1
|
Guzman GG, Farley S, Kyle JE, Bramer LM, Hoeltzl S, van den Dikkenberg J, Holthuis JCM, Tafesse FG. Systematic analysis of the sphingomyelin synthase family in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550547. [PMID: 37546869 PMCID: PMC10402111 DOI: 10.1101/2023.07.25.550547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Sphingomyelin (SM) is a major component of mammalian cell membranes and particularly abundant in the myelin sheath that surrounds nerve fibers. Its production is catalyzed by SM synthases SMS1 and SMS2, which interconvert phosphatidylcholine and ceramide to diacylglycerol and SM in the Golgi and at the plasma membrane, respectively. As the lipids participating in this reaction fulfill both structural and signaling functions, SMS enzymes have considerable potential to influence diverse important cellular processes. The nematode Caenorhabditis elegans is an attractive model for studying both animal development and human disease. The organism contains five SMS homologues but none of these have been characterized in any detail. Here, we carried out the first systematic analysis of SMS family members in C. elegans . Using heterologous expression systems, genetic ablation, metabolic labeling and lipidome analyses, we show that C. elegans harbors at least three distinct SM synthases and one ceramide phosphoethanolamine (CPE) synthase. Moreover, C. elegans SMS family members have partially overlapping but also unique subcellular distributions and together occupy all principal compartments of the secretory pathway. Our findings shed light on crucial aspects of sphingolipid metabolism in a valuable animal model and opens avenues for exploring the role of SM and its metabolic intermediates in organismal development.
Collapse
|
2
|
Petralia LM, van Diepen A, Lokker LA, Nguyen DL, Sartono E, Khatri V, Kalyanasundaram R, Taron CH, Foster JM, Hokke CH. Mass spectrometric and glycan microarray-based characterization of the filarial nematode Brugia malayi glycome reveals anionic and zwitterionic glycan antigens. Mol Cell Proteomics 2022; 21:100201. [PMID: 35065273 PMCID: PMC9046957 DOI: 10.1016/j.mcpro.2022.100201] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/30/2022] Open
Abstract
Millions of people worldwide are infected with filarial nematodes, responsible for lymphatic filariasis (LF) and other diseases causing chronic disablement. Elimination programs have resulted in a substantial reduction of the rate of infection in certain areas creating a need for improved diagnostic tools to establish robust population surveillance and avoid LF resurgence. Glycans from parasitic helminths are emerging as potential antigens for use in diagnostic assays. However, despite its crucial role in host–parasite interactions, filarial glycosylation is still largely, structurally, and functionally uncharacterized. Therefore, we investigated the glycan repertoire of the filarial nematode Brugia malayi. Glycosphingolipid and N-linked glycans were extracted from several life-stages using enzymatic release and characterized using a combination of MALDI-TOF-MS and glycan sequencing techniques. Next, glycans were purified by HPLC and printed onto microarrays to assess the host anti-glycan antibody response. Comprehensive glycomic analysis of B. malayi revealed the presence of several putative antigenic motifs such as phosphorylcholine and terminal glucuronic acid. Glycan microarray screening showed a recognition of most B. malayi glycans by immunoglobulins from rhesus macaques at different time points after infection, which permitted the characterization of the dynamics of anti-glycan immunoglobulin G and M during the establishment of brugian filariasis. A significant level of IgG binding to the parasite glycans was also detected in infected human plasma, while IgG binding to glycans decreased after anthelmintic treatment. Altogether, our work identifies B. malayi glycan antigens and reveals antibody responses from the host that could be exploited as potential markers for LF. Antigenic B. malayi N-linked and GSL glycans were structurally defined. IgG/IgM is induced to a subset of B. malayi glycans upon infection of rhesus macaques. Preferential IgG response to B. malayi glycans observed in chronically infected humans. Marked drop of anti-glycan IgG following treatment of individuals with anthelminthic.
Collapse
|
3
|
Buitrago G, Duncombe-Moore J, Harnett MM, Harnett W. Mini Review: Structure and Function of Nematode Phosphorylcholine-Containing Glycoconjugates. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.769000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An unusual aspect of the biology of nematodes is the covalent attachment of phosphorylcholine (PC) to carbohydrate in glycoconjugates. Investigation of the structure of these molecules by ever-increasingly sophisticated analytical procedures has revealed that PC is generally in phosphodiester linkage with C6 of N-acetylglucosamine (GlcNAc) in both N-type glycans and glycosphingolipids. Up to five PC groups have been detected in the former, being located on both antenna and core GlcNAc. The PC donor for transfer to carbohydrate appears to be phosphatidylcholine but the enzyme responsible for transfer remains to be identified. Work primarily involving the PC-containing Acanthocheilonema viteae secreted product ES-62, has shown that the PC attached to nematode N-glycans possesses a range of immunomodulatory properties, subverting for example, pro-inflammatory signalling in various immune system cell-types including lymphocytes, mast cells, dendritic cells and macrophages. This has led to the generation of PC-based ES-62 small molecule analogues (SMAs), which mirror the parent molecule in preventing the initiation or progression of disease in mouse models of a number of human conditions associated with aberrant inflammatory responses. These include rheumatoid arthritis, systemic lupus erythematosus and lung and skin allergy such that the SMAs are considered to have widespread therapeutic potential.
Collapse
|
4
|
Obregón A, Flores MS, Rangel R, Arévalo K, Maldonado G, Quintero I, Galán L. Characterization of N-glycosylations in Entamoeba histolytica ubiquitin. Exp Parasitol 2019; 196:38-47. [DOI: 10.1016/j.exppara.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022]
|
5
|
Jankowska E, Parsons LM, Song X, Smith DF, Cummings RD, Cipollo JF. A comprehensive Caenorhabditis elegans N-glycan shotgun array. Glycobiology 2018; 28:223-232. [PMID: 29325093 DOI: 10.1093/glycob/cwy002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/05/2018] [Indexed: 01/09/2023] Open
Abstract
Here we present a Caenorhabditis elegans N-glycan shotgun array. This nematode serves as a model organism for many areas of biology including but not limited to tissue development, host-pathogen interactions, innate immunity, and genetics. Caenorhabditis elegans N-glycans contain structural motifs that are also found in other nematodes as well as trematodes and lepidopteran species. Glycan binding toxins that interact with C. elegans glycoconjugates also do so with some agriculturally relevant species, such as Haemonchus contortus, Ascaris suum, Oesophagostomum dentatum and Trichoplusia ni. This situation implies that protein-carbohydrate interactions seen with C. elegans glycans may also occur in other species with related glycan structures. Therefore, this array may be useful to study these relationships in other nematodes as well as trematode and insect species. The array contains 134 distinct glycomers spanning a wide range of C. elegans N-glycans including the subclasses high mannose, pauci mannose, high fucose, mammalian-like complex and phosphorylcholine substituted forms. The glycans presented on the array have been characterized by two-dimensional separation, ion trap mass spectrometry, and lectin affinity. High fucose glycans were well represented and contain many novel core structures found in C. elegans as well as other species. This array should serve as an investigative platform for carbohydrate binding proteins that interact with N-glycans of C. elegans and over a range of organisms that contain glycan motifs conserved with this nematode.
Collapse
Affiliation(s)
- Ewa Jankowska
- Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| | - Lisa M Parsons
- Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| | - Xuezheng Song
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Room 105H, Whitehead Biomedical Res. Bldg., 615 Michael Street, Atlanta, GA 30322, USA
| | - Dave F Smith
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Room 105H, Whitehead Biomedical Res. Bldg., 615 Michael Street, Atlanta, GA 30322, USA
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02115, USA
| | - John F Cipollo
- Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| |
Collapse
|
6
|
Wu Z, Wang L, Tang Y, Sun X. Parasite-Derived Proteins for the Treatment of Allergies and Autoimmune Diseases. Front Microbiol 2017; 8:2164. [PMID: 29163443 PMCID: PMC5682104 DOI: 10.3389/fmicb.2017.02164] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/20/2017] [Indexed: 12/26/2022] Open
Abstract
The morbidity associated with atopic diseases and immune dysregulation disorders such as asthma, food allergies, multiple sclerosis, atopic dermatitis, type 1 diabetes mellitus, and inflammatory bowel disease has been increasing all around the world over the past few decades. Although the roles of non-biological environmental factors and genetic factors in the etiopathology have been particularly emphasized, they do not fully explain the increase; for example, genetic factors in a population change very gradually. Epidemiological investigation has revealed that the increase also parallels a decrease in infectious diseases, especially parasitic infections. Thus, the reduced prevalence of parasitic infections may be another important reason for immune dysregulation. Parasites have co-evolved with the human immune system for a long time. Some parasite-derived immune-evasion molecules have been verified to reduce the incidence and harmfulness of atopic diseases in humans by modulating the immune response. More importantly, some parasite-derived products have been shown to inhibit the progression of inflammatory diseases and consequently alleviate their symptoms. Thus, parasites, and especially their products, may have potential applications in the treatment of autoimmune diseases. In this review, the potential of parasite-derived products and their analogs for use in the treatment of atopic diseases and immune dysregulation is summarized.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Yanlai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| |
Collapse
|
7
|
Bennuru S, Lustigman S, Abraham D, Nutman TB. Metabolite profiling of infection-associated metabolic markers of onchocerciasis. Mol Biochem Parasitol 2017; 215:58-69. [PMID: 28188804 PMCID: PMC5474354 DOI: 10.1016/j.molbiopara.2017.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 11/30/2022]
Abstract
The global efforts for onchocerciasis elimination may require additional tools (safe micro and macrofilaricidal drugs, vaccines and biomarkers) as elimination efforts move toward the "end game". Efforts toward the identification of suitable biomarkers have focused on specific protein(s) and/or nucleic acids, but metabolites present an alternative option as they have limited half-lives and are the result of combinatorial effects. In comparison to previously used methodology of LC-MS for metabolomic approaches, we used a non-targeted capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) to analyze the serum metabolic profiles of Ov-infected and -uninfected individuals (n=20). We identified 286 known metabolites (167 in the cation mode and 119 in the anion mode). In addition, putative metabolites were identified based on KEGG (51), HMDB (37) and HMT (6) databases. One hundred ten of these putative metabolites were quantified based on peak areas of internal standards and their ability to be mapped to known pathways (primary-, carbon-, lipid-, amino acid-, nucleotide and coenzyme-metabolism). Multivariate analysis demonstrated clustering and segregation of some of these metabolites to either the infected or control groups. The levels of serotonin, hypoxanthine, pipecolic acid and inosine were significantly elevated in those with onchocerciasis, whereas the levels of glycerophosphocholine, choline and adenine were significantly lower. This non-targeted metabolomic approach provides a global view of the metabolic variations that occur during Ov infection and thus allow the discovery of key metabolites (and associated pathways) that may serve as useful biomarkers in human onchocerciasis.
Collapse
Affiliation(s)
| | | | | | - Thomas B Nutman
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
8
|
Rafiei Sefiddashti R, Sharafi SM, Ebrahimi SA, Akhlaghi L, Moosavi A, Eskandarian A, Hejrati A, Yousofi Darani H. Antibody response to glycan antigens of hydatid cyst fluid, laminated layer and protoscolex of Echinococcus granulosus. Med J Islam Repub Iran 2017; 31:12. [PMID: 28955662 PMCID: PMC5609323 DOI: 10.18869/mjiri.31.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Indexed: 01/13/2023] Open
Abstract
Background: Hydatid disease is characterized by long-term growth of hydatid cysts in the human. The glycan antigens have an important role in the immunology of hydatid cyst. In this study immunological reaction of host sera to different glycan antigens of the cyst, has been investigated.
Methods: The antibody responses were tested to glycoprotein and glycolipid of the laminated layer (LL), cyst fluid (CF) and protoscolex (PS) antigens of E. Granulosus using ELISA and western immunoblotting tests. Thin-layer chromatography and ß-elimination were used for glycan purification.
Results: Both hydatid cyst and normal human sera reacted with hydatid cyst fluid, protoscolices, laminated layer, glycoprotein and glycolipid antigens. The most antigen-antibody reaction was related to CF and PS antigens, and LL antigens had the minimal reaction with the sera. Thin layer chromatography (TLC) of the antigens showed presence of many glycan bands in the laminated layer.
Conclusion: The parasite may elaborate different glycan antigens in LL to evade host immune response.
Collapse
Affiliation(s)
| | - Seyedeh Maryam Sharafi
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soltan Ahmad Ebrahimi
- Pharmacology Department and Razi Institute for Drug Research, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lame Akhlaghi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Iran university of Medical Sciences, Tehran, Iran
| | - Ali Moosavi
- Iran University of Medical Sciences, Tehran, Iran
| | - Abbasali Eskandarian
- Department of Parasitology and Mycology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hossein Yousofi Darani
- Department of Parasitology and Mycology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Hokke CH, van Diepen A. Helminth glycomics - glycan repertoires and host-parasite interactions. Mol Biochem Parasitol 2016; 215:47-57. [PMID: 27939587 DOI: 10.1016/j.molbiopara.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 01/12/2023]
Abstract
Glycoproteins and glycolipids of parasitic helminths play important roles in biology and host-parasite interaction. This review discusses recent helminth glycomics studies that have been expanding our insights into the glycan repertoire of helminths. Structural data are integrated with biological and immunological observations to highlight how glycomics advances our understanding of the critical roles that glycans and glycan motifs play in helminth infection biology. Prospects and challenges in helminth glycomics and glycobiology are discussed.
Collapse
Affiliation(s)
- Cornelis H Hokke
- Parasite Glycobiology Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Angela van Diepen
- Parasite Glycobiology Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Veríssimo CM, Morassutti AL, von Itzstein M, Sutov G, Hartley-Tassell L, McAtamney S, Dell A, Haslam SM, Graeff-Teixeira C. Characterization of the N-glycans of female Angiostrongylus cantonensis worms. Exp Parasitol 2016; 166:137-43. [PMID: 27107931 DOI: 10.1016/j.exppara.2016.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 04/04/2016] [Accepted: 04/19/2016] [Indexed: 12/29/2022]
Abstract
Glycoconjugates play a crucial role in the host-parasite relationships of helminthic infections, including angiostrongyliasis. It has previously been shown that the antigenicity of proteins from female Angiostrongylus cantonensis worms may depend on their associated glycan moieties. Here, an N-glycan profile of A. cantonensis is reported. A total soluble extract (TE) was prepared from female A. cantonensis worms and was tested by western blot before and after glycan oxidation or N- and O-glycosidase treatment. The importance of N-glycans for the immunogenicity of A. cantonensis was demonstrated when deglycosylation of the TE with PNGase F completely abrogated IgG recognition. The TE was also fractionated using various lectin columns [Ulex europaeus (UEA), concanavalin A (Con A), Arachis hypogaea (PNA), Triticum vulgaris (WGA) and Lycopersicon esculentum (LEA)], and then each fraction was digested with PNGase F. Released N-glycans were analyzed with matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF)-mass spectrometry (MS) and MALDI-TOF/TOF-MS/MS. Complex-type, high mannose, and truncated glycan structures were identified in all five fractions. Sequential MALDI-TOF-TOF analysis of the major MS peaks identified complex-type structures, with a α1-6 fucosylated core and truncated antennas. Glycoproteins in the TE were labeled with BodipyAF558-SE dye for a lectin microarray analysis. Fluorescent images were analyzed with ProScanArray imaging software followed by statistical analysis. A total of 29 lectins showed positive binding to the TE. Of these, Bandeiraea simplicifolia (BS-I), PNA, and Wisteria floribunda (WFA), which recognize galactose (Gal) and N-acetylgalactosamine (GalNAc), exhibited high affinity binding. Taken together, our findings demonstrate that female A. cantonensis worms have characteristic helminth N-glycans.
Collapse
Affiliation(s)
- Carolina M Veríssimo
- Laboratório de Parasitologia Molecular, Instituto de Pesquisas Biomédicas and Laboratório de Biologia Parasitária, Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS 90060-900, Brazil; Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Alessandra L Morassutti
- Laboratório de Parasitologia Molecular, Instituto de Pesquisas Biomédicas and Laboratório de Biologia Parasitária, Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS 90060-900, Brazil
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Grigorij Sutov
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Lauren Hartley-Tassell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Sarah McAtamney
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Anne Dell
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Carlos Graeff-Teixeira
- Laboratório de Parasitologia Molecular, Instituto de Pesquisas Biomédicas and Laboratório de Biologia Parasitária, Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS 90060-900, Brazil
| |
Collapse
|
11
|
Hewitson JP, Nguyen DL, van Diepen A, Smit CH, Koeleman CA, McSorley HJ, Murray J, Maizels RM, Hokke CH. Novel O-linked methylated glycan antigens decorate secreted immunodominant glycoproteins from the intestinal nematode Heligmosomoides polygyrus. Int J Parasitol 2015; 46:157-170. [PMID: 26688390 PMCID: PMC4776704 DOI: 10.1016/j.ijpara.2015.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/25/2022]
Abstract
Heligmosomoides polygyrus excretory–secretory (ES) proteins carry diverse N- and O-glycans, and many are O-methylated. A methylhexose containing O-glycan of abundant ES glycoproteins is immunodominant. This dominant glycan is not the immunomodulatory heat-stable ES component.
Glycan molecules from helminth parasites have been associated with diverse biological functions ranging from interactions with neighbouring host cell populations to down-modulation of specific host immunity. Glycoproteins secreted by the intestinal nematode Heligmosomoides polygyrus are of particular interest as the excretory–secretory products (termed HES) of this parasite contain both heat-labile and heat-stable components with immunomodulatory effects. We used MALDI-TOF-MS and LC–MS/MS to analyse the repertoire of N- and O-linked glycans released from Heligmosomoides polygyrus excretory–secretory products by PNGase A and F, β-elimination and hydrazinolysis revealing a broad range of structures including novel methylhexose- and methylfucose-containing glycans. Monoclonal antibodies to two immunodominant glycans of H. polygyrus, previously designated Glycans A and B, were found to react by glycan array analysis to a methyl-hexose-rich fraction and to a sulphated LacDiNAc (LDN; GalNAcβ1–4GlcNAc) structure, respectively. We also analysed the glycan repertoire of a major glycoprotein in Heligmosomoides polygyrus excretory–secretory products, VAL-2, which contains many glycan structures present in Heligmosomoides polygyrus excretory–secretory products including Glycan A. However, it was found that this set of glycans is not responsible for the heat-stable immunomodulatory properties of Heligmosomoides polygyrus excretory–secretory products, as revealed by the inability of VAL-2 to inhibit allergic lung inflammation. Taken together, these studies reveal that H. polygyrus secretes a diverse range of antigenic glycoconjugates, and provides a framework to explore the biological and immunomodulatory roles they may play within the mammalian host.
Collapse
Affiliation(s)
- James P Hewitson
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - D Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Cornelis H Smit
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Carolien A Koeleman
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Henry J McSorley
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Janice Murray
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Rick M Maizels
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
12
|
Aprahamian TR, Zhong X, Amir S, Binder CJ, Chiang LK, Al-Riyami L, Gharakhanian R, Harnett MM, Harnett W, Rifkin IR. The immunomodulatory parasitic worm product ES-62 reduces lupus-associated accelerated atherosclerosis in a mouse model. Int J Parasitol 2015; 45:203-7. [PMID: 25666929 PMCID: PMC4355381 DOI: 10.1016/j.ijpara.2014.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
ES-62 is an anti-inflammatory phosphorylcholine-containing glycoprotein secreted by the filarial nematode Acanthocheilonema viteae. Accelerated atherosclerosis frequently occurs in systemic lupus erythematosus, resulting in substantial cardiovascular morbidity and mortality. We examined the effects of ES-62 in the gld.apoE(-/-) mouse model of this condition. Treatment with ES-62 did not substantially modulate renal pathology but caused decreased anti-nuclear autoantibody levels. Moreover, a striking 60% reduction in aortic atherosclerotic lesions was observed, with an associated decrease in macrophages and fibrosis. We believe that these latter findings constitute the first example of a defined parasitic worm product with therapeutic potential in atherosclerosis: ES-62-based drugs may represent a novel approach to control accelerated atherosclerosis in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Tamar R Aprahamian
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Xuemei Zhong
- Hematology and Medical Oncology Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shahzada Amir
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Lo-Ku Chiang
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lamyaa Al-Riyami
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Raffi Gharakhanian
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Ian R Rifkin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
13
|
Snodgrass CJ, Burnham-Marusich AR, Meteer JC, Berninsone PM. Conserved ion and amino acid transporters identified as phosphorylcholine-modified N-glycoproteins by metabolic labeling with propargylcholine in Caenorhabditis elegans cells. Glycobiology 2014; 25:403-11. [PMID: 25387872 DOI: 10.1093/glycob/cwu122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phosphorylcholine (PC) modification of proteins by pathogens has been implicated in mediating host-pathogen interactions. Parasitic nematodes synthesize PC-modified biomolecules that can modulate the host's antibody and cytokine production to favor nematode survival, contributing to long-term infections. Only two nematode PC-modified proteins (PC-proteins) have been unequivocally identified, yet discovering the protein targets of PC modification will be paramount to understanding the role(s) that this epitope plays in nematode biology. A major hurdle in the field has been the lack of techniques for selective purification of PC-proteins. The nonparasitic nematode Caenorhabditis elegans expresses PC-modified N-linked glycans, offering an attractive model to study the biology of PC-modification. We developed a robust method to identify PC-proteins by metabolic labeling of primary embryonic C. elegans cells with propargylcholine, an alkyne-modified choline analog. Cu(I)-catalyzed cycloaddition with biotin-azide enables streptavidin purification and subsequent high-throughput LC-MS identification of propargyl-labeled proteins. All proteins identified using stringent criteria are known or predicted to be membrane or secreted proteins, consistent with the model of a Golgi-resident, putative PC-transferase. Of the 55 PC-N-glycosylation sites reported, 33 have been previously observed as N-glycosylation sites in high-throughput screens of C. elegans. Several identified PC-proteins are nematode-specific proteins, but 10 of the PC-proteins are widely conserved ion transporters and amino acid transporters, while eight are conserved proteins involved in synaptic function. This finding suggests a functional role for PC-modification beyond immunomodulation. The approach presented in this study provides a method to identify PC-proteins in C. elegans and related nematodes.
Collapse
Affiliation(s)
| | | | - John C Meteer
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
14
|
Pineda MA, Lumb F, Harnett MM, Harnett W. ES-62, a therapeutic anti-inflammatory agent evolved by the filarial nematode Acanthocheilonema viteae. Mol Biochem Parasitol 2014; 194:1-8. [PMID: 24671112 DOI: 10.1016/j.molbiopara.2014.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 01/29/2023]
Abstract
Filarial nematodes cause long-term infections in hundreds of millions of people. A significant proportion of those affected develop a number of debilitating health problems but, remarkably, such infections are often unnoticed for many years. It is well known that parasitic worms modulate, yet do not completely inhibit, host immunological pathways, promoting their survival by limiting effective immune mechanisms. Such immunoregulation largely depends on molecules released by the worms, termed excretory-secretory products (ES). One of these products is the molecule ES-62, which is actively secreted by the rodent filarial nematode Acanthocheilonema viteae. ES-62 has been shown to exert anti-inflammatory actions thorough its phosphorylcholine (PC)-containing moiety on a variety of cells of the immune system, affecting intracellular signalling pathways associated with antigen receptor- and TLR-dependent responses. We summarise here how ES-62 modulates key signal transduction elements and how such immunomodulation confers protection to mice subjected to certain experimental models of inflammatory disease. Finally, we discuss recent results showing that it is possible to synthetise small molecule analogues (SMAs) that mimic the anti-inflammatory properties of ES-62, opening an exciting new drug development field in translational medicine.
Collapse
Affiliation(s)
- Miguel A Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Felicity Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK.
| |
Collapse
|
15
|
Microbial modulation of host immunity with the small molecule phosphorylcholine. Infect Immun 2012; 81:392-401. [PMID: 23230294 DOI: 10.1128/iai.01168-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All microorganisms dependent on persistence in a host for survival rely on either hiding from or modulating host responses to infection. The small molecule phosphorylcholine, or choline phosphate (ChoP), is used for both of these purposes by a wide array of bacterial and parasitic microbes. While the mechanisms underlying ChoP acquisition and expression are diverse, a unifying theme is the use of ChoP to reduce the immune response to infection, creating an advantage for ChoP-expressing microorganisms. In this minireview, we discuss several benefits of ChoP expression during infection as well as how the immune system fights back against ChoP-expressing pathogens.
Collapse
|
16
|
Talabnin K, Aoki K, Saichua P, Wongkham S, Kaewkes S, Boons GJ, Sripa B, Tiemeyer M. Stage-specific expression and antigenicity of glycoprotein glycans isolated from the human liver fluke, Opisthorchis viverrini. Int J Parasitol 2012; 43:37-50. [PMID: 23174105 DOI: 10.1016/j.ijpara.2012.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/16/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Infection by Opisthorchis viverrini (liver fluke) is a major public health problem in southeastern Asia, resulting in hepatobiliary disease and cholangiocarcinoma. Fluke surface glycoconjugates are prominently presented to the host, thereby constituting a crucial immunological interface that can determine the parasite's success in establishing infection. Therefore, N- and O-linked glycoprotein glycan profiles of the infective metacercarial stage and of the mature adult were investigated by nanospray ionisation-linear ion trap mass spectrometry (NSI-MS(n)). Glycan immunogenicity was investigated by immunoblotting with serum from infected humans. Metacercariae and adult parasites exhibit similar glycan diversity, although the prevalence of individual glycans and glycan classes varies by stage. The N-glycans of the metacercaria are mostly high mannose and monofucosylated, truncated-type oligosaccharides (62.7%), with the remainder processed to complex and hybrid type glycans (37.3%). The N-linked glycan profile of the adult is also dominated by high mannose and monofucosylated, truncated-type oligosaccharides (80.0%), with a smaller contribution from complex and hybrid type glycans (20.0%). At both stages, complex and hybrid type glycans are detected as mono-, bi-, tri-, or tetra-antennary structures. In metacercariae and adults, O-linked glycans are detected as mono- to pentasaccharides. The mucin type core 1 structure, Galβ1-3GalNAc, predominates in both stages but is less prevalent in the adult than in the metacercaria. Immunogenic recognition of liver fluke glycoproteins is reduced after deglycosylation but infected human serum was unable to recognise glycans released from peptides. Therefore, the most potent liver fluke antigenic epitopes are mixed determinants, comprised of glycan and polypeptide elements.
Collapse
|
17
|
Harnett W, Rzepecka J, Houston KM. How do nematodes transfer phosphorylcholine to carbohydrates? Trends Parasitol 2010; 26:114-8. [DOI: 10.1016/j.pt.2009.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/25/2009] [Accepted: 12/14/2009] [Indexed: 10/19/2022]
|
18
|
Abstract
The strengths and limitations of existing mass spectrometry methods for metabolite detection and identification are discussed. A brief review is made of the methods available for quenching and extraction of cells or organisms prior to instrumental analysis. The techniques available for carrying out mass spectrometry-based profiling of metabolomes are discussed using the analysis of extracts from trypanosomes to illustrate various points regarding methods of separation and mass spectrometric analysis. The advantages of hydrophilic interaction chromatography (HILIC) for the analysis of polar metabolites are discussed. The challenges of data processing are outlined and illustrated using the example of ThermoFisher's Sieve software. The existing literature on applications of mass spectrometry to the profiling of parasite metabolomes is reviewed.
Collapse
|
19
|
Grabitzki J, Lochnit G. Immunomodulation by phosphocholine--biosynthesis, structures and immunological implications of parasitic PC-epitopes. Mol Immunol 2009; 47:149-63. [PMID: 19864025 DOI: 10.1016/j.molimm.2009.09.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/24/2009] [Indexed: 11/28/2022]
Abstract
Phosphocholine (PC) as a small haptenic molecule present on antigens of parasites can provoke various effects on immune cells leading to immunomodulation of the host's immune system. This immunomodulation not only allows long-term persistence but also prevents severe pathology due to down-regulation of cellular immune responses. Additionally, PC plays an important role for development and fertility of the parasites. To fully understand the mechanisms of immunomodulation the detailed knowledge of the biosynthesis of the PC-epitopes, their molecular structure and biological function has to be elucidated. The implication of parasite-specific transferases in the biosynthesis of the PC-epitopes and the sensitivity of parasites towards disruption of the choline metabolism offers new perspectives for the development of anti-parasitic drugs and therapies. Furthermore, the immunomodulation provoked by PC-epitopes preventing inflammatory reactions may be useful in the treatment of inflammatory diseases. This review summarizes the current knowledge on the biosynthesis of PC-epitopes, their structures and immunological implications.
Collapse
Affiliation(s)
- Julia Grabitzki
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Germany
| | | |
Collapse
|
20
|
Schachter H. Paucimannose N-glycans in Caenorhabditis elegans and Drosophila melanogaster. Carbohydr Res 2009; 344:1391-6. [DOI: 10.1016/j.carres.2009.04.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/08/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
|
21
|
Immunomodulatory activity and therapeutic potential of the filarial nematode secreted product, ES-62. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:88-94. [PMID: 20054977 DOI: 10.1007/978-1-4419-1601-3_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ES-62 is a protein that is actively secreted by filarial nematodes during parasitism of the vertebrate host. The molecule is able to directly interact with a number of cells of the immune system including B-lymphocytes, dendritic cells, macrophages and mast cells. Interaction appears to be dependent on complexing with TLR4 and results in modulation of the activity of a number of signal transduction molecules including MAP kinases, PI-3 kinase and NF-kappaB. Immunomodulatory activity of ES-62 appears to be largely due to the presence of phosphorylcholine (PC) moieties covalently attached to N-type glycans. The net effect of ES-62's interaction with the immune system is the generation of an anti-inflammatory immunological phenotype. As a consequence of this, ES-62 demonstrates striking drug-like activity in models of disease associated with aberrant inflammation, in particular those associated with autoimmunity and allergy.
Collapse
|
22
|
Schachter H. The functions of paucimannose N-glycans in Caenorhabditis elegans. TRENDS GLYCOSCI GLYC 2009. [DOI: 10.4052/tigg.21.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Abstract
SUMMARYInfection with parasitic helminths takes a heavy toll on the health and well-being of humans and their domestic livestock, concomitantly resulting in major economic losses. Analyses have consistently revealed bioactive molecules in extracts of helminths or in their excretory/secretory products that modulate the immune response of the host. It is our view that parasitic helminths are an untapped source of immunomodulatory substances that, in pure form, could become new drugs (or models for drug design) to treat disease. Here, we illustrate the range of immunomodulatory molecules in selected parasitic trematodes, cestodes and nematodes, their impact on the immune cells in the host and how the host may recognize these molecules. There are many examples of the partial characterization of helminth-derived immunomodulatory molecules, but these have not yet translated into new drugs, reflecting the difficulty of isolating and fully characterizing proteins, glycoproteins and lipid-based molecules from small amounts of parasite material. However, this should not deter the investigator, since analytical techniques are now being used to accrue considerable structural information on parasite-derived molecules, even when only minute quantities of tissue are available. With the introduction of methodologies to purify and structurally-characterize molecules from small amounts of tissue and the application of high throughput immunological assays, one would predict that an assessment of parasitic helminths will yield a variety of novel drug candidates in the coming years.
Collapse
|
24
|
Hada N, Shida Y, Shimamura H, Sonoda Y, Kasahara T, Sugita M, Takeda T. Synthetic studies on glycosphingolipids from Protostomia phyla: syntheses and biological activities of amphoteric glycolipids containing a phosphocholine residue from the earthworm Pheretima hilgendorfi. Carbohydr Res 2008; 343:2221-8. [DOI: 10.1016/j.carres.2008.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 10/22/2022]
|
25
|
Gene inactivation confirms the identity of enzymes involved in nematode phosphorylcholine-N-glycan synthesis. Mol Biochem Parasitol 2008; 157:88-91. [DOI: 10.1016/j.molbiopara.2007.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/27/2007] [Accepted: 08/28/2007] [Indexed: 11/30/2022]
|
26
|
Essential role of chitinase in the development of the filarial nematode Acanthocheilonema viteae. Infect Immun 2007; 76:221-8. [PMID: 17938220 DOI: 10.1128/iai.00701-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chitinases of pathogens have been proposed as potential targets of vaccines or specific inhibitors. We studied the genomic organization, transcript levels, developmental expression, and biological function of chitinases in the rodent filarial nematode Acanthocheilonema viteae, a model organism for human-pathogenic filarial worms. Characterization of nine genomic clones from an A. viteae phage library and Southern blot experiments revealed the existence of three different chitinase genes, two of which could theoretically yield functional transcripts. The deduced proteins of these genes had the common modular organization of family 18 chitinases. Northern blot experiments and rapid amplification of cDNA ends-PCR with adult worms and larval stages showed that only one gene is expressed, with high variation in transcript levels, as determined by real-time PCR. Chitinase transcript levels were lowest in the late male stage 4 larva (L4) and peaked in the stage 3 larva (L3), which was corroborated by Western blotting. RNA interference (RNAi) experiments showed that treatment of L3 and adult female worms with double-stranded RNA of chitinase inhibited molting of L3 worms and hatching of microfilariae. RNAi also led to the death of 50% of female worms, revealing the essential role of chitinase in the life cycle of filarial nematodes.
Collapse
|
27
|
Houston KM, Babayan SA, Allen JE, Harnett W. Does Litomosoides sigmodontis synthesize dimethylethanolamine from choline? Parasitology 2007; 135:55-61. [PMID: 17892618 DOI: 10.1017/s0031182007003642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Juvenile female Litomosoides sigmodontis secrete a protein (Juv-p120) highly modified with dimethylethanolamine (DMAE). In an attempt to establish the source of this decoration worms were pulsed with [3H]-choline and [3H]-ethanolamine and the radio-isotope labelled products analysed. Both isotope labels were successfully taken up by the worms, as demonstrated by labelling of phospholipids with [3H]-choline, being predominantly incorporated into phosphatidylcholine and [3H]-ethanolamine into phosphatidylethanolamine. Isotope labelling of phosphatidylethanolamine was particularly striking with the worms taking up approximately 30 times as much labelled ethanolamine as choline. It was possible to detect faint labelling of Juv-p120 with [3H]-ethanolamine after prolonged exposure periods but, unlike the situation with the phospholipids, it was much more readily labelled with [3H]-choline. When pulsing with [3H]-ethanolamine it was also possible to detect isotope-labelled phosphatidylcholine, which may ultimately account for the low levels of labelling of Juv-p120. Overall our results raise the previously unconsidered but intriguing possibility that in L. sigmodontis, choline may be the precursor of DMAE.
Collapse
Affiliation(s)
- K M Houston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, UK
| | | | | | | |
Collapse
|
28
|
Bickle Q, Helmby H. Lack of galectin-3 involvement in murine intestinal nematode and schistosome infection. Parasite Immunol 2007; 29:93-100. [PMID: 17241397 DOI: 10.1111/j.1365-3024.2006.00923.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many parasitic helminths produce large quantities of glycosylated proteins, some if which are believed to be involved in the skewing towards the dominant Th2 response observed during helminth infection. Galectin-3 is a member of a family of lectin-binding proteins produced by many different types of immune cells, including macrophages. Galectin-3 recognizes the GalNAcbeta1-4GlcNAc (LDN) epitope present on many helminth antigens, including those of the schistosome eggs. Here we show that galectin-3 is not involved in the development of the Th2 response nor in schistosome granuloma formation. Galectin-3-deficient mice were able to expel the gastrointestinal nematode Trichuris muris at the same speed as wild-type mice. Expulsion of T. muris is known to be dependent on a Th2 immune response and galectin-3-deficient mice showed no defect in their ability to produce Th2 cytokines or in their antibody responses, compared to wild-type mice. Furthermore, galectin-3-deficient mice were also able to mount a Th2 response to Schistosoma mansoni infection and they exhibited normal hepatic granuloma formation. The data presented here demonstrate that galectin-3 is not a critical component in the development of Th2 responses during helminth infection in vivo, nor is it essential for schistosome egg granuloma formation.
Collapse
Affiliation(s)
- Q Bickle
- Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
29
|
Abstract
Long-term infection with parasitic worms is generally associated with an immunological phenotype that is Th2-like and anti-inflammatory. This phenotype is probably an unintentional consequence of molecular characteristics of worms (as free-living worms also express polarising molecules) in combination with deliberate attempts by the parasites, via molecular secretions, to modulate the phenotype. This review is concerned with the identity of immunomodulatory worm products, the receptors that they interact with and the signal transduction pathways that they activate. It hopes to indicate how knowledge of these factors can explain the changes in gene expression that result in the characteristic worm-induced immunological phenotype.
Collapse
Affiliation(s)
- W Harnett
- Department of Immunology, University of Strathclyde, Glasgow G4 0NR, UK.
| | | |
Collapse
|
30
|
Shi H, Tan J, Schachter H. N-glycans are involved in the response of Caenorhabditis elegans to bacterial pathogens. Methods Enzymol 2006; 417:359-89. [PMID: 17132514 DOI: 10.1016/s0076-6879(06)17022-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Caenorhabditis elegans is becoming a popular tool for the study of glycan function particularly as it applies to development. More than 150 C. elegans genes have been identified as homologs of vertebrate genes involved in glycan metabolism. However, only a relatively small number of these genes have been expressed and studied in any detail. Oligomannose N-glycans (Man5-9GlcNAc2Asn), major components of the N-glycans of all eukaryotes including C. elegans, are essential, at least in part, for eukaryote survival, because they play an important role in protein quality control. In addition, vertebrates make hybrid (GlcNAcMan3-5GlcNAc2Asn) and complex (XGlcNAc2-6Man3GlcNAc2Asn) but little or no paucimannose (Man3-4GlcNAc2Asn)N-glycans, whereas plants, insects, and C. elegans make paucimannose but little or no hybrid nor complex N-glycans. UDP-GlcNAc:alpha3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I (encoded by the gene Mgat1) controls the synthesis of hybrid, complex, and paucimannose N-glycans in all eukaryotes. C. elegans has three genes encoding beta1,2-N-acetylglucosaminyltransferase I (gly-12, gly-13, gly-14). To determine the functional requirement for this enzyme in worms, we generated seven worm strains with mutations in these three genes (gly-12, dpy-6 gly-13, gly-14, gly-12 gly-13, gly-14;gly-12, gly-14;dpy-6 gly-13 and gly-14;gly-12 gly-13). Whereas mice and Drosophila melanogaster with null mutations in Mgat1 suffer severe developmental abnormalities, all seven C. elegans strains with null mutations in the genes encoding beta1,2-N-acetylglucosaminyltransferase I develop normally and seem to have a wild-type phenotype. We now present evidence that beta1,2-N-acetylglucosaminyltransferase I-dependent N-glycans (consisting mainly of paucimannose N-glycans) play a role in the interaction of C. elegans with pathogenic bacteria, suggesting that these N-glycans are components of the worm's innate immune system.
Collapse
Affiliation(s)
- Hui Shi
- Program in Structural Biology and Biochemistry, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
31
|
Abstract
Schistosome glycans induce characteristic innate immune responses in the infected host. The molecular aspects of these responses, the pathways and receptors as well as the schistosome glycans and glycoconjugates involved, form an area of intense research. The relevant schistosome glycan elements and the possible mechanisms through which they act on the innate immune system are discussed in this review.
Collapse
Affiliation(s)
- C H Hokke
- Department of Parasitology, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands.
| | | |
Collapse
|