1
|
Wu J, Lin K, Lu W, Zou W, Li X, Tan Y, Yang J, Zheng D, Liu X, Lam BYH, Xu G, Wang K, McIntyre RS, Wang F, So KF, Wang J. Enhancing Early Diagnosis of Bipolar Disorder in Adolescents Through Multimodal Neuroimaging. Biol Psychiatry 2024:S0006-3223(24)01485-9. [PMID: 39069165 DOI: 10.1016/j.biopsych.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/28/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Bipolar disorder (BD), a severe neuropsychiatric condition, often appears during adolescence. Traditional diagnostic methods, which primarily rely on clinical interviews and single-modal magnetic resonance imaging (MRI) techniques, may have limitations in accuracy. This study aimed to improve adolescent BD diagnosis by integrating behavioral assessments with multimodal MRI. We hypothesized that this combination would enhance diagnostic accuracy for at-risk adolescents. METHODS A retrospective cohort of 309 participants, including patients with BD, offspring of patients with BD (with and without subthreshold symptoms), non-BD offspring with subthreshold symptoms, and healthy control participants, was analyzed. Behavioral attributes were integrated with MRI features from T1-weighted, resting-state functional MRI, and diffusion tensor imaging. Three diagnostic models were developed using GLMNET multinomial regression: a clinical diagnosis model based on behavioral attributes, an MRI-based model, and a comprehensive model integrating both datasets. RESULTS The comprehensive model achieved a prediction accuracy of 0.83 (95% CI, 0.72-0.92), significantly higher than the clinical (0.75) and MRI-based (0.65) models. Validation with an external cohort showed high accuracy (0.89, area under the curve = 0.95). Structural equation modeling revealed that clinical diagnosis (β = 0.487, p < .0001), parental BD history (β = -0.380, p < .0001), and global function (β = 0.578, p < .0001) significantly affected brain health, while psychiatric symptoms showed only a marginal influence (β = -0.112, p = .056). CONCLUSIONS This study highlights the value of integrating multimodal MRI with behavioral assessments for early diagnosis in at-risk adolescents. Combining neuroimaging enables more accurate patient subgroup distinctions, facilitating timely interventions and improving health outcomes. Our findings suggest a paradigm shift in BD diagnostics, advocating for incorporating advanced imaging techniques in routine evaluations.
Collapse
Affiliation(s)
- Jinfeng Wu
- Department of Radiology, Songjiang Research Institute, Songjiang Hospital, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangguang Lin
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Weicong Lu
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China
| | - Wenjin Zou
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoyue Li
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China
| | - Yarong Tan
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China
| | - Jingyu Yang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Danhao Zheng
- National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bess Yin-Hung Lam
- Department of Counselling and Psychology, Hong Kong Shue Yan University, Hong Kong, China
| | - Guiyun Xu
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China
| | - Kun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, and Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kwok-Fai So
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Jie Wang
- Department of Radiology, Songjiang Research Institute, Songjiang Hospital, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China.
| |
Collapse
|
2
|
Liu Z, Lu W, Zou W, Gao Y, Li X, Xu G, So KF, McIntyre RS, Lin K, Shao R. A Preliminary Study of Brain Developmental Features of Bipolar Disorder Familial Risk and Subthreshold Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00163-0. [PMID: 38909895 DOI: 10.1016/j.bpsc.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Risk for bipolar disorder (BD) is increased among individuals with a family history or subthreshold mood symptoms. However, the brain structural developments associated with these BD risks remain unknown. METHODS This longitudinal cohort study examined the brain gray matter volume (GMV) developmental features of familial and symptomatic risks for BD and their associations with participants' global function levels. We recruited unaffected BD offspring with (n = 26, 14 female, mean ± SD age = 14.9 ± 2.9 years) or without (n = 35, 19 female, age = 15.3 ± 2.7 years) subthreshold manic or depressive symptoms and unaffected non-BD offspring with (n = 49, 30 female, age = 14.5 ± 2.2 years) or without (n = 68, 37 female, age = 15.0 ± 2.3 years) symptoms. The offspring had no mood disorder diagnosis prior to the study. The average follow-up duration was 2.63 ± 1.63 years. RESULTS At baseline, we found significant interactive effects of familial risk and subthreshold symptoms that indicated that the symptomatic offspring exhibited markedly large GMV in the brain affective and cognitive circuitries. During follow-up, the combined group of BD offspring (symptomatic and nonsymptomatic) displayed a more accelerated GMV decrease than BD nonoffspring in the hippocampus and anterior cingulate cortex. In contrast, the combined group of symptomatic participants (offspring and nonoffspring) displayed a slower GMV decrease than nonsymptomatic participants in the ventromedial prefrontal cortex. Larger GMV at baseline and accelerated GMV decrease during follow-up prospectively and longitudinally predicted positive global function changes. All results survived multiple testing correction. CONCLUSIONS These findings indicated that familial and symptomatic risks of BD are associated with distinct brain structural developments and unraveled key brain developmental features of particularly vulnerable high-risk individuals to subsequent functional deterioration.
Collapse
Affiliation(s)
- Zhongwan Liu
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Weicong Lu
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenjin Zou
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Radiology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yanling Gao
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoyue Li
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guiyun Xu
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kwok-Fai So
- Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, People's Republic of China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, People's Republic of China
| | - Roger S McIntyre
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Kangguang Lin
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, People's Republic of China.
| | - Robin Shao
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China; State Key Laboratory of Brain and Cognitive Sciences, Department of Psychology, University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
3
|
Cattarinussi G, Pouya P, Grimaldi DA, Dini MZ, Sambataro F, Brambilla P, Delvecchio G. Cortical alterations in relatives of patients with bipolar disorder: A review of magnetic resonance imaging studies. J Affect Disord 2024; 345:234-243. [PMID: 37865341 DOI: 10.1016/j.jad.2023.10.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/11/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
INTRODUCTION Bipolar disorder (BD) is a severe mental disorder characterized by high heritability rates. Widespread brain cortical alterations have been reported in BD patients, mostly involving the frontal, temporal and parietal regions. Importantly, also unaffected relatives of BD patients (BD-RELs) present abnormalities in cortical measures, which are not influenced by disease-related factors, such as medication use and illness duration. Here, we collected all available evidence on cortical measures in BD-RELs to further our knowledge on the potential cortical alterations associated with the vulnerability and the resilience to BD. METHODS A search on PubMed, Web of Science and Scopus was performed to identify neuroimaging studies exploring cortical alterations in BD-RELs, including cortical thickness (CT), surface area (SA), gyrification (GI) and cortical complexity. Eleven studies were included. Of these, five assessed CT, five examined CT and SA and one explored CT, SA and GI. RESULTS Overall, a heterogeneous pattern of cortical alterations emerged. The areas more consistently linked with genetic liability for BD were the prefrontal and sensorimotor regions. Mixed evidence was reported in the temporal and cingulate areas. LIMITATIONS The small sample size and the heterogeneity in terms of methodologies and the characteristics of the participants limit the generalizability of our results. CONCLUSIONS Our findings suggest that the genetic liability for BD is related to reduced CT in the prefrontal cortex, which might be a marker of risk for BD, and increased CT within the sensorimotor cortex, which could represent a marker of resilience.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Parnia Pouya
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Iranian EBM Center: A Joanna Briggs Institute Affiliated Group, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahta Zare Dini
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Iranian EBM Center: A Joanna Briggs Institute Affiliated Group, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fabio Sambataro
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
4
|
Zhang H, Chen J, Fang Y. Functional Alterations in Patients with Bipolar Disorder and Their Unaffected First-Degree Relatives: Insight from Genetic, Epidemiological, and Neuroimaging Data. Neuropsychiatr Dis Treat 2023; 19:2797-2806. [PMID: 38111594 PMCID: PMC10726715 DOI: 10.2147/ndt.s427617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
Bipolar disorder (BD) profoundly affects cognitive and psychosocial functioning, leading to a significant illness burden on patients and their families. Genetic factors are predominant in the onset of bipolar disorder and functional impairments. This disorder exhibits a strong family aggregation, with heritability estimates reaching up to 80%. Individuals with BD often experience impaired functioning, especially in significant areas such as physical performance, sleep, cognition, interpersonal interactions, socioeconomic status, family and marital relationships, work and school performance, well-being, and life expectancy. However, patients with different subtypes exhibit significant heterogeneity in social functioning, cognition, and creativity levels. There are notable differences in psychosocial and cognitive function in their unaffected first-degree relatives (UFR) who do not suffer but may carry susceptibility genes compared to healthy control (HC) without a family history. The observations indicate common genetic structures between BD patients and their UFR, which results in varying degrees of functional abnormalities. Therefore, this article mainly provides evidence on cognition, creativity, and psychosocial functioning in patients with BD and their UFR to provide a more comprehensive understanding of this critical topic in the field of BD. By integrating various findings, including clinical data and neuroimaging studies, our article aims to provide insights and valuable information for a deeper exploration of the pathogenesis of BD and the development of more targeted therapeutic strategies in the future.
Collapse
Affiliation(s)
- Haonan Zhang
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jun Chen
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, People’s Republic of China
| | - Yiru Fang
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, People’s Republic of China
- Department of Psychiatry & Affective Disorders Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Patino LR, Tallman MJ, Wen H, Adler CM, Welge JA, DelBello MP. Deficits in sustained attention in adolescents with bipolar disorder during their first manic episode. J Affect Disord 2023; 339:43-51. [PMID: 37380109 DOI: 10.1016/j.jad.2023.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES Evaluate differences in sustained attention (SAT) and associated neurofunctional profiles between bipolar disorder type I (BD), attention-deficit/hyperactivity disorder (ADHD), and healthy comparison (HC) youth. METHODS Adolescent participants, aged 12-17 years, with BD (n = 30) and ADHD (n = 28) and HC adolescents (n = 26) underwent structural and functional magnetic resonance imaging (fMRI) while completing a modified Continuous Performance Task-Identical Pairs task. Attentional load was modifying in this task using three levels of image distortion (0 %, 25 % and 50 % image distortion). Task related fMRI activation and performance measures: perceptual sensitivity index (PSI); response bias (RB) and response time (RT); were calculated and compared between groups. RESULTS BD participants displayed lower perceptual sensitivity index (0 % p = 0.012; 25 % p = 0.015; 50 % p = 0.036) and higher values of response bias across levels of distortion (0 % p = 0.002, 25 % p = 0.001, and 50 % p = 0.008) as compared to HC. No statistically significant differences were observed for PSI and RB between BD and ADHD groups. No difference in RT were detected. Between-group and within-group differences in task related fMRI measures were detected in several clusters. In a region of interest (ROI) analysis of these clusters comparing BD and ADHD confirmed differences between these two groups. CONCLUSIONS Compared with HC, BD participants displayed SAT deficits. Increased attentional load revealed that BD participants had lower activation in brain regions associated with performance and integration of neural processes in SAT. ROI analysis between BD and ADHD participants shows that the differences were likely not attributable to ADHD comorbidity, suggesting SAT deficits were distinct to the BD group.
Collapse
Affiliation(s)
- Luis R Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hongbo Wen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey A Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
6
|
Abé C, Liberg B, Klahn AL, Petrovic P, Landén M. Mania-related effects on structural brain changes in bipolar disorder - a narrative review of the evidence. Mol Psychiatry 2023; 28:2674-2682. [PMID: 37147390 PMCID: PMC10615759 DOI: 10.1038/s41380-023-02073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
Cross-sectional neuroimaging studies show that bipolar disorder is associated with structural brain abnormalities, predominantly observed in prefrontal and temporal cortex, cingulate gyrus, and subcortical regions. However, longitudinal studies are needed to elucidate whether these abnormalities presage disease onset or are consequences of disease processes, and to identify potential contributing factors. Here, we narratively review and summarize longitudinal structural magnetic resonance imaging studies that relate imaging outcomes to manic episodes. First, we conclude that longitudinal brain imaging studies suggest an association of bipolar disorder with aberrant brain changes, including both deviant decreases and increases in morphometric measures. Second, we conclude that manic episodes have been related to accelerated cortical volume and thickness decreases, with the most consistent findings occurring in prefrontal brain areas. Importantly, evidence also suggests that in contrast to healthy controls, who in general show age-related cortical decline, brain metrics remain stable or increase during euthymic periods in bipolar disorder patients, potentially reflecting structural recovering mechanisms. The findings stress the importance of preventing manic episodes. We further propose a model of prefrontal cortical trajectories in relation to the occurrence of manic episodes. Finally, we discuss potential mechanisms at play, remaining limitations, and future directions.
Collapse
Affiliation(s)
- Christoph Abé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Quantify Research, Stockholm, Sweden
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Luisa Klahn
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Predrag Petrovic
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Cognitive and Computational Neuropsychiatry, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Van Rheenen TE, Cotton SM, Dandash O, Cooper RE, Ringin E, Daglas-Georgiou R, Allott K, Chye Y, Suo C, Macneil C, Hasty M, Hallam K, McGorry P, Fornito A, Yücel M, Pantelis C, Berk M. Increased cortical surface area but not altered cortical thickness or gyrification in bipolar disorder following stabilisation from a first episode of mania. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110687. [PMID: 36427550 DOI: 10.1016/j.pnpbp.2022.110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Despite reports of altered brain morphology in established bipolar disorder (BD), there is limited understanding of when these morphological abnormalities emerge. Assessment of patients during the early course of illness can help to address this gap, but few studies have examined surface-based brain morphology in patients at this illness stage. METHODS We completed a secondary analysis of baseline data from a randomised control trial of BD individuals stabilised after their first episode of mania (FEM). The magnetic resonance imaging scans of n = 35 FEM patients and n = 29 age-matched healthy controls were analysed. Group differences in cortical thickness, surface area and gyrification were assessed at each vertex of the cortical surface using general linear models. Significant results were identified at p < 0.05 using cluster-wise correction. RESULTS The FEM group did not differ from healthy controls with regards to cortical thickness or gyrification. However, there were two clusters of increased surface area in the left hemisphere of FEM patients, with peak coordinates falling within the lateral occipital cortex and pars triangularis. CONCLUSIONS Cortical thickness and gyrification appear to be intact in the aftermath of a first manic episode, whilst cortical surface area in the inferior/middle prefrontal and occipitoparietal cortex is increased compared to age-matched controls. It is possible that increased surface area in the FEM group is the outcome of abnormalities in a premorbidly occurring process. In contrast, the findings raise the hypothesis that cortical thickness reductions seen in past studies of individuals with more established BD may be more attributable to post-onset factors.
Collapse
Affiliation(s)
- Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia.
| | - Sue M Cotton
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Orwa Dandash
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Rebecca E Cooper
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Elysha Ringin
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Rothanthi Daglas-Georgiou
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kelly Allott
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yann Chye
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Craig Macneil
- Orygen Youth Health Clinical Program, Parkville, VIC, Australia
| | - Melissa Hasty
- Orygen Youth Health Clinical Program, Parkville, VIC, Australia
| | - Karen Hallam
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Patrick McGorry
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Murat Yücel
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Clayton, VIC, Australia
| | - Michael Berk
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia
| |
Collapse
|
8
|
Qin K, Sweeney JA, DelBello MP. The inferior frontal gyrus and familial risk for bipolar disorder. PSYCHORADIOLOGY 2022; 2:171-179. [PMID: 38665274 PMCID: PMC10917220 DOI: 10.1093/psyrad/kkac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 04/28/2024]
Abstract
Bipolar disorder (BD) is a familial disorder with high heritability. Genetic factors have been linked to the pathogenesis of BD. Relatives of probands with BD who are at familial risk can exhibit brain abnormalities prior to illness onset. Given its involvement in prefrontal cognitive control and in frontolimbic circuitry that regulates emotional reactivity, the inferior frontal gyrus (IFG) has been a focus of research in studies of BD-related pathology and BD-risk mechanism. In this review, we discuss multimodal neuroimaging findings of the IFG based on studies comparing at-risk relatives and low-risk controls. Review of these studies in at-risk cases suggests the presence of both risk and resilience markers related to the IFG. At-risk individuals exhibited larger gray matter volume and increased functional activities in IFG compared with low-risk controls, which might result from an adaptive brain compensation to support emotion regulation as an aspect of psychological resilience. Functional connectivity between IFG and downstream limbic or striatal areas was typically decreased in at-risk individuals relative to controls, which could contribute to risk-related problems of cognitive and emotional control. Large-scale and longitudinal investigations on at-risk individuals will further elucidate the role of IFG and other brain regions in relation to familial risk for BD, and together guide identification of at-risk individuals for primary prevention.
Collapse
Affiliation(s)
- Kun Qin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| |
Collapse
|
9
|
Roberts G, Wen W, Ridgway K, Ho C, Gooch P, Leung V, Williams T, Breakspear M, Mitchell PB. Hippocampal cingulum white matter increases over time in young people at high genetic risk for bipolar disorder. J Affect Disord 2022; 314:325-332. [PMID: 35878837 DOI: 10.1016/j.jad.2022.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/23/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a strongly familial psychiatric disorder associated with white matter (WM) brain abnormalities. It is unclear whether such abnormalities are present in relatives without BD, and little is known about WM trajectories in those at increased genetic risk. METHODS Diffusion magnetic resonance imaging (dMRI) data were acquired at baseline and after two years in 91 unaffected individuals with a first-degree relative with bipolar disorder (HR), and 85 individuals with no family history of mental illness (CON). All participants were aged between 12 and 30 years at baseline. We examined longitudinal change in Fractional Anisotropy (FA) using tract-based spatial statistics (TBSS). RESULTS Compared to the CON group, HR participants showed a significant increase in FA in the right cingulum (hippocampus) (CGH) over a two-year period (p < .05, FDR corrected). This effect was more pronounced in HR individuals without a lifetime diagnosis of a mood disorder than those with a mood disorder. LIMITATIONS While our study is well powered to achieve the primary objectives, our sub-group analyses were under powered. CONCLUSIONS In one of the very few longitudinal neuroimaging studies of young people at high risk for BD, this study reports novel evidence of atypical white matter development in HR individuals in a key cortico-limbic tract involved in emotion regulation. Our findings also suggest that this different white matter developmental trajectory may be stronger in HR individuals without affective psychopathology. As such, increases in FA in the right CGH of HR participants may be a biomarker of resilience to mood disorders.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia.
| | - W Wen
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - K Ridgway
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - C Ho
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - P Gooch
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - V Leung
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - T Williams
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - M Breakspear
- School of Psychology, Faculty of Science, Discipline of Psychiatry, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
10
|
Hesam-Shariati S, Overs BJ, Roberts G, Toma C, Watkeys OJ, Green MJ, Pierce KD, Edenberg HJ, Wilcox HC, Stapp EK, McInnis MG, Hulvershorn LA, Nurnberger JI, Schofield PR, Mitchell PB, Fullerton JM. Epigenetic signatures relating to disease-associated genotypic burden in familial risk of bipolar disorder. Transl Psychiatry 2022; 12:310. [PMID: 35922419 PMCID: PMC9349272 DOI: 10.1038/s41398-022-02079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022] Open
Abstract
Environmental factors contribute to risk of bipolar disorder (BD), but how environmental factors impact the development of psychopathology within the context of elevated genetic risk is unknown. We herein sought to identify epigenetic signatures operating in the context of polygenic risk for BD in young people at high familial risk (HR) of BD. Peripheral blood-derived DNA was assayed using Illumina PsychArray, and Methylation-450K or -EPIC BeadChips. Polygenic risk scores (PRS) were calculated using summary statistics from recent genome-wide association studies for BD, major depressive disorder (MDD) and cross-disorder (meta-analysis of eight psychiatric disorders). Unrelated HR participants of European ancestry (n = 103) were stratified based on their BD-PRS score within the HR-population distribution, and the top two quintiles (High-BD-PRS; n = 41) compared against the bottom two quintiles (Low-BD-PRS; n = 41). The High-BD-PRS stratum also had higher mean cross-disorder-PRS and MDD-PRS (ANCOVA p = 0.035 and p = 0.024, respectively). We evaluated DNA methylation differences between High-BD-PRS and Low-BD-PRS strata using linear models. One differentially methylated probe (DMP) (cg00933603; p = 3.54 × 10-7) in VARS2, a mitochondrial aminoacyl-tRNA synthetase, remained significantly hypomethylated after multiple-testing correction. Overall, BD-PRS appeared to broadly impact epigenetic processes, with 1,183 genes mapped to nominal DMPs (p < 0.05); these displayed convergence with genes previously associated with BD, schizophrenia, chronotype, and risk taking. We tested poly-methylomic epigenetic profiles derived from nominal DMPs in two independent samples (n = 54 and n = 82, respectively), and conducted an exploratory evaluation of the effects of family environment, indexing cohesion and flexibility. This study highlights an important interplay between heritable risk and epigenetic factors, which warrant further exploration.
Collapse
Affiliation(s)
- Sonia Hesam-Shariati
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Gloria Roberts
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Claudio Toma
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid/CSIC, Madrid, Spain
| | - Oliver J Watkeys
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Melissa J Green
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Holly C Wilcox
- Child Psychiatry & Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Emma K Stapp
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- National Institute of Mental Health, Bethesda, MD, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Leslie A Hulvershorn
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John I Nurnberger
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Philip B Mitchell
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Cattarinussi G, Delvecchio G, Sambataro F, Brambilla P. The effect of polygenic risk scores for major depressive disorder, bipolar disorder and schizophrenia on morphological brain measures: A systematic review of the evidence. J Affect Disord 2022; 310:213-222. [PMID: 35533776 DOI: 10.1016/j.jad.2022.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SCZ) share clinical features and genetic bases. Magnetic Resonance Imaging (MRI) studies assessing the effect of polygenic risk score (PRS) for psychiatric disorders on brain structure show heterogeneous results. Therefore, we provided an overview of the existing evidence on the association between PRS for MDD, BD and SCZ and MRI abnormalities in clinical and healthy populations. METHODS A search on PubMed, Web of Science and Scopus was performed to identify the studies exploring the effect of PRS for MDD, BD and SCZ on MRI measures. A total of 25 studies were included (N = 13 on healthy individuals and N = 12 on clinical populations). RESULTS Both in affected and unaffected individuals, PRS for BD and SCZ showed either positive or negative correlations with cortical thickness (CT), mostly involving fronto-temporal areas, whereas PRS for MDD was associated with cortical alterations in prefrontal regions in healthy subjects. LIMITATIONS The heterogeneity in the methods limits the conclusions of this review. CONCLUSIONS Overall the evidence on the effect of PRS for MDD, BD and SCZ on brain is considerably heterogeneous and far to be conclusive. However, from the results emerged that PRS for MDD, BD and SCZ were associated with widespread cortical abnormalities in all the populations explored, suggesting that genetic risk for MDD, BD and SCZ might affect neurodevelopmental processes, resulting in cortical alterations that transcend diagnostic boundaries and seem to be independent from the clinical status.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Lagartos-Donate MJ, Doan TP, Girão PJB, Witter MP. Postnatal development of projections of the postrhinal cortex to the entorhinal cortex in the rat. eNeuro 2022; 9:ENEURO.0057-22.2022. [PMID: 35715208 PMCID: PMC9239852 DOI: 10.1523/eneuro.0057-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The ability to encode and retrieve contextual information is an inherent feature of episodic memory that starts to develop during childhood. The postrhinal cortex, an area of the parahippocampal region, has a crucial role in encoding object-space information and translating egocentric to allocentric representation of local space. The strong connectivity of POR with the adjacent entorhinal cortex, and consequently the hippocampus, suggests that the development of these connections could support the postnatal development of contextual memory. Here, we report that postrhinal cortex projections of the rat develop progressively from the first to the third postnatal week starting in the medial entorhinal cortex before spreading to the lateral entorhinal cortex. The increased spread and complexity of postrhinal axonal distributions is accompanied by an increased complexity of entorhinal dendritic trees and an increase of postrhinal - entorhinal synapses, which supports a gradual maturation in functional activity.SIGNIFICANCE STATEMENTPostrhinal-entorhinal cortical interplay mediates important aspects of encoding and retrieval of contextual information that is important for episodic memory. To better understand the function of the postrhinal interactions with the entorhinal cortex we studied the postnatal development of the connection between the two cortical areas. Our study describes the postnatal development of the postrhinal-to-entorhinal projections as established with neuroanatomical and electrophysiological methods. The projections gradually reach functionally different areas of the entorhinal cortex, reaching the area involved in spatial functions first, followed by the part involved in representing information about objects and sequences of events.
Collapse
Affiliation(s)
- Maria Jose Lagartos-Donate
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Thanh Pierre Doan
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, 7030 Trondheim, Norway
- Department of Neuromedicine and Movement Science, NTNU, N-7491 Trondheim, Norway
| | - Paulo J B Girão
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
13
|
Roberts G, Lenroot R, Overs B, Fullerton J, Leung V, Ridgway K, Stuart A, Frankland A, Levy F, Hadzi-Pavlovic D, Breakspear M, Mitchell PB. Accelerated cortical thinning and volume reduction over time in young people at high genetic risk for bipolar disorder. Psychol Med 2022; 52:1344-1355. [PMID: 32892764 DOI: 10.1017/s0033291720003153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a familial psychiatric disorder associated with frontotemporal and subcortical brain abnormalities. It is unclear whether such abnormalities are present in relatives without BD, and little is known about structural brain trajectories in those at risk. METHOD Neuroimaging was conducted at baseline and at 2-year follow-up interval in 90 high-risk individuals with a first-degree BD relative (HR), and 56 participants with no family history of mental illness who could have non-BD diagnoses. All 146 subjects were aged 12-30 years at baseline. We examined longitudinal change in gray and white matter volume, cortical thickness, and surface area in the frontotemporal cortex and subcortical regions. RESULTS Compared to controls, HR participants showed accelerated cortical thinning and volume reduction in right lateralised frontal regions, including the inferior frontal gyrus, lateral orbitofrontal cortex, frontal pole and rostral middle frontal gyrus. Independent of time, the HR group had greater cortical thickness in the left caudal anterior cingulate cortex, larger volume in the right medial orbitofrontal cortex and greater area of right accumbens, compared to controls. This pattern was evident even in those without the new onset of psychopathology during the inter-scan interval. CONCLUSIONS This study suggests that differences previously observed in BD are developing prior to the onset of the disorder. The pattern of pathological acceleration of cortical thinning is likely consistent with a disturbance of molecular mechanisms responsible for normal cortical thinning. We also demonstrate that neuroanatomical differences in HR individuals may be progressive in some regions and stable in others.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - R Lenroot
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - B Overs
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - J Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - V Leung
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - K Ridgway
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - A Stuart
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - A Frankland
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - F Levy
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Prince of Wales Hospital, Randwick, NSW, Australia
| | - D Hadzi-Pavlovic
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - M Breakspear
- School of psychology, University of Newcastle, Callaghan, NSW, Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
- Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
14
|
Kemp JVA, Bernier E, Lebel C, Kopala-Sibley DC. Associations Between Parental Mood and Anxiety Psychopathology and Offspring Brain Structure: A Scoping Review. Clin Child Fam Psychol Rev 2022; 25:222-247. [PMID: 35201543 DOI: 10.1007/s10567-022-00393-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 12/22/2022]
Abstract
A family history of mood and anxiety disorders is one of the most well-established risk factors for these disorders in offspring. A family history of these disorders has also been linked to alterations in brain regions involved in cognitive-affective processes broadly, and mood and anxiety disorders specifically. Results from studies of brain structure of children of parents with a history of mood or anxiety disorders (high-risk offspring) have been inconsistent. We followed the PRISMA protocol to conduct a scoping review of the literature linking parental mood and anxiety disorders to offspring brain structure to examine which structures in offspring brains are linked to parental major depressive disorder (MDD), anxiety, or bipolar disorder (BD). Studies included were published in peer-reviewed journals between January 2000 and July 2021. Thirty-nine studies were included. Significant associations between parental BD and offspring caudate volume, inferior frontal gyrus thickness, and anterior cingulate cortex thickness were found. Associations were also identified between parental MDD and offspring amygdala and hippocampal volumes, fusiform thickness, and thickness in temporoparietal regions. Few studies have examined associations between parental anxiety and high-risk offspring brain structure; however, one study found associations between parental anxiety symptoms and offspring amygdala structure, and another found similar associations with the hippocampus. The direction of grey matter change across studies was inconsistent, potentially due to the large age ranges for each study and the non-linear development of the brain. Children of parents with MDD and bipolar disorders, or elevated anxiety symptoms, show alterations in a range of brain regions. Results may further efforts to identify children at high risk for affective disorders and may elucidate whether alterations in specific brain regions represent premorbid markers of risk for mood and anxiety disorders.
Collapse
Affiliation(s)
- Jennifer V A Kemp
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute, Calgary, AB, Canada. .,Mathison Centre for Mental Health Research & Education, Calgary, AB, Canada. .,Faculty of Cumming School of Medicine, University of Calgary, Foothills Hospital Teaching Research and Wellness Building, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| | - Emily Bernier
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Calgary, AB, Canada.,Mathison Centre for Mental Health Research & Education, Calgary, AB, Canada
| | - Catherine Lebel
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada.,Hotchkiss Brain Institute, Calgary, AB, Canada.,Mathison Centre for Mental Health Research & Education, Calgary, AB, Canada.,Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Daniel C Kopala-Sibley
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Calgary, AB, Canada.,Hotchkiss Brain Institute, Calgary, AB, Canada.,Mathison Centre for Mental Health Research & Education, Calgary, AB, Canada
| |
Collapse
|
15
|
Woo Y, Kang W, Kang Y, Kim A, Han KM, Tae WS, Ham BJ. Cortical Thickness and Surface Area Abnormalities in Bipolar I and II Disorders. Psychiatry Investig 2021; 18:850-863. [PMID: 34500506 PMCID: PMC8473857 DOI: 10.30773/pi.2021.0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/11/2021] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Although bipolar II disorder (BD II) is not simply a mitigated form of bipolar I disorder (BD I), their neurobiological differences have not been elucidated. The present study aimed to explore cortical thickness (CT) and surface area (SA) in patients with BD I and BD II and healthy controls (HCs) to investigate the shared and unique neurobiological mechanisms of BD subtypes. METHODS We enrolled 30 and 44 patients with BD I and BD II, respectively, and 100 HCs. We evaluated CT and SA using FreeSurfer and estimated differences in CT and SA among the three groups (BD I vs. BD II vs. HC). We adjusted for age, sex, educational level, and intracranial volume as confounding factors. RESULTS We found widespread cortical thinning in the bilateral frontal, temporal, and occipital regions; cingulate gyrus; and insula in patients with BD. Alterations in SA, including increased SA of the pars triangularis and decreased SA of the insula, were noted in patients with BD. Overall, we found BD II patients demonstrated decreased SA in the right long insula compared to BD I patients. CONCLUSION Our results suggest that decreased SA in the right long insula is crucial for differentiating BD subtypes.
Collapse
Affiliation(s)
- Yoonmi Woo
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Guglielmo R, Miskowiak KW, Hasler G. Evaluating endophenotypes for bipolar disorder. Int J Bipolar Disord 2021; 9:17. [PMID: 34046710 PMCID: PMC8160068 DOI: 10.1186/s40345-021-00220-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phenotypic heterogeneity is a major impediment to the elucidation of the neurobiology and genetics of bipolar disorder. Endophenotype could help in reducing heterogeneity by defining biological traits that are more direct expressions of gene effects. The aim of this review is to examine the recent literature on clinical, epidemiological, neurobiological, and genetic findings and to select and evaluate candidate endophenotypes for bipolar disorder. Evaluating putative endophenotype could be helpful in better understanding the neurobiology of bipolar disorder by improving the definition of bipolar-related phenotypes in genetic studies. In this manner, research on endophenotypes could be useful to improve psychopathological diagnostics in the long-run by dissecting psychiatric macro phenotypes into biologically valid components. MAIN BODY The associations among the psychopathological and biological endophenotypes are discussed with respect to specificity, temporal stability, heritability, familiarity, and clinical and biological plausibility. Numerous findings regarding brain function, brain structure, neuropsychology and altered neurochemical pathways in patients with bipolar disorder and their relatives deserve further investigation. Overall, major findings suggest a developmental origin of this disorder as all the candidate endophenotypes that we have been able to select are present both in the early stages of the disorder as well as in subjects at risk. CONCLUSIONS Among the stronger candidate endophenotypes, we suggest circadian rhythm instability, dysmodulation of emotion and reward, altered neuroimmune state, attention and executive dysfunctions, anterior cingulate cortex thickness and early white matter abnormalities. In particular, early white matter abnormalities could be the result of a vulnerable brain on which new stressors are added in young adulthood which favours the onset of the disorder. Possible pathways that lead to a vulnerable brain are discussed starting from the data about molecular and imaging endophenotypes of bipolar disorder.
Collapse
Affiliation(s)
- Riccardo Guglielmo
- Psychiatry Research Unit, Fribourg Network for Mental Health (RFSM), University of Fribourg, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.,Department of Neuroscience, Institute of Psychiatry, Catholic University Medical School, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gregor Hasler
- Psychiatry Research Unit, Fribourg Network for Mental Health (RFSM), University of Fribourg, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.
| |
Collapse
|
17
|
Overs BJ, Lenroot RK, Roberts G, Green MJ, Toma C, Hadzi-Pavlovic D, Pierce KD, Schofield PR, Mitchell PB, Fullerton JM. Cortical mediation of relationships between dopamine receptor D2 and cognition is absent in youth at risk of bipolar disorder. Psychiatry Res Neuroimaging 2021; 309:111258. [PMID: 33529975 DOI: 10.1016/j.pscychresns.2021.111258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 11/18/2022]
Abstract
Bipolar disorder is associated with cognitive deficits and cortical changes for which the developmental dynamics are not well understood. The dopamine D2 receptor (DRD2) gene has been associated with both psychiatric disorders and cognitive variability. Here we examined the mediating role of brain structure in the relationship between DRD2 genomic variation and cognitive performance, with target cortical regions selected based on evidence of association with DRD2, bipolar disorder and/or cognition from prior literature. Participants (n = 143) were aged 12-30 years and comprised 62 first-degree relatives of bipolar patients (deemed 'at-risk'), 55 controls, and 26 patients with established bipolar disorder; all were unrelated Caucasian individuals with complete data across the three required modalities (structural magnetic resonance imaging, neuropsychological and genetic data). A DRD2 haplotype was derived from three functional polymorphisms (rs1800497, rs1076560, rs2283265) associated with alternative splicing (i.e., D2-short/-long isoforms). Moderated mediation analyses explored group differences in relationships between this DRD2 haplotype, three structural brain networks which subsume the identified cortical regions of interest (frontoparietal, dorsal-attention, and ventral-attention), and three cognitive indices (intelligence, attention, and immediate memory). Controls who were homozygous for the DRD2 major haplotype demonstrated greater cognitive performance as a result of dorsal-attention network mediation. However, this association was absent in the 'at-risk' group. This study provides the first evidence of a functional DRD2-brain-cognition pathway. The absence of typical brain-cognition relationships in young 'at-risk' individuals may reflect biological differences that precede illness onset. Further insight into early pathogenic processes may facilitate targeted early interventions.
Collapse
Affiliation(s)
- Bronwyn J Overs
- Neuroscience Research Australia, New South Wales, Randwick, Australia
| | - Rhoshel K Lenroot
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Melissa J Green
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Claudio Toma
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Medical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Dusan Hadzi-Pavlovic
- School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Kerrie D Pierce
- Neuroscience Research Australia, New South Wales, Randwick, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Medical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Medical Sciences, University of New South Wales, New South Wales, Kensington, Australia.
| |
Collapse
|
18
|
Using structural MRI to identify bipolar disorders - 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group. Mol Psychiatry 2020; 25:2130-2143. [PMID: 30171211 PMCID: PMC7473838 DOI: 10.1038/s41380-018-0228-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/11/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47-67.00, ROC-AUC = 71.49%, 95% CI = 69.39-73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70-60.63). Meta-analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen's Kappa = 0.83, 95% CI = 0.829-0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/voxelwise neuroimaging data.
Collapse
|
19
|
de Zwarte SMC, Brouwer RM, Agartz I, Alda M, Aleman A, Alpert KI, Bearden CE, Bertolino A, Bois C, Bonvino A, Bramon E, Buimer EEL, Cahn W, Cannon DM, Cannon TD, Caseras X, Castro-Fornieles J, Chen Q, Chung Y, De la Serna E, Di Giorgio A, Doucet GE, Eker MC, Erk S, Fears SC, Foley SF, Frangou S, Frankland A, Fullerton JM, Glahn DC, Goghari VM, Goldman AL, Gonul AS, Gruber O, de Haan L, Hajek T, Hawkins EL, Heinz A, Hillegers MHJ, Hulshoff Pol HE, Hultman CM, Ingvar M, Johansson V, Jönsson EG, Kane F, Kempton MJ, Koenis MMG, Kopecek M, Krabbendam L, Krämer B, Lawrie SM, Lenroot RK, Marcelis M, Marsman JBC, Mattay VS, McDonald C, Meyer-Lindenberg A, Michielse S, Mitchell PB, Moreno D, Murray RM, Mwangi B, Najt P, Neilson E, Newport J, van Os J, Overs B, Ozerdem A, Picchioni MM, Richter A, Roberts G, Aydogan AS, Schofield PR, Simsek F, Soares JC, Sugranyes G, Toulopoulou T, Tronchin G, Walter H, Wang L, Weinberger DR, Whalley HC, Yalin N, Andreassen OA, Ching CRK, van Erp TGM, Turner JA, Jahanshad N, Thompson PM, Kahn RS, van Haren NEM. The Association Between Familial Risk and Brain Abnormalities Is Disease Specific: An ENIGMA-Relatives Study of Schizophrenia and Bipolar Disorder. Biol Psychiatry 2019; 86:545-556. [PMID: 31443932 PMCID: PMC7068800 DOI: 10.1016/j.biopsych.2019.03.985] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects. METHODS We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects. RESULTS FDRs-BD had significantly larger ICV (d = +0.16, q < .05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = -0.12, q < .05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < -0.09, q < .05 corrected); and third ventricle was larger (d = +0.15, q < .05 corrected). The findings were not explained by psychopathology in the relatives or control subjects. CONCLUSIONS Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct.
Collapse
Affiliation(s)
- Sonja M C de Zwarte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| | - Rachel M Brouwer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic
| | - André Aleman
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kathryn I Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Catherine Bois
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Aurora Bonvino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Elvira Bramon
- Division of Psychiatry, Neuroscience in Mental Health Research Department, University College London, London, United Kingdom
| | - Elizabeth E L Buimer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Dara M Cannon
- Centre for Neuroimaging and Cognitive Genomics and National Centre for Biomedical Engineering (NCBES), Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, Connecticut, United Kingdom
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, United Kingdom
| | - Josefina Castro-Fornieles
- Psychology and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic of Barcelona, Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of Barcelona, Spain
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, Maryland
| | - Yoonho Chung
- Department of Psychology, Yale University, New Haven, Connecticut, United Kingdom
| | - Elena De la Serna
- Psychology and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic of Barcelona, Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of Barcelona, Spain
| | - Annabella Di Giorgio
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Gaelle E Doucet
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mehmet Cagdas Eker
- SoCAT LAB, Department of Psychiatry, School of Medicine, Ege University, Bornova, Izmir, Turkey; Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Susanne Erk
- Research Division of Mind and Brain, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Scott C Fears
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California; Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, California
| | - Sonya F Foley
- Cardiff University Brain Research Imaging Centre, Cardiff University, United Kingdom
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew Frankland
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Janice M Fullerton
- School of Medical Sciences, University of New South Wales, Sydney, Australia; Neuroscience Research Australia, Sydney, Australia
| | - David C Glahn
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut; Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Vina M Goghari
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Ali Saffet Gonul
- SoCAT LAB, Department of Psychiatry, School of Medicine, Ege University, Bornova, Izmir, Turkey; Department of Psychiatry and Behavioral Sciences, Mercer University School of Medicine, Macon, Georgia
| | - Oliver Gruber
- Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Lieuwe de Haan
- Early Psychosis Unit, Department of Psychiatry, Academic Medical Center, Amsterdam, Netherlands
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic
| | - Emma L Hawkins
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Andreas Heinz
- Research Division of Mind and Brain, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manon H J Hillegers
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Ingvar
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Viktoria Johansson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fergus Kane
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matthew J Kempton
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marinka M G Koenis
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Miloslav Kopecek
- National Institute of Mental Health, Klecany, Czech Republic; Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lydia Krabbendam
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit, Amsterdam, Netherlands
| | - Bernd Krämer
- Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Rhoshel K Lenroot
- Neuroscience Research Australia, Sydney, Australia; Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico
| | - Machteld Marcelis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht, Netherlands
| | - Jan-Bernard C Marsman
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Baltimore, Maryland; Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Colm McDonald
- Centre for Neuroimaging and Cognitive Genomics and National Centre for Biomedical Engineering (NCBES), Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Andreas Meyer-Lindenberg
- Clinical Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stijn Michielse
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht, Netherlands
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Dolores Moreno
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Robin M Murray
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Pablo Najt
- Centre for Neuroimaging and Cognitive Genomics and National Centre for Biomedical Engineering (NCBES), Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Emma Neilson
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Jason Newport
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht, Netherlands
| | | | - Aysegul Ozerdem
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York; Department of Psychiatry, Faculty of Medicine, Izmir, Turkey; Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Marco M Picchioni
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anja Richter
- Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Aybala Saricicek Aydogan
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Izmir Katip Çelebi University, Izmir, Turkey
| | - Peter R Schofield
- School of Medical Sciences, University of New South Wales, Sydney, Australia; Neuroscience Research Australia, Sydney, Australia
| | - Fatma Simsek
- SoCAT LAB, Department of Psychiatry, School of Medicine, Ege University, Bornova, Izmir, Turkey; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Psychiatry, Cigli State Hospital, Izmir, Turkey
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Gisela Sugranyes
- Psychology and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic of Barcelona, Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of Barcelona, Spain
| | - Timothea Toulopoulou
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Psychology, Bilkent University, Ankara, Turkey; Department of Psychology, University of Hong Kong, Hong Kong, China
| | - Giulia Tronchin
- Centre for Neuroimaging and Cognitive Genomics and National Centre for Biomedical Engineering (NCBES), Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Henrik Walter
- Research Division of Mind and Brain, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Heather C Whalley
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Nefize Yalin
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Christopher R K Ching
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California; Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California; Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California
| | - Jessica A Turner
- Department of Psychology, Georgia State University, Atlanta, Georgia; Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - René S Kahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Neeltje E M van Haren
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
20
|
Drobinin V, Slaney C, Garnham J, Propper L, Uher R, Alda M, Hajek T. Larger right inferior frontal gyrus volume and surface area in participants at genetic risk for bipolar disorders. Psychol Med 2019; 49:1308-1315. [PMID: 30058502 DOI: 10.1017/s0033291718001903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Larger grey matter volume of the inferior frontal gyrus (IFG) is among the most replicated biomarkers of genetic risk for bipolar disorders (BD). However, the IFG is a heterogeneous prefrontal region, and volumetric findings can be attributable to changes in cortical thickness (CT), surface area (SA) or gyrification. Here, we investigated the morphometry of IFG in participants at genetic risk for BD. METHODS We quantified the IFG cortical grey matter volume in 29 affected, 32 unaffected relatives of BD probands, and 42 controls. We then examined SA, CT, and cortical folding in subregions of the IFG. RESULTS We found volumetric group differences in the right IFG, with the largest volumes in unaffected high-risk and smallest in control participants (F2,192 = 3.07, p = 0.01). The volume alterations were localized to the pars triangularis of the IFG (F2,97 = 4.05, p = 0.02), with no differences in pars opercularis or pars orbitalis. Pars triangularis volume was highly correlated with its SA [Pearson r(101) = 0.88, p < 0.001], which significantly differed between the groups (F2,97 = 4.45, p = 0.01). As with volume, the mean SA of the pars triangularis was greater in unaffected (corrected p = 0.02) and affected relatives (corrected p = 0.05) compared with controls. We did not find group differences in pars triangularis CT or gyrification. CONCLUSIONS These findings strengthen prior knowledge about the volumetric findings in this region and provide a new insight into the localization and topology of IFG alterations. The unique nature of rIFG morphology in BD, with larger volume and SA early in the course of illness, could have practical implications for detection of participants at risk for BD.
Collapse
Affiliation(s)
- V Drobinin
- Department of Psychiatry,Dalhousie University,Halifax,Canada
| | - C Slaney
- Department of Psychiatry,Dalhousie University,Halifax,Canada
| | - J Garnham
- Department of Psychiatry,Dalhousie University,Halifax,Canada
| | - L Propper
- Department of Psychiatry,Dalhousie University,Halifax,Canada
| | - R Uher
- Department of Psychiatry,Dalhousie University,Halifax,Canada
| | - M Alda
- Department of Psychiatry,Dalhousie University,Halifax,Canada
| | - T Hajek
- Department of Psychiatry,Dalhousie University,Halifax,Canada
| |
Collapse
|
21
|
Yalin N, Saricicek A, Hidiroglu C, Zugman A, Direk N, Ada E, Cavusoglu B, Er A, Isik G, Ceylan D, Tunca Z, Kempton MJ, Ozerdem A. Cortical thickness and surface area as an endophenotype in bipolar disorder type I patients and their first-degree relatives. Neuroimage Clin 2019; 22:101695. [PMID: 30738374 PMCID: PMC6370861 DOI: 10.1016/j.nicl.2019.101695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 01/14/2019] [Accepted: 01/27/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVES So far, few studies have investigated cortical thickness (CT) and surface area (SA) measures in bipolar disorder type I (BDI) in comparison to a high genetic risk group such as first-degree relatives (FR). This study aimed to examine CT and SA differences between BDI, FR and healthy controls (HC). METHODS 3D T1 magnetic resonance images were acquired from 27 euthymic BDI patients, 24 unaffected FR and 29 HC. CT and SA measures were obtained with FreeSurfer version 5.3.0. Generalized estimating equations were used to compare CT and SA between groups. Group comparisons were repeated with restricting the FR group to 17 siblings (FR-SB) only. RESULTS \Mean age in years was 36.3 ± 9.5 for BDI, 32.1 ± 10.9 for FR, 34.7 ± 9.8 for FR-SB and 33.1 ± 9.0 for HC group respectively. BDI patients revealed larger SA of left pars triangularis (LPT) compared to HC (p = .001). In addition, increased SA in superior temporal cortex (STC) in FR-SB group compared to HC was identified (p = .0001). CONCLUSIONS Our result of increased SA in LPT of BDI could be a disease marker and increased SA in STC of FR-SB could be a marker related with resilience to illness.
Collapse
Affiliation(s)
- Nefize Yalin
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
| | - Aybala Saricicek
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Katip Celebi University, Izmir, Turkey
| | - Ceren Hidiroglu
- Department of Psychology, Faculty of Arts, Dokuz Eylul University, Izmir, Turkey
| | - Andre Zugman
- Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Department of Psychiatry, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Nese Direk
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Emel Ada
- Department of Radiology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Berrin Cavusoglu
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Ayşe Er
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Gizem Isik
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Deniz Ceylan
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Zeliha Tunca
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Aysegul Ozerdem
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
22
|
Hajek T, Franke K, Kolenic M, Capkova J, Matejka M, Propper L, Uher R, Stopkova P, Novak T, Paus T, Kopecek M, Spaniel F, Alda M. Brain Age in Early Stages of Bipolar Disorders or Schizophrenia. Schizophr Bull 2019; 45:190-198. [PMID: 29272464 PMCID: PMC6293219 DOI: 10.1093/schbul/sbx172] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The greater presence of neurodevelopmental antecedants may differentiate schizophrenia from bipolar disorders (BD). Machine learning/pattern recognition allows us to estimate the biological age of the brain from structural magnetic resonance imaging scans (MRI). The discrepancy between brain and chronological age could contribute to early detection and differentiation of BD and schizophrenia. METHODS We estimated brain age in 2 studies focusing on early stages of schizophrenia or BD. In the first study, we recruited 43 participants with first episode of schizophrenia-spectrum disorders (FES) and 43 controls. In the second study, we included 96 offspring of bipolar parents (48 unaffected, 48 affected) and 60 controls. We used relevance vector regression trained on an independent sample of 504 controls to estimate the brain age of study participants from structural MRI. We calculated the brain-age gap estimate (BrainAGE) score by subtracting the chronological age from the brain age. RESULTS Participants with FES had higher BrainAGE scores than controls (F(1, 83) = 8.79, corrected P = .008, Cohen's d = 0.64). Their brain age was on average 2.64 ± 4.15 years greater than their chronological age (matched t(42) = 4.36, P < .001). In contrast, participants at risk or in the early stages of BD showed comparable BrainAGE scores to controls (F(2,149) = 1.04, corrected P = .70, η2 = 0.01) and comparable brain and chronological age. CONCLUSIONS Early stages of schizophrenia, but not early stages of BD, were associated with advanced BrainAGE scores. Participants with FES showed neurostructural alterations, which made their brains appear 2.64 years older than their chronological age. BrainAGE scores could aid in early differential diagnosis between BD and schizophrenia.
Collapse
Affiliation(s)
- Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,National Institute of Mental Health, Klecany, Czech Republic
| | - Katja Franke
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Marian Kolenic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Jana Capkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Martin Matejka
- National Institute of Mental Health, Klecany, Czech Republic.,Psychiatric Hospital Bohnice, Prague, Czech Republic
| | - Lukas Propper
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Pavla Stopkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Tomas Novak
- National Institute of Mental Health, Klecany, Czech Republic
| | - Tomas Paus
- Rotman Research Institute and Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada.,Center for Developing Brain, Child Mind Institute, New York, NY
| | | | - Filip Spaniel
- National Institute of Mental Health, Klecany, Czech Republic
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
23
|
Lin K, Shao R, Geng X, Chen K, Lu R, Gao Y, Bi Y, Lu W, Guan L, Kong J, Xu G, So KF. Illness, at-risk and resilience neural markers of early-stage bipolar disorder. J Affect Disord 2018; 238:16-23. [PMID: 29852342 DOI: 10.1016/j.jad.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/06/2018] [Accepted: 05/15/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Current knowledge on objective and specific neural markers for bipolar risk and resilience-related processes is lacking, partly due to not subdividing high-risk individuals manifesting different levels of subclinical symptoms who possibly possess different levels of resilience. METHODS We delineated grey matter markers for bipolar illness, genetic high risk (endophenotype) and resilience, through comparing across 42 young non-comorbid bipolar patients, 42 healthy controls, and 72 diagnosis-free, medication-naive high-genetic-risk individuals subdivided into a combined-high-risk group who additionally manifested bipolar risk-relevant subsyndromes (N = 38), and an asymptomatic high-risk group (N = 34). Complementary analyses assessed the additional predictive and classification values of grey matter markers beyond those of clinical scores, through using logistic regression and support vector machine analyses. RESULTS Illness-related effects manifested as reduced grey matter volumes of bilateral temporal limbic-striatal and cerebellar regions, which significantly differentiated bipolar patients from healthy controls and improved clinical classification specificity by 20%. Reduced bilateral cerebellar grey matter volume emerged as a potential endophenotype and (along with parieto-occipital grey matter changes) separated combined-high-risk individuals from healthy and high-risk individuals, and increased clinical classification specificity by approximately 10% and 27%, respectively, while the relatively normalized cerebellar grey matter volumes in the high-risk sample may confer resilience. LIMITATIONS The cross-validation procedure was not performed on an independent sample using independently-derived features. The BD group had different age and sex distributions than some other groups which may not be fully addressable statistically. CONCLUSIONS Our framework can be applied in other measurement domains to derive complete profiles for bipolar patients and at-risk individuals, towards forming strategies for promoting resilience and preclinical intervention.
Collapse
Affiliation(s)
- Kangguang Lin
- Department of Affective Disorders, Guangzhou Brain Hospital, The Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong 510370, China; Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; GMH Institute of CNS Regeneration, Jinan University, Guangzhou, China; GMU-HKU Mood and Brain Science Center, Guangzhou, China.
| | - Robin Shao
- Department of Affective Disorders, Guangzhou Brain Hospital, The Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong 510370, China; Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; GMU-HKU Mood and Brain Science Center, Guangzhou, China; The State Key Laboratory of Brain and Cognitive Sciences and Department of Ophthalmology, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology and Laboratory of Social Cognitive Affective Neuroscience, Department of Psychology, University of Hong Kong, Hong Kong
| | - Xiujuan Geng
- The State Key Laboratory of Brain and Cognitive Sciences and Department of Ophthalmology, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology and Laboratory of Social Cognitive Affective Neuroscience, Department of Psychology, University of Hong Kong, Hong Kong
| | - Kun Chen
- Department of Affective Disorders, Guangzhou Brain Hospital, The Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong 510370, China; Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Lu
- Department of Affective Disorders, Guangzhou Brain Hospital, The Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong 510370, China
| | - Yanling Gao
- Department of Affective Disorders, Guangzhou Brain Hospital, The Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong 510370, China; Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanan Bi
- Department of Affective Disorders, Guangzhou Brain Hospital, The Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong 510370, China; Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weicong Lu
- Department of Affective Disorders, Guangzhou Brain Hospital, The Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong 510370, China; Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijie Guan
- Department of Affective Disorders, Guangzhou Brain Hospital, The Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong 510370, China; Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiehua Kong
- Department of Affective Disorders, Guangzhou Brain Hospital, The Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong 510370, China; Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guiyun Xu
- Department of Affective Disorders, Guangzhou Brain Hospital, The Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong 510370, China; Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; GMU-HKU Mood and Brain Science Center, Guangzhou, China
| | - Kwok-Fai So
- GMH Institute of CNS Regeneration, Jinan University, Guangzhou, China; GMU-HKU Mood and Brain Science Center, Guangzhou, China; The State Key Laboratory of Brain and Cognitive Sciences and Department of Ophthalmology, The University of Hong Kong, Hong Kong
| |
Collapse
|
24
|
Kafantaris V, Spritzer L, Doshi V, Saito E, Szeszko PR. Changes in white matter microstructure predict lithium response in adolescents with bipolar disorder. Bipolar Disord 2017; 19:587-594. [PMID: 28992395 DOI: 10.1111/bdi.12544] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/29/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVES To investigate whether response to lithium treatment in pediatric bipolar disorder can be predicted by changes in white matter microstructure in key cortico-limbic tracts involved in emotion regulation. METHODS Eighteen clinically referred lithium-naive patients (mean age 15.5 years) were administered clinical rating scales and diffusion tensor imaging (DTI) examinations at baseline and following 4 weeks of lithium treatment. Clinical ratings were repeated following 8 weeks of treatment. Patients with Clinical Global Impressions (CGI) ratings of 1 ("very much improved") or 2 ("much improved") were classified as responders. Ten healthy volunteers received baseline and follow-up DTI examinations. Using the ENIGMA pipeline, we investigated the relationship between changes in fractional anisotropy (FA) in the cingulum hippocampus (CGH) and clinical response to lithium. RESULTS Patients demonstrated significantly lower FA compared to healthy volunteers in the left and right CGH white matter at baseline. Following 4 weeks of lithium treatment, FA in the left CGH increased in patients, but no significant changes in FA were observed among the untreated healthy volunteers. Lithium responders had a significantly greater increase in FA compared to non-responders. Moreover, baseline (pre-treatment) FA in the left CGH white matter significantly predicted week 8 overall CGI severity score, with post hoc analyses indicating that these effects were evident for both severity of depression and mania. CONCLUSIONS Our findings suggest that response to lithium treatment in pediatric bipolar disorder is associated with normalization of white matter microstructure in regions associated with emotion processing.
Collapse
Affiliation(s)
- Vivian Kafantaris
- Division of Child and Adolescent Psychiatry, The Zucker Hillside Hospital of Northwell Health, Glen Oaks, NY, USA.,Hofstra Northwell School of Medicine, Hempstead, NY, USA.,Center for Psychiatric Neuroscience of The Feinstein Institute for Medical Research of Northwell Health, Manhasset, NY, USA
| | - Linda Spritzer
- Center for Psychiatric Neuroscience of The Feinstein Institute for Medical Research of Northwell Health, Manhasset, NY, USA
| | - Vishal Doshi
- Division of Child and Adolescent Psychiatry, The Zucker Hillside Hospital of Northwell Health, Glen Oaks, NY, USA.,Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Ema Saito
- Division of Child and Adolescent Psychiatry, The Zucker Hillside Hospital of Northwell Health, Glen Oaks, NY, USA.,Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Philip R Szeszko
- James J. Peters VA Medical Center, Bronx, NY, USA.,The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Tu PC, Li CT, Lin WC, Chen MH, Su TP, Bai YM. Structural and functional correlates of serum soluble IL-6 receptor level in patients with bipolar disorder. J Affect Disord 2017; 219:172-177. [PMID: 28558364 DOI: 10.1016/j.jad.2017.04.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Inflammation is reported to play a crucial role in the pathogenesis of bipolar disorder (BD). Higher serum levels of soluble interleukin-6 receptor (sIL-6R), which forms a ligand-receptor complex with the potent proinflammatory cytokine IL-6, have been consistently observed in patients with BD. However, the effect of sIL-6R on neural structure and function remains unclear. This study investigated the association between serum sIL-6R levels and the structural and functional connectivity (FC) of the brain in patients with BD. METHODS Seventy-four stable patients with BD-I or BD-II were enrolled from the outpatient clinic. Structural and resting functional MRI and clinical evaluations were performed in all participants, and serum sIL-6R levels were measured. We used an automated surface-based method (FreeSurfer) to measure cortical thickness and a seed-based FC analysis to derive the FC map of the medial prefrontal cortex (mPFC), a key region implicated in the fronto-limbic disconnection hypothesis of BD. Brain-wise regression analyses of cortical thickness and FC mapping on IL-6 levels were performed using a general linear model. RESULTS Higher sIL-6R levels were associated with a thinner cortex in the right middle temporal gyrus. Furthermore, higher sIL-6R levels were associated with increased FC between the mPFC and amygdala, pallidum, putamen, and insula and decreased FC between the mPFC and subgenual anterior cingulate cortex and frontal pole. CONCLUSION The results evidence that higher serum inflammatory marker levels are associated with a severer deficit in structural and connectivity abnormalities implicated in BD.
Collapse
Affiliation(s)
- Pei-Chi Tu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan; Institute of Philosophy of Mind and Cognition, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|