1
|
Kearns ML, Reynolds CM. Developmentally programmed obesity: Is there a role for anti-inflammatory nutritional strategies? Exp Physiol 2024; 109:633-646. [PMID: 38031876 PMCID: PMC11061634 DOI: 10.1113/ep091209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Pregnancy represents a period of immense maternal physiological adaptation, with progressive increases in lipid storage potential and insulin resistance to support fetal/placental growth. This requires significant change in the adipose tissue. Women living with obesity/overweight are more susceptible to these changes causing complications such as gestational diabetes. This is particularly worrying as up to 60% of European women are living with overweight/obesity at the onset of pregnancy. Furthermore, less than 1% meet all nutrition guidelines. There is now evidence that these deep metabolic changes can result in a predisposition to metabolic disease in both the mother and child in later life. Health and nutrition status during this period therefore represents a window to future health. This period offers a valuable opportunity for intervention to prevent the negative consequences of poor in utero environments and increases the long-term quality of life for mother and offspring. This review will examine a range of in utero factors which determine adipose tissue development, the impact of these factors on later-life obesity and metabolic health and the therapeutic value of dietary anti-inflammatory nutritional interventions during pregnancy and early life. When it comes to early life nutrition, a 'one size fits all' approach is not always appropriate. Understanding the mechanisms of adipose tissue development in response to differing nutritional strategies may be important in the context of complicated or adverse in utero environments and represents a substantial step towards a more personalised nutritional approach for the prevention of obesity, metabolic syndrome and related non-communicable diseases in future generations.
Collapse
Affiliation(s)
- Michelle L. Kearns
- Conway Institute/School of Public Health Physiotherapy and Sports Science/Institute of Food and Health/Diabetes Complications Research CentreUniversity College DublinDublin 4Ireland
| | - Clare M. Reynolds
- Conway Institute/School of Public Health Physiotherapy and Sports Science/Institute of Food and Health/Diabetes Complications Research CentreUniversity College DublinDublin 4Ireland
| |
Collapse
|
2
|
Pereira RO, Correia LA, Farah D, Komoni G, Farah V, Fiorino P. Wistar rat as an animal model to study high-fat induced kidney damage: a systematic review. Arch Physiol Biochem 2024; 130:205-214. [PMID: 34915796 DOI: 10.1080/13813455.2021.2017462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 12/07/2021] [Indexed: 12/09/2022]
Abstract
The effects of high-fat-associated kidney damage in humans are not completely elucidated. Animal experiments are essential to understanding the mechanisms underlying human diseases. This systematic review aimed to compile evidence of the role of a high-fat diet during the development of renal lipotoxicity and fibrosis of Wistar rats to understand whether this is a satisfactory model for the study of high fat-induced kidney damage. We conducted systematic searches in PUBMED, EMBASE, Lilacs, and Web of Science databases from inception until May 2021. The risk of bias was assessed using SYRCLE toll. Two reviewers independently screened abstracts and reviewed full-text articles. A total of 11 studies were included. The damage varied depending on the age and sex of the animals, time of protocol, and amount of fat in the diet. In conclusion, the Wistar rat is an adequate animal model to assess the effects of a high-fat diet on the kidneys.HighlightsA high-fat diet may promote kidney damage in Wistar rats.Wistar rat is efficient as an animal model to study high-fat-induced kidney damage.The effect of the diet depends on the fat amount, consumption time, and animal age.
Collapse
Affiliation(s)
- Renata O Pereira
- Translational Medicine Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Luana A Correia
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Daniela Farah
- Women's Health Technology Assessment Center, Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil
| | - Geovana Komoni
- Translational Medicine Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Vera Farah
- Translational Medicine Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Patricia Fiorino
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| |
Collapse
|
3
|
Coelho PM, Simmer LM, da Silva DS, Dos Santos MC, Kitagawa RR, Pezzin MF, Correa CR, Leite JG, Leopoldo AS, Lima-Leopoldo AP. Type 2 diabetes mellitus in obesity promotes prolongation of cardiomyocyte contractile function, impaired Ca 2+ handling and protein carbonylation damage. J Diabetes Complications 2023; 37:108559. [PMID: 37480704 DOI: 10.1016/j.jdiacomp.2023.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
AIMS To investigate whether the obesity associated to T2DM presented cardiomyocyte myocardial contractility dysfunction due to damage in Ca2+ handling, concomitantly with increased biomarkers of oxidative stress. METHODS Male Wistar rats were randomized into two groups: control (C): fed with standard diet; and obese (Ob) that fed a saturated high-fat. After the characterization of obesity (12 weeks), the Ob animals were submitted to T2DM induction with a single dose of intraperitoneal (i.p.) injection of streptozotocin (30 mg/kg). Thus, remained Ob rats that were characterized as to the presence (T2DMOb; n = 8) and/or absence (Ob; n = 10) of T2DM. Cardiac remodeling was measured by post-mortem morphological, isolated cardiomyocyte contractile function, as well as by intracellular Ca2+-handling analysis. RESULTS T2DMOb presented a significant reduction of all fat pads, total body fat and adiposity index. T2DMOb group presented a significant increase in protein carbonylation and superoxide dismutase (SOD) activity, respectively. T2DMOb promoted elevations in fractional shortening (15.6 %) and time to 50 % shortening (5.8 %), respectively. Time to 50 % Ca2+ decay was prolonged in T2DMOb, suggesting a possible impairment in Ca2+recapture and/or removal. CONCLUSION Type 2 diabetes mellitus in obesity promotes prolongation of cardiomyocyte contractile function with protein carbonylation damage and impaired Ca2+ handling.
Collapse
Affiliation(s)
- Priscila M Coelho
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Luísa M Simmer
- Center of Health Sciences, Department of Integrated Health Education, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Daniel S da Silva
- Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Matheus C Dos Santos
- Postgraduate Program in Physiological Sciences, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Rodrigo R Kitagawa
- Center of Health Sciences, Department of Pharmaceutical Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Mateus F Pezzin
- Center of Health Sciences, Department of Pharmaceutical Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Camila R Correa
- Medical School, Botucatu, São Paulo State University (UNESP), Brazil
| | - Jéssica G Leite
- Medical School, Botucatu, São Paulo State University (UNESP), Brazil
| | - André S Leopoldo
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil; Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil; Postgraduate Program in Physiological Sciences, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ana Paula Lima-Leopoldo
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil; Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil.
| |
Collapse
|
4
|
Ding Y, Gao P, Mao Y, Liu H, Zhong W, Hu C, He D, Wang X. Assessment of the Physicochemical Properties of Fragrant Rapeseed Blended Hotpot Oil by Principal Component Analysis. J Oleo Sci 2023; 72:263-272. [PMID: 36878580 DOI: 10.5650/jos.ess22268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
In this study, a nutritious, healthy Chongqing hotpot oil with excellent flavor was blended while considering nutrition, flavor, and health aspects. Four blended hotpot oils prepared from fragrant rapeseed, palm, sesame, and chicken oils were analyzed to determine their physicochemical properties, antioxidant capacities, levels of harmful substances, and nutritional compositions, and their sensory qualities were evaluated. Principal component analysis was performed to identify the best hotpot oil (10% chicken oil + 20% palm oil + 10% sesame oil + 60% fragrant rapeseed oil), which exhibited good antioxidant capacity (Oxidation Stability Index: 7.95 h; 2,2-diphenyl-1-picrylhydrazyl: 168.6 μmol/kg, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate): 116.7 μmol/kg, and ferric-reducing/antioxidant power: 63.9 μmol/kg), a high sensory score (7.7/10), stable physicochemical properties (acid value: 0.27 mg/g and peroxide value: 0.01 g/100 g), and high tocopherol (54.22%), and phytosterol retention (98.52%) after boiling for 8 h. Although the 3,4-benzopyrene content of this hotpot oil exceeded the EU standard after boiling for 7 h, the increase in the amount of harmful substances was the lowest.
Collapse
Affiliation(s)
- Yunpeng Ding
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University
| | - Pan Gao
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University
| | - Yanni Mao
- Wuhan Institute for Food and Cosmetic Control
| | - Hui Liu
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University
| | - Wu Zhong
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University
| | - Chuanrong Hu
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University
| | - Dongping He
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University
| | - Xingguo Wang
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University.,International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University
| |
Collapse
|
5
|
Yang L, Yang C, Chu C, Wan M, Xu D, Pan D, Xia H, Wang SK, Shu G, Chen S, Sun G. Beneficial effects of monounsaturated fatty acid-rich blended oils with an appropriate polyunsaturated/saturated fatty acid ratio and a low n-6/n-3 fatty acid ratio on the health of rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7172-7185. [PMID: 35727941 DOI: 10.1002/jsfa.12083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The effects of dietary fat on health are influenced by its fatty acid profile. We aimed to determine the effects of monounsaturated fatty acid (MUFA)-rich blended oils (BO) containing a balance of polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) and with a low n-6/n-3 PUFA ratio on the health of rats fed normal or high-fat diets. The BO was obtained by mixing red palm oil, rice bran oil (RO), tea seed oil and flaxseed oil in appropriate proportions. RESULTS BO consumption reduced the serum low-density lipoprotein cholesterol (LDL-C), non-esterified fatty acid (NEFA), insulin (INS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 (IL-1), high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), lipid peroxide (LPO) and oxidized LDL (ox-LDL) concentrations and the homeostasis model assessment of insulin resistance (HOMA-IR); it increased the high-density lipoprotein cholesterol (HDL-C), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) concentrations, and the bone mineral density (BMD) versus control oil-containing normal and high-fat diets. BO also reduced the triglyceride (TG), hs-CRP, MDA, ox-LDL and reactive oxygen species (ROS) concentrations; and increased the serum HDL-C and SOD, and BMD versus RO-containing high-fat diets. Finally, BO reduced the glucose (GLU) and INS, and HOMA-IR; it increased HDL-C, SOD, femoral weight and BMD versus RO-containing normal diets. CONCLUSION BOs with an appropriate fatty acid profile have beneficial effects on the glucolipid metabolism, inflammation, oxidative stress and bone quality of rats when included in both normal and high-fat diets. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Chu Chu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Min Wan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Shao Kang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Guofang Shu
- Department of Clinical Laboratory Medicine, Zhongda Hospital of Southeast University, Nanjing, China
| | - Shiqing Chen
- Palm Oil Research and Technical Service Institute of Malaysian Palm Oil Board, Shanghai, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
6
|
Nutrigenomics of Dietary Lipids. Antioxidants (Basel) 2021; 10:antiox10070994. [PMID: 34206632 PMCID: PMC8300813 DOI: 10.3390/antiox10070994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary lipids have a major role in nutrition, not only for their fuel value, but also as essential and bioactive nutrients. This narrative review aims to describe the current evidence on nutrigenomic effects of dietary lipids. Firstly, the different chemical and biological properties of fatty acids contained both in plant- and animal-based food are illustrated. A description of lipid bioavailability, bioaccessibility, and lipotoxicity is provided, together with an overview of the modulatory role of lipids as pro- or anti-inflammatory agents. Current findings concerning the metabolic impact of lipids on gene expression, epigenome, and gut microbiome in animal and human studies are summarized. Finally, the effect of the individual’s genetic make-up on lipid metabolism is described. The main goal is to provide an overview about the interaction between dietary lipids and the genome, by identifying and discussing recent scientific evidence, recognizing strengths and weaknesses, to address future investigations and fill the gaps in the current knowledge on metabolic impact of dietary fats on health.
Collapse
|
7
|
Gleeson LE, Roche HM, Sheedy FJ. Obesity, COVID-19 and innate immunometabolism. Br J Nutr 2021; 125:628-632. [PMID: 32892755 PMCID: PMC7520638 DOI: 10.1017/s0007114520003529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/06/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022]
Abstract
As COVID-19 continues to spread worldwide, severe disease and mortality have been observed in obese patients. We discuss how obesity and obesity-associated factors such as ‘meta-flammation’, dietary fat intake and paradoxical suppression of the innate immune response within the pulmonary compartment may be crucial determinants in the host response to a novel viral pathogen. Modulation of immune cell bioenergetics and metabolic potential plays a central role in the innate immune response to infection, and as we strive to combat this new global health threat, immunometabolism of the innate immune system warrants attention.
Collapse
Affiliation(s)
- Laura E. Gleeson
- School of Medicine, Trinity College, Dublin, Republic of Ireland
- Department of Respiratory Medicine, St James’s Hospital, Dublin, Republic of Ireland
| | - Helen M. Roche
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Republic of Ireland
- Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, Northern Ireland
| | - Frederick J. Sheedy
- School of Biochemistry and Immunology, Trinity College, Dublin, Republic of Ireland
| |
Collapse
|
8
|
Monounsaturated Fatty Acids in Obesity-Related Inflammation. Int J Mol Sci 2020; 22:ijms22010330. [PMID: 33396940 PMCID: PMC7795523 DOI: 10.3390/ijms22010330] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is an important aspect of the metabolic syndrome and is often associated with chronic inflammation. In this context, inflammation of organs participating in energy homeostasis (such as liver, adipose tissue, muscle and pancreas) leads to the recruitment and activation of macrophages, which secrete pro-inflammatory cytokines. Interleukin-1β secretion, sustained C-reactive protein plasma levels and activation of the NLRP3 inflammasome characterize this inflammation. The Stearoyl-CoA desaturase-1 (SCD1) enzyme is a central regulator of lipid metabolism and fat storage. This enzyme catalyzes the generation of monounsaturated fatty acids (MUFAs)-major components of triglycerides stored in lipid droplets-from saturated fatty acid (SFA) substrates. In this review, we describe the molecular effects of specific classes of fatty acids (saturated and unsaturated) to better understand the impact of different diets (Western versus Mediterranean) on inflammation in a metabolic context. Given the beneficial effects of a MUFA-rich Mediterranean diet, we also present the most recent data on the role of SCD1 activity in the modulation of SFA-induced chronic inflammation.
Collapse
|
9
|
Delgadillo-Puga C, Noriega LG, Morales-Romero AM, Nieto-Camacho A, Granados-Portillo O, Rodríguez-López LA, Alemán G, Furuzawa-Carballeda J, Tovar AR, Cisneros-Zevallos L, Torre-Villalvazo I. Goat's Milk Intake Prevents Obesity, Hepatic Steatosis and Insulin Resistance in Mice Fed A High-Fat Diet by Reducing Inflammatory Markers and Increasing Energy Expenditure and Mitochondrial Content in Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21155530. [PMID: 32752280 PMCID: PMC7432599 DOI: 10.3390/ijms21155530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
Goat's milk is a rich source of bioactive compounds (peptides, conjugated linoleic acid, short chain fatty acids, monounsaturated and polyunsaturated fatty acids, polyphenols such as phytoestrogens and minerals among others) that exert important health benefits. However, goat's milk composition depends on the type of food provided to the animal and thus, the abundance of bioactive compounds in milk depends on the dietary sources of the goat feed. The metabolic impact of goat milk rich in bioactive compounds during metabolic challenges such as a high-fat (HF) diet has not been explored. Thus, we evaluated the effect of milk from goats fed a conventional diet, a conventional diet supplemented with 30% Acacia farnesiana (AF) pods or grazing on metabolic alterations in mice fed a HF diet. Interestingly, the incorporation of goat's milk in the diet decreased body weight and body fat mass, improved glucose tolerance, prevented adipose tissue hypertrophy and hepatic steatosis in mice fed a HF diet. These effects were associated with an increase in energy expenditure, augmented oxidative fibers in skeletal muscle, and reduced inflammatory markers. Consequently, goat's milk can be considered a non-pharmacologic strategy to improve the metabolic alterations induced by a HF diet. Using the body surface area normalization method gave a conversion equivalent daily human intake dose of 1.4 to 2.8 glasses (250 mL per glass/day) of fresh goat milk for an adult of 60 kg, which can be used as reference for future clinical studies.
Collapse
Affiliation(s)
- Claudia Delgadillo-Puga
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico
- Correspondence: (C.D.-P.); (I.T.-V.); Tel.: +52-55-54870900 (C.D.-P. & I.T.-V.)
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico; (L.G.N.); (O.G.-P.); (L.A.R.-L.); (G.A.); (A.R.T.)
| | - Aurora M. Morales-Romero
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico 04510, Mexico;
| | - Antonio Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico 04510, Mexico;
| | - Omar Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico; (L.G.N.); (O.G.-P.); (L.A.R.-L.); (G.A.); (A.R.T.)
| | - Leonardo A. Rodríguez-López
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico; (L.G.N.); (O.G.-P.); (L.A.R.-L.); (G.A.); (A.R.T.)
| | - Gabriela Alemán
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico; (L.G.N.); (O.G.-P.); (L.A.R.-L.); (G.A.); (A.R.T.)
| | - Janette Furuzawa-Carballeda
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico;
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico; (L.G.N.); (O.G.-P.); (L.A.R.-L.); (G.A.); (A.R.T.)
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA;
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico; (L.G.N.); (O.G.-P.); (L.A.R.-L.); (G.A.); (A.R.T.)
- Correspondence: (C.D.-P.); (I.T.-V.); Tel.: +52-55-54870900 (C.D.-P. & I.T.-V.)
| |
Collapse
|
10
|
Guitton J, Bandet CL, Mariko ML, Tan-Chen S, Bourron O, Benomar Y, Hajduch E, Le Stunff H. Sphingosine-1-Phosphate Metabolism in the Regulation of Obesity/Type 2 Diabetes. Cells 2020; 9:E1682. [PMID: 32668665 PMCID: PMC7407406 DOI: 10.3390/cells9071682] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity is a pathophysiological condition where excess free fatty acids (FFA) target and promote the dysfunctioning of insulin sensitive tissues and of pancreatic β cells. This leads to the dysregulation of glucose homeostasis, which culminates in the onset of type 2 diabetes (T2D). FFA, which accumulate in these tissues, are metabolized as lipid derivatives such as ceramide, and the ectopic accumulation of the latter has been shown to lead to lipotoxicity. Ceramide is an active lipid that inhibits the insulin signaling pathway as well as inducing pancreatic β cell death. In mammals, ceramide is a key lipid intermediate for sphingolipid metabolism as is sphingosine-1-phosphate (S1P). S1P levels have also been associated with the development of obesity and T2D. In this review, the current knowledge on S1P metabolism in regulating insulin signaling in pancreatic β cell fate and in the regulation of feeding by the hypothalamus in the context of obesity and T2D is summarized. It demonstrates that S1P can display opposite effects on insulin sensitive tissues and pancreatic β cells, which depends on its origin or its degradation pathway.
Collapse
Affiliation(s)
- Jeanne Guitton
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Cecile L. Bandet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Mohamed L. Mariko
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Diabétologie et Maladies métaboliques, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Yacir Benomar
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| |
Collapse
|