujuan Shan
- Department of Nutrition, Public Health and Management College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Southern Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, Zhejiang 325809, China
| | - Lihua Liu
- Department of Nutrition, Public Health and Management College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Southern Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, Zhejiang 325809, China
| |
Collapse
|
2
|
Villar-López M, Soto-Becerra P, Chedraui P, Osorio-Manyari JD, Al-Kassab-Córdova A, Osorio-Manyari AA, Fernandez-Sosaya JL, Moya-Silvestre E, Rojas PA, Lugo-Martínez G, Mezones-Holguín E. Short-term effects and safety of a natural oral supplement containing glucosinolates, phytosterols, and citrus flavonoids compared with hormone treatment for the management of postmenopausal symptomatic women: a pilot single-center randomized phase 2 clinical trial. Menopause 2023; 30:1230-1240. [PMID: 37874969 DOI: 10.1097/gme.0000000000002268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
OBJECTIVE This study aimed to evaluate the short-term efficacy and safety of an oral herbal supplement containing glucosinolates, phytosterols, and citrus flavonoids for menopausal symptoms in comparison with estrogen plus progestogen therapy (EPT) among postmenopausal women. METHODS This was a pilot single-blinded, three-armed phase II randomized clinical trial, controlled with EPT. Sixty participants were randomly assigned to receive treatment for 3 months: (1) an oral herbal supplement of 1,500 mg/d (G1, n = 20), (2) an oral herbal supplement of 3,000 mg/d (G2, n = 20), or (3) conjugated equine estrogens 0.625 mg/d plus medroxyprogesterone acetate of 5 mg/d (EPT group, n = 20). The primary endpoint was the intensity of menopausal symptoms as measured using the Menopause-Specific Quality of Life Questionnaire (global and domain scores). The Menopause-Specific Quality of Life Questionnaire uses a 7-point scale to rate the symptom intensity, with higher scores indicating severity. The secondary endpoints were hormonal, lipid, and safety profiles. RESULTS Fifty-four participants (n = 54) completed the study. The mean, model-estimated, and global menopausal symptom scores at 3 months were 85.8 in the EPT group, 61.3 in G1, and 62.5 in G2. Participants treated with the herbal compound had lower global (13.7 [6.9-20.4], P < 0.001) and physical symptom scores (6.6 [1.6-11.5], P = 0.002) on the second month and lower psychosocial symptom scores (3.8 [1.3 to 6.3], P < 0.001) on the third month of follow-up, compared with EPT. Conversely, participants receiving EPT showed better outcomes on vasomotor symptoms since the first month of treatment (-6.1 [-8.3 to -4.0], P < 0.001). The EPT group exhibited higher values of estradiol and lower follicle-stimulating hormone and luteinizing hormone since the first month of follow-up. Also, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol were significantly higher in this group than in G2. CONCLUSIONS In this small single-blind exploratory trial, the oral herbal supplement was more efficacious in reducing global, physical, and psychosocial menopausal symptoms in the short term than EPT. However, further studies are needed to adequately assess the efficacy and safety of this herbal supplement in the treatment of menopausal symptoms.
Collapse
Affiliation(s)
| | | | - Peter Chedraui
- Escuela de Posgrado en Salud, Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - Ali Al-Kassab-Córdova
- Centro de Excelencia en Investigaciones Económicas y Sociales en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Perú
| | | | | | | | - Percy A Rojas
- Universidad Peruana Cayetano Heredia, Laboratorios de Investigación y Desarrollo, Unidad de Biotecnología Molecular, Lima, Perú
| | - Gabriela Lugo-Martínez
- Instituto Politécnico Nacional, Escuela Superior de Medicina, Sección de Estudios de Posgrado e Investigación, Ciudad de México, México
| | | |
Collapse
|
3
|
Xue C, Li G, Zheng Q, Gu X, Shi Q, Su Y, Chu Q, Yuan X, Bao Z, Lu J, Li L. Tryptophan metabolism in health and disease. Cell Metab 2023; 35:1304-1326. [PMID: 37352864 DOI: 10.1016/j.cmet.2023.06.004] [Citation(s) in RCA: 291] [Impact Index Per Article: 145.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Tryptophan (Trp) metabolism primarily involves the kynurenine, 5-hydroxytryptamine, and indole pathways. A variety of bioactive compounds produced via Trp metabolism can regulate various physiological functions, including inflammation, metabolism, immune responses, and neurological function. Emerging evidence supports an intimate relationship between Trp metabolism disorder and diseases. The levels or ratios of Trp metabolites are significantly associated with many clinical features. Additionally, studies have shown that disease progression can be controlled by modulating Trp metabolism. Indoleamine-2,3-dioxygenase, Trp-2,3-dioxygenase, kynurenine-3-monooxygenase, and Trp hydroxylase are the rate-limiting enzymes that are critical for Trp metabolism. These key regulatory enzymes can be targeted for treating several diseases, including tumors. These findings provide novel insights into the treatment of diseases. In this review, we have summarized the recent research progress on the role of Trp metabolites in health and disease along with their clinical applications.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
4
|
Nieto JA, Hellín P, Pérez B, Viadel B, Alapont A, Agudelo A. Fresh Brassicaceae sprouting broccoli (Bimi®) glucosinolates profile characterization and bioaccessibility through an in vitro dynamic digestion study. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
BocODD1 and BocODD2 Regulate the Biosynthesis of Progoitrin Glucosinolate in Chinese Kale. Int J Mol Sci 2022; 23:ijms232314781. [PMID: 36499110 PMCID: PMC9739482 DOI: 10.3390/ijms232314781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Progoitrin (2-hydroxy-3-butenyl glucosinolate, PRO) is the main source of bitterness of Brassica plants. Research on the biosynthesis of PRO glucosinolate can aid the understanding of the nutritional value in Brassica plants. In this study, four ODD genes likely involved in PRO biosynthesis were cloned from Chinese kale. These four genes, designated as BocODD1-4, shared 75-82% similarities with the ODD sequence of Arabidopsis. The sequences of these four BocODDs were analyzed, and BocODD1 and BocODD2 were chosen for further study. The gene BocODD1,2 showed the highest expression levels in the roots, followed by the leaves, flowers, and stems, which is in accordance with the trend of the PRO content in the same tissues. Both the expression levels of BocODD1,2 and the content of PRO were significantly induced by high- and low-temperature treatments. The function of BocODDs involved in PRO biosynthesis was identified. Compared with the wild type, the content of PRO was increased twofold in the over-expressing BocODD1 or BocODD2 plants. Meanwhile, the content of PRO was decreased in the BocODD1 or BocODD2 RNAi lines more than twofold compared to the wildtype plants. These results suggested that BocODD1 and BocODD2 may play important roles in the biosynthesis of PRO glucosinolate in Chinese kale.
Collapse
|
6
|
Tan Q, Liu G, Zhao C, Gao M, Zhang X, Chen G, Li L, Huang X, Zhang Y, Lv J, Xu D. Layered Double Hydroxide@Metal-Organic Framework Hybrids for Extraction of Indole-3-Carbinol From Cruciferous Vegetables. Front Nutr 2022; 9:841257. [PMID: 35656156 PMCID: PMC9152278 DOI: 10.3389/fnut.2022.841257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cruciferous vegetables are rich in glucosinolates, which can be metabolized to produce the antitumor compound indole-3-carbinol (I3C). The conventional solvent extraction method for I3C is inefficient. To improve the extraction efficiency of I3C from cruciferous vegetables, we prepared a metal-organic framework (MOF) material (Fe3O4@Zn-Al-LDH@B-D-MIL-100). First, Fe3O4 nanoparticles were introduced to layered double hydroxides by in situ polymerization. Then, the MOF material was grown on the surface of the layered double hydroxide by co-precipitation and the layer-by-layer self-assembly method. This gave Fe3O4@Zn-Al-LDH@B-D-MIL-100, which was characterized using a variety of techniques. The results showed that Fe3O4@Zn-Al-LDH@B-D-MIL-100 had a double-layer porous structure, excellent superparamagnetism (11.54955 emu/g), a large specific surface area (174.04 m2/g), and a pore volume (0.26 cm3/g). The extraction conditions for I3C were optimized. Non-linear fitting of the static adsorption model showed that the adsorption was mainly monolayer. Fe3O4@Zn-Al-LDH@B-D-MIL-100 had fast adsorption kinetics and could extract 95% of I3C in 45 min. It is superior to the traditional solvent extraction method because of its high enrichment efficiency in a short time and environmental friendliness. The successful preparation of the new nanomaterial will provide a new reference for the enrichment and extraction of the I3C industry.
Collapse
Affiliation(s)
- Qiyue Tan
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Guangyang Liu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenxi Zhao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Mingkun Gao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuan Zhang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Ge Chen
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyun Li
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodong Huang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaowei Zhang
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Jun Lv
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Donghui Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Gao J, Zhao G. Potentials of using dietary plant secondary metabolites to mitigate nitrous oxide emissions from excreta of cattle: Impacts, mechanisms and perspectives. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:327-334. [PMID: 35647327 PMCID: PMC9118128 DOI: 10.1016/j.aninu.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas as well as the key component depleting the ozone sphere of the earth. Cattle have high feed and water intakes and excrete large amounts of urine and feces. N2O can be produced from cattle excreta during storage and use as fertilizer. Mitigating the N2O emissions from cattle excreta during production is important for protecting the environment and the sustainable development of the cattle industry. Feeding cattle with low-protein diets increases N utilization rates, decreases N excretion and consequently reduces N2O emissions. However, this approach cannot be applied in the long term because of its negative impact on animal performance. Recent studies showed that dietary inclusion of some plant secondary metabolites such as tannins, anthocyanins, glucosinolates and aucubin could manipulate the N excretion and the urinary components and consequently regulate N2O emissions from cattle excreta. This review summarized the recent developments in the effects of dietary tannins, anthocyanins and glucosinolates on the metabolism of cattle and the N2O emissions from cattle excreta and concluded that dietary inclusion of tannins or anthocyanins could considerably reduce N2O emissions from cattle excreta.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193 Beijing, China
| | - Guangyong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
8
|
Mazurakova A, Koklesova L, Samec M, Kudela E, Kajo K, Skuciova V, Csizmár SH, Mestanova V, Pec M, Adamkov M, Al-Ishaq RK, Smejkal K, Giordano FA, Büsselberg D, Biringer K, Golubnitschaja O, Kubatka P. Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care. EPMA J 2022; 13:315-334. [PMID: 35437454 PMCID: PMC9008621 DOI: 10.1007/s13167-022-00277-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer incidence is actually the highest one among all cancers. Overall breast cancer management is associated with challenges considering risk assessment and predictive diagnostics, targeted prevention of metastatic disease, appropriate treatment options, and cost-effectiveness of approaches applied. Accumulated research evidence indicates promising anti-cancer effects of phytochemicals protecting cells against malignant transformation, inhibiting carcinogenesis and metastatic spread, supporting immune system and increasing effectiveness of conventional anti-cancer therapies, among others. Molecular and sub-/cellular mechanisms are highly complex affecting several pathways considered potent targets for advanced diagnostics and cost-effective treatments. Demonstrated anti-cancer affects, therefore, are clinically relevant for improving individual outcomes and might be applicable to the primary (protection against initial cancer development), secondary (protection against potential metastatic disease development), and tertiary (towards cascading complications) care. However, a detailed data analysis is essential to adapt treatment algorithms to individuals’ and patients’ needs. Consequently, advanced concepts of patient stratification, predictive diagnostics, targeted prevention, and treatments tailored to the individualized patient profile are instrumental for the cost-effective application of natural anti-cancer substances to improve overall breast cancer management benefiting affected individuals and the society at large.
Collapse
|
9
|
Villar-López M, Soto-Becerra P, Curse Choque R, Al-Kassab-Córdova A, Bernuy-Barrera F, Palomino H, Rojas PA, Vera C, Lugo-Martínez G, Mezones-Holguín E. Safety and tolerability of a natural supplement containing glucosinolates, phytosterols and citrus flavonoids in adult women: a randomized phase I, placebo-controlled, multi-arm, double-blinded clinical trial. Gynecol Endocrinol 2021; 37:906-913. [PMID: 34379025 DOI: 10.1080/09513590.2021.1960965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE To evaluate the safety and tolerability of an oral herbal supplement containing glucosinolates, phytosterols, and citrus flavonoids (Warmi®, Lima Perú;) in otherwise healthy adult women. METHODS This was a phase-I, randomized parallel three arms, double-blinded, and a placebo-controlled clinical trial. A total of 55 participants aged 18-40 were randomly assigned to one of three groups to receive for three months: (1) an oral herbal supplement of 1650 mg/day; (2) an oral herbal supplement of 3300 mg/day; or (3) an oral placebo 3300 mg/day. The primary endpoints were oral safety and tolerability of the supplement. The secondary endpoint was its effect on vital functions, anthropometrics, and laboratory tests. We used an exploratory approach by covariance analysis (ANCOVA) adjusted for the variables' baseline value for the secondary outcomes. RESULTS All women completed three months of follow-up, reporting no side effects. Our exploratory analysis revealed that treatment with the herbal supplement of 1650 mg/day was associated with increased glucose and uric acid levels. In comparison, the herbal supplement 3300 mg/day was associated with reduced breathing rate, increased basal temperature, and systolic blood pressure, both compared to the placebo group. However, despite significant differences, none of these was clinically significant. CONCLUSION The oral herbal supplement had a favorable safety and tolerability profile in studied women. There is a need to study its potential as an option to treat menopausal symptoms.
Collapse
Affiliation(s)
- Martha Villar-López
- Universidad Nacional Mayor de San Marcos, Facultad de Medicina "San Fernando", Departamento de Medicina Preventiva y Salud Pública, Lima, Perú
| | - Percy Soto-Becerra
- Universidad San Ignacio de Loyola, Centro de Excelencia en Investigaciones Económicas y Sociales en Salud, Lima, Perú
- Epi-gnosis Solutions, Piura, Perú
| | - Ruth Curse Choque
- Hospital Carlos Alcántara Butterfield, Servicio de Pediatría, Lima, Perú
| | - Ali Al-Kassab-Córdova
- Universidad Peruana de Ciencias Aplicadas, Facultad de Ciencias de la Salud, Lima, Perú
| | - Félix Bernuy-Barrera
- Universidad Nacional Federico Villarreal, Facultad de Medicina Hipólito Unanue, Lima, Perú
| | - Henry Palomino
- Hospital Nacional Edgardo Rebagliati Martins, Departamento de Obstetricia y Ginecología, Lima, Perú
| | - Percy A Rojas
- Universidad Peruana Cayetano Heredia, Laboratorios de Investigación y Desarrollo, Unidad de Biotecnología Molecular, Lima, Perú
| | - Carmela Vera
- Hospital Nacional Edgardo Rebagliati Martins Lima, Servicio de Psicología, Perú
| | - Gabriela Lugo-Martínez
- Instituto Politécnico Nacional, Escuela Superior de Medicina, Sección de Estudios de Posgrado e Investigación, Ciudad de México, México
| | - Edward Mezones-Holguín
- Universidad San Ignacio de Loyola, Centro de Excelencia en Investigaciones Económicas y Sociales en Salud, Lima, Perú
- Epi-gnosis Solutions, Piura, Perú
| |
Collapse
|
10
|
Langston FMA, Nash GR, Bows JR. The retention and bioavailability of phytochemicals in the manufacturing of baked snacks. Crit Rev Food Sci Nutr 2021; 63:2141-2177. [PMID: 34529547 DOI: 10.1080/10408398.2021.1971944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is a growing body of evidence supporting the role that phytochemicals play in reducing the risk of various chronic diseases. Although there has been a rise in health products marketed as being "supergrains," "superfood," or advertising their abundance in antioxidants, these food items are often limited to powdered blends, dried fruit, nuts, or seeds, rarely intercepting the market of baked snacks. This is in part due to the still limited understanding of the impact that different industrial processes have on phytochemicals in a complex food matrix and their corresponding bioavailability. This review brings together the current data on how various industrial dehydration processes influence the retention and bioaccessibility of phytochemicals in baked snacks. It considers the interplay of molecules in an intricate snack matrix, limitations of conventional technologies, and constraints with consumer acceptance preventing wider utilization of novel technologies. Furthermore, the review takes a holistic approach, encompassing each stage of production-discussing the potential for inclusion of by-products to promote a circular economy and the proposal for a shift in agriculture toward biofortification or tailored growing of crops for their nutritional and post-harvest attributes.
Collapse
Affiliation(s)
- Faye M A Langston
- Natural Sciences, Streatham Campus, University of Exeter, Exeter, UK
| | - Geoff R Nash
- Natural Sciences, Streatham Campus, University of Exeter, Exeter, UK
| | | |
Collapse
|
11
|
Intake of total cruciferous vegetable and its contents of glucosinolates and isothiocyanates, glutathione S-transferases polymorphisms and breast cancer risk: a case-control study in China. Br J Nutr 2020; 124:548-557. [PMID: 32308174 DOI: 10.1017/s0007114520001348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cruciferous vegetables contain high levels of glucosinolates (GSL) and isothiocyanates (ITC). ITC are known to induce glutathione S-transferases (GST) and thus exert their anticarcinogenic effects. This study explored the combined effects of cruciferous vegetable, GSL and ITC intake and GST polymorphisms on breast cancer risk. A total of 737 breast cancer cases and 756 controls were recruited into this case-control study. OR and 95 % CI were assessed by multivariable logistic regression. Higher cruciferous vegetable, GSL and ITC intakes were inversely associated with breast cancer risk, with adjusted OR of 0·48 (95 % CI 0·35, 0·65), 0·54 (95 % CI 0·40, 0·74) and 0·62 (95 % CI 0·45, 0·84), respectively. Compared with women carrying the GSTP1 rs1695 wild AA genotype and high cruciferous vegetable, GSL or ITC intake, carriers of the AA genotype with low cruciferous vegetable, GSL and ITC intake had greater risk of breast cancer, with adjusted OR of 1·43 (95 % CI 1·01, 1·87), 1·34 (95 % CI 1·02, 1·75) and 1·37 (95 % CI 1·05, 1·80), respectively. Persons with the GSTM1-null genotype and lower intake of cruciferous vegetables, GSL and ITC had higher risk of breast cancer than those with the GSTM1-present genotype and higher intake, with OR of 1·42 (95 % CI 1·04, 1·95), 1·43 (95 % CI 1·05, 1·96) and 1·45 (95 % CI 1·06, 1·98), respectively. Among women possessing the GSTT1-present genotype, low intake of cruciferous vegetables, GSL or ITC was associated with higher risk of breast cancer. But these interactions were non-significant. This study indicated that there were no significant interactions between cruciferous vegetable, GSL or ITC intake and GST polymorphisms on breast cancer risk.
Collapse
|
12
|
Son YJ, Park JE, Kim J, Yoo G, Lee TS, Nho CW. Production of low potassium kale with increased glucosinolate content from vertical farming as a novel dietary option for renal dysfunction patients. Food Chem 2020; 339:128092. [PMID: 33152880 DOI: 10.1016/j.foodchem.2020.128092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
The production of low potassium vegetables arose out of the dietary needs of patients with renal dysfunction. Attempts have been made to reduce potassium content in vegetables and fruits; however, induced potassium deficiency has often resulted in decreased yields. Here, we investigated a new method of producing low potassium kale and present the characteristics of the resulting produce. By substituting potassium nitrate with calcium nitrate in the nutrient solution 2 weeks before harvesting, the potassium content of kale was reduced by 70% without a deterioration in yield and semblance qualities. Despite no relationships being detected between potassium deficiency and anti-oxidative properties, the total glucosinolate content, an indicator of the anti-cancer effect of cruciferous vegetables, was significantly increased by potassium deficiency in kale. This study demonstrates a novel method of producing low potassium kale for patients with renal failure, without a reduction in yield but with beneficial increase in glucosinolates.
Collapse
Affiliation(s)
- Yang-Ju Son
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Jai-Eok Park
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Junho Kim
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Gyhye Yoo
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Taek-Sung Lee
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Chu Won Nho
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| |
Collapse
|
13
|
Li M, Xie F, Li J, Sun B, Luo Y, Zhang Y, Chen Q, Wang Y, Zhang F, Zhang Y, Lin Y, Wang X, Tang H. Tumorous Stem Development of Brassica Juncea: A Complex Regulatory Network of Stem Formation and Identification of Key Genes in Glucosinolate Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1006. [PMID: 32784853 PMCID: PMC7466272 DOI: 10.3390/plants9081006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
Stem mustard is a stem variety of mustard, an important Brassica vegetable. The formation and development of the tumorous stem, which is the key organ for the direct yield and quality, is a complex biological process involving morphogenesis, material accumulation and gene regulation. In this study, we demonstrated through anatomical studies that stem swelling is mainly dependent on the increase in the number of cells and the volume of parenchyma cells in the cortex and pith. To further understand transcript and metabolic changes during stem swelling, we obtained 27,901 differentially expressed genes, of which 671 were specifically detected using transcriptome sequencing technology in all four stages of stem swelling. Functional annotation identified enrichment for genes involved in photosynthesis, energy metabolism, cell growth, sulfur metabolism and glucosinolate biosynthesis. Glucosinolates are a group of nitrogen- and sulfur-containing secondary metabolites, which largely exist in the Cruciferous vegetables. HPLC analysis of the contents and components of glucosinolates in four different stem development stages revealed eight glucosinolates, namely, three aliphatic glucosinolates (sinigrin, glucoalyssin and gluconapin), four indole glucosinolates (4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin and neoglucobrassicin) and one aromatic glucosinolate (gluconasturtiin). All these types of glucosinolates showed a significant downward trend during the stem swelling period. The content of aliphatic glucosinolates was the highest, with sinigrin being the main component. In addition, qPCR was used to validate the expression of nine genes involved in glucosinolate biosynthesis. Most of these genes were down-regulated during stem swelling in qPCR, which is consistent with transcriptome data. These data provide a basic resource for further molecular and genetic research on Brassica juncea.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Fangjie Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Jie Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (Y.W.); (F.Z.); (Y.Z.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
NMR-Based Metabolomic Comparison of Brassica oleracea (Var. italica): Organic and Conventional Farming. Foods 2020; 9:foods9070945. [PMID: 32708866 PMCID: PMC7404451 DOI: 10.3390/foods9070945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Brassicaceae family provides several crops which are worldwide known for their interesting phytochemical profiles, especially in terms of content of glucosinolates. These secondary metabolites show several beneficial effects toward consumers’ health, and several studies have been conducted to identify cultivation factors affecting their content in crops. One of the agronomic practices which is attracting growing interest is the organic one, which consists in avoiding the use of mineral fertilizers as well as pesticides. The aim of this study is to define the metabolic profile of Brassicaoleracea (var. italica) and to compare the samples grown using organic and conventional fertilization methods. The hydroalcoholic and organic extracts of the samples have been analyzed by NMR spectroscopy. Forty-seven metabolites belonging to the categories of organic acids, amino acids, carbohydrates, fatty acids, sterols, and other molecules have been identified. Thirty-seven metabolites have been quantified. Univariate and multivariate PCA analyses allowed to observe that the organic practice influenced the nitrogen transport, the carbohydrate metabolism, the glucosinolate content and the phenylpropanoid pathway in B. oleracea (var. italica).
Collapse
|
15
|
Sikorska-Zimny K, Beneduce L. The glucosinolates and their bioactive derivatives in Brassica: a review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Crit Rev Food Sci Nutr 2020; 61:2544-2571. [PMID: 32584172 DOI: 10.1080/10408398.2020.1780193] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study is a systematic review of the scientific literature reporting content, composition and biosynthesis of glucosinolates (GLS), and their derivative compounds in Brassica family. An amended classification of brassica species, varieties and their GLS content, organized for the different plant organs and in uniformed concentration measure unit, is here reported for the first time in a harmonized and comparative manner. In the last years, the studies carried out on the effect of processing on vegetables and the potential benefits for human health has increased rapidly and consistently the knowledge on the topic. Therefore, there was the need for an updated revision of the scientific literature of pre- and post-harvest modifications of GLS content, along with the role of gut microbiota in influencing their bioavailability once they are ingested. After analyzing and standardizing over 100 articles and the related data, the highest GLS content in Brassica, was declared in B. nigra (L.) W. D. J. Koch (201.95 ± 53.36 µmol g-1), followed by B. oleracea Alboglabra group (180.9 ± 70.3 µmol g-1). The authors also conclude that food processing can influence significantly the final content of GLS, considering the most popular methods: boiling, blanching, steaming, the latter can be considered as the most favorable to preserve highest level of GLS and their deriviatives. Therefore, a mild-processing strategic approach for GLS or their derivatives in food is recommended, in order to minimize the loss of actual bioactive impact. Finally, the human gut microbiota is influenced by Brassica-rich diet and can contribute in certain conditions to the increasing of GLS bioavailability but further studies are needed to assess the actual role of microbiomes in the bioavailability of healthy glucosinolate derivatives.
Collapse
Affiliation(s)
- Kalina Sikorska-Zimny
- Fruit and Vegetables Storage and Processing Department, Storage and Postharvest Physiology of Fruit and Vegetables Laboratory, Research Institute of Horticulture, Skierniewice, Poland.,Stefan Batory State University, Skierniewice, Poland
| | - Luciano Beneduce
- Department of the Sciences of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| |
Collapse
|
16
|
Ahmed AG, Hussein UK, Ahmed AE, Kim KM, Mahmoud HM, Hammouda O, Jang KY, Bishayee A. Mustard Seed ( Brassica nigra) Extract Exhibits Antiproliferative Effect against Human Lung Cancer Cells through Differential Regulation of Apoptosis, Cell Cycle, Migration, and Invasion. Molecules 2020; 25:molecules25092069. [PMID: 32365503 PMCID: PMC7248788 DOI: 10.3390/molecules25092069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the primary cause of cancer-related death worldwide, and development of novel lung cancer preventive and therapeutic agents are urgently needed. Brassica nigra (black mustard) seeds are commonly consumed in several Asian and African countries. Mustard seeds previously exhibited significant anticancer activities against several cancer types. In the present study, we have investigated various cellular and molecular mechanisms of anticancer effects of an ethanolic extract of B. nigra seeds against A549 and H1299 human non-small cell lung cancer cell lines. B. nigra extract showed a substantial growth-inhibitory effect as it reduced the viability and clonogenic survival of A549 and H1299 cells in a concentration-dependent manner. B. nigra extract induced cellular apoptosis in a time- and concentration-dependent fashion as evidenced from increased caspase-3 activity. Furthermore, treatment of both A549 and H1299 cells with B. nigra extract alone or in combination with camptothecin induced DNA double-strand breaks as evidenced by upregulation of γH2A histone family member X, Fanconi anemia group D2 protein, Fanconi anemia group J protein, ataxia-telangiectesia mutated and Rad3-related protein. Based on cell cycle analysis, B. nigra extract significantly arrested A549 and H1299 cells at S and G2/M phases. Additionally, B. nigra extract suppressed the migratory and invasive properties of both cell lines, downregulated the expression of matrix metalloproteinase-2 (MMP2), MMP9, and Snail and upregulated the expression of E-cadherin at mRNA and protein levels. Taken together, these findings indicate that B. nigra seed extract may have an important anticancer potential against human lung cancer which could be mediated through simultaneous and differential regulation of proliferation, apoptosis, DNA damage, cell cycle, migration, and invasion.
Collapse
Affiliation(s)
- Asmaa Gamal Ahmed
- Department of Pathology, Chonbuk National University Medical School, Jeonju 54907, Korea; (A.G.A.); (U.K.H.); (K.M.K.)
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Usama Khamis Hussein
- Department of Pathology, Chonbuk National University Medical School, Jeonju 54907, Korea; (A.G.A.); (U.K.H.); (K.M.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
- Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (H.M.M.); (O.H.)
| | - Amr E. Ahmed
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Jeonju 54907, Korea; (A.G.A.); (U.K.H.); (K.M.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Hamada M. Mahmoud
- Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (H.M.M.); (O.H.)
| | - Ola Hammouda
- Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (H.M.M.); (O.H.)
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Jeonju 54907, Korea; (A.G.A.); (U.K.H.); (K.M.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence: (K.Y.J.); or (A.B.); Tel.: +82-10-4228-9970 (K.Y.J.); +1-941-782-5950 (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: (K.Y.J.); or (A.B.); Tel.: +82-10-4228-9970 (K.Y.J.); +1-941-782-5950 (A.B.)
| |
Collapse
|
17
|
Profiling of Individual Desulfo-Glucosinolate Content in Cabbage Head ( Brassica oleracea var. capitata) Germplasm. Molecules 2020; 25:molecules25081860. [PMID: 32316621 PMCID: PMC7221891 DOI: 10.3390/molecules25081860] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Individual glucosinolates (GSLs) were assessed to select cabbage genotypes for a potential breeding program. One hundred forty-six cabbage genotypes from different origins were grown in an open field from March to June 2019; the cabbage heads were used for GSL analyses. Seven aliphatics [glucoiberin (GIB), progoitrin (PRO), epi-progoitrin (EPI), sinigrin (SIN), glucoraphanin (GRA), glucoerucin (GER) and gluconapin (GNA)], one aromatic [gluconasturtiin (GNS)] and four indolyl GSLs [glucobrassicin (GBS), 4-hydroxyglucobrassicin (4HGBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (NGBS)] were found this study. Significant variation was observed in the individual GSL content and in each class of GSLs among the cabbage genotypes. Aliphatic GSLs were predominant (58.5%) among the total GSLs, followed by indolyl GSL (40.7%) and aromatic GSLs (0.8%), showing 46.4, 51.2 and 137.8% coefficients of variation, respectively. GIB, GBS and NGBS were the most common GSLs found in all genotypes. GBS was the most dominant GSL, with an average value of 3.91 µmol g−1 (0.79 to 13.14 µmol g−1). SIN, GIB, PRO and GRA were the other major GSLs, showing average values of 3.45, 1.50, 0.77 and 0.62 µmol g−1, respectively. The genotypes with relatively high contents of GBS, SIN, GIB and GRA warrant detailed studies for future breeding programs since the hydrolysis products of these GSLs have several anti-cancer properties.
Collapse
|
18
|
Mandrich L, Caputo E. Brassicaceae-Derived Anticancer Agents: Towards a Green Approach to Beat Cancer. Nutrients 2020; 12:nu12030868. [PMID: 32213900 PMCID: PMC7146209 DOI: 10.3390/nu12030868] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is the main cause of mortality and morbidity worldwide. Although a large variety of therapeutic approaches have been developed and translated into clinical protocols, the toxic side effects of cancer treatments negatively impact patients, allowing cancer to grow. Brassica metabolites are emerging as new weapons for anti-cancer therapeutics. The beneficial role of the consumption of brassica vegetables, the most-used vegetables in the Mediterranean diet, particularly broccoli, in the prevention of chronic diseases, including cardiovascular diseases, diabetes, and obesity, has been well-documented. In this review, we discuss the anti-tumor effects of the bioactive compounds from Brassica vegetables with regard to the compounds and types of cancer against which they show activity, providing current knowledge on the anti-cancer effects of Brassica metabolites against major types of tumors. In addition, we discuss the impacts of industrial and domestic processing on the compounds’ functional properties before their consumption as well as the main strategies used to increase the content of health-promoting metabolites in Brassica plants through biofortification. Finally, the impacts of microbiota on the compounds’ bioactivity are considered. This information will be helpful for the further development of efficacious anti-cancer drugs.
Collapse
Affiliation(s)
- Luigi Mandrich
- Research Institute on Terrestrial Ecosystems-IRET-CNR, Via Pietro Castellino, 111, I-80131 Naples, Italy;
| | - Emilia Caputo
- Institute of Genetics and Biophysics (I.G.B.) “A. Buzzati-Traverso”, CNR, Via Pietro Castellino, 111, I-80131 Naples, Italy
- Correspondence:
| |
Collapse
|
19
|
Ramirez D, Abellán-Victorio A, Beretta V, Camargo A, Moreno DA. Functional Ingredients From Brassicaceae Species: Overview and Perspectives. Int J Mol Sci 2020; 21:E1998. [PMID: 32183429 PMCID: PMC7139885 DOI: 10.3390/ijms21061998] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Brassicaceae vegetables are important crops consumed worldwide due to their unique flavor, and for their broadly recognized functional properties, which are directly related to their phytochemical composition. Isothiocyanates (ITC) are the most characteristic compounds, considered responsible for their pungent taste. Besides ITC, these vegetables are also rich in carotenoids, phenolics, minerals, and vitamins. Consequently, Brassica's phytochemical profile makes them an ideal natural source for improving the nutritional quality of manufactured foods. In this sense, the inclusion of functional ingredients into food matrices are of growing interest. In the present work, Brassicaceae ingredients, functionality, and future perspectives are reviewed.
Collapse
Affiliation(s)
- Daniela Ramirez
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
- Instituto de Biología Agrícola de Mendoza, CONICET Mendoza 54 261, Argentina
| | - Angel Abellán-Victorio
- Phytochemistry and Healthy Foods Laboratory, Department of Food Science and Technology, Spanish National Research Council for Scientific Research (CEBAS-CSIC), Murcia 30100, Spain;
| | - Vanesa Beretta
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
| | - Alejandra Camargo
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
- Instituto de Biología Agrícola de Mendoza, CONICET Mendoza 54 261, Argentina
| | - Diego A. Moreno
- Phytochemistry and Healthy Foods Laboratory, Department of Food Science and Technology, Spanish National Research Council for Scientific Research (CEBAS-CSIC), Murcia 30100, Spain;
| |
Collapse
|
20
|
Mokbel K, Mokbel K. Chemoprevention of Breast Cancer With Vitamins and Micronutrients: A Concise Review. In Vivo 2019; 33:983-997. [PMID: 31280187 DOI: 10.21873/invivo.11568] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/05/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
Abstract
Numerous dietary components and vitamins have been found to inhibit the molecular events and signalling pathways associated with various stages of breast cancer development. To identify the vitamins and dietary micronutrients that exert protective effects against breast cancer and define their mechanism of action, we performed a literature review of in vitro, animal and epidemiological studies and selected the in vitro and animal studies with robust molecular evidence and the epidemiological studies reporting statistically significant inverse associations for a breast cancer-specific protective effect. There is sufficient evidence from in vitro, animal and epidemiological human studies that certain vitamins, such as vitamin D3, folate, vitamin B6, and beta carotene as well as dietary micronutrients, such as curcumin, piperine, sulforaphane, indole-3-carbinol, quercetin, epigallocatechin gallate (EGCG) and omega-3 polyunsaturated fatty acids (PUFAs), display an antitumoral activity against breast cancer and have the potential to offer a natural strategy for breast cancer chemoprevention and reduce the risk of breast cancer recurrence. Therefore, a supplement that contains these micronutrients, using the safest form and dosage should be investigated in future breast cancer chemoprevention studies and as part of standard breast cancer therapy.
Collapse
Affiliation(s)
- Kefah Mokbel
- The London Breast Institute, Princess Grace Hospital, London, U.K.
| | - Kinan Mokbel
- The London Breast Institute, Princess Grace Hospital, London, U.K
| |
Collapse
|
21
|
Stress response to CO2 deprivation by Arabidopsis thaliana in plant cultures. PLoS One 2019; 14:e0212462. [PMID: 30865661 PMCID: PMC6415875 DOI: 10.1371/journal.pone.0212462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
After being the standard plant propagation protocol for decades, cultures of Arabidopsis thaliana sealed with Parafilm remain common today out of practicality, habit, or necessity (as in co-cultures with microorganisms). Regardless of concerns over the aeration of these cultures, no investigation has explored the CO2 transport inside these cultures and its effect on the plants. Thereby, it was impossible to assess whether Parafilm-seals used today or in thousands of older papers in the literature constitute a treatment, and whether this treatment could potentially affect the study of other treatments.For the first time we report the CO2 concentrations in Parafilm-sealed cultures of A. thaliana with a 1 minute temporal resolution, and the transcriptome comparison with aerated cultures. The data show significant CO2 deprivation to the plants, a drastic suppression of photosynthesis, respiration, starch accumulation, chlorophyll biosynthesis, and an increased accumulation of reactive oxygen species. Most importantly, CO2 deprivation occurs as soon as the cotyledons emerge. Gene expression analysis indicates a significant alteration of 35% of the pathways when compared to aerated cultures, especially in stress response and secondary metabolism processes. On the other hand, the observed increase in the production of glucosinolates and flavonoids suggests intriguing possibilities for CO2 deprivation as an organic biofortification treatment in high-value crops.
Collapse
|
22
|
Induction of Apoptosis and Cytotoxicity by Raphasatin in Human Breast Adenocarcinoma MCF-7 Cells. Molecules 2018; 23:molecules23123092. [PMID: 30486382 PMCID: PMC6321584 DOI: 10.3390/molecules23123092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023] Open
Abstract
Glucoraphasatin (GRH), a glucosinolate present abundantly in the plants of the Brassicaceae family, is hydrolyzed by myrosinase to raphasatin, which is considered responsible for its cancer chemopreventive activity; however, the underlying mechanisms of action have not been investigated, particularly in human cell lines. The aims of this study are to determine the cytotoxicity of raphasatin, and to evaluate its potential to cause apoptosis and modulate cell cycle arrest in human breast adenocarcinoma MCF-7 cells. The cytotoxicity was determined following incubation of the cells with glucoraphasatin or raphasatin (0–100 µM), for 24, 48, and 72 h. GRH displayed no cytotoxicity as exemplified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. When myrosinase was added to the incubation system to convert GRH to raphasatin, cytotoxicity was evident. Exposure of the cells to raphasatin stimulated apoptosis, as was exemplified by cell shrinkage, membrane blebbing, chromatin condensation, and nuclear fragmentation. Moreover, using Annexin V-FITC assay, raphasatin induced apoptosis, as witnessed by changes in cellular distribution of cells, at different stages of apoptosis; in addition, raphasatin caused the arrest of the MCF-7 cells at the G2 + M phase. In conclusion, raphasatin demonstrated cancer chemopreventive potential against human breast adenocarcinoma (MCF-7) cells, through induction of apoptosis and cell cycle arrest.
Collapse
|
23
|
Soundararajan P, Kim JS. Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers. Molecules 2018; 23:E2983. [PMID: 30445746 PMCID: PMC6278308 DOI: 10.3390/molecules23112983] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Glucosinolates (GSL) are naturally occurring β-d-thioglucosides found across the cruciferous vegetables. Core structure formation and side-chain modifications lead to the synthesis of more than 200 types of GSLs in Brassicaceae. Isothiocyanates (ITCs) are chemoprotectives produced as the hydrolyzed product of GSLs by enzyme myrosinase. Benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane ([1-isothioyanato-4-(methyl-sulfinyl) butane], SFN) are potential ITCs with efficient therapeutic properties. Beneficial role of BITC, PEITC and SFN was widely studied against various cancers such as breast, brain, blood, bone, colon, gastric, liver, lung, oral, pancreatic, prostate and so forth. Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor limits the tumor progression. Induction of ARE (antioxidant responsive element) and ROS (reactive oxygen species) mediated pathway by Nrf2 controls the activity of nuclear factor-kappaB (NF-κB). NF-κB has a double edged role in the immune system. NF-κB induced during inflammatory is essential for an acute immune process. Meanwhile, hyper activation of NF-κB transcription factors was witnessed in the tumor cells. Antagonistic activity of BITC, PEITC and SFN against cancer was related with the direct/indirect interaction with Nrf2 and NF-κB protein. All three ITCs able to disrupts Nrf2-Keap1 complex and translocate Nrf2 into the nucleus. BITC have the affinity to inhibit the NF-κB than SFN due to the presence of additional benzyl structure. This review will give the overview on chemo preventive of ITCs against several types of cancer cell lines. We have also discussed the molecular interaction(s) of the antagonistic effect of BITC, PEITC and SFN with Nrf2 and NF-κB to prevent cancer.
Collapse
Affiliation(s)
- Prabhakaran Soundararajan
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| |
Collapse
|