1
|
Morandi E, Adoue V, Bernard I, Friebel E, Nunez N, Aubert Y, Masson F, Dejean AS, Becher B, Astier A, Martinet L, Saoudi A. Impact of the Multiple Sclerosis-Associated Genetic Variant CD226 Gly307Ser on Human CD8 T-Cell Functions. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200306. [PMID: 39231385 PMCID: PMC11379124 DOI: 10.1212/nxi.0000000000200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/08/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND AND OBJECTIVES The rs763361 nonsynonymous variant in the CD226 gene, which results in a glycine-to-serine substitution at position 307 of the CD226 protein, has been implicated as a risk factor of various immune-mediated diseases, including multiple sclerosis (MS). Compelling evidence suggests that this allele may play a significant role in predisposing individuals to MS by decreasing the immune-regulatory capacity of Treg cells and increasing the proinflammatory potential of effector CD4 T cells. However, the impact of this CD226 gene variant on CD8 T-cell functions, a population that also plays a key role in MS, remains to be determined. METHODS To study whether the CD226 risk variant affects human CD8 T-cell functions, we used CD8 T cells isolated from peripheral blood mononuclear cell of 16 age-matched healthy donors homozygous for either the protective or the risk allele of CD226. We characterized these CD8 T cells on T-cell receptor (TCR) stimulation using high-parametric flow cytometry and bulk RNAseq and through characterization of canonical signaling pathways and cytokine production. RESULTS On TCR engagement, the phenotype of ex vivo CD8 T cells bearing the protective (CD226-307Gly) or the risk (CD226-307Ser) allele of CD226 was largely overlapping. However, the transcriptomic signature of CD8 T cells from the donors carrying the risk allele presented an enrichment in TCR, JAK/STAT, and IFNγ signaling. We next found that the CD226-307Ser risk allele leads to a selective increase in the phosphorylation of the mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 (ERK1/2) associated with enhanced phosphorylation of STAT4 and increased production of IFNγ. DISCUSSION Our data suggest that the CD226-307Ser risk variant imposes immune dysregulation by increasing the pathways related to IFNγ signaling in CD8 T cells, thereby contributing to the risk of developing chronic inflammation.
Collapse
Affiliation(s)
- Elena Morandi
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Véronique Adoue
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Isabelle Bernard
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Ekaterina Friebel
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Nicolas Nunez
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Yann Aubert
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Frederick Masson
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Anne S Dejean
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Burkhard Becher
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Anne Astier
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Ludovic Martinet
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Abdelhadi Saoudi
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
2
|
Zhou W, Hu W, Tang L, Ma X, Liao J, Yu Z, Qi M, Chen B, Li J. Meta-analysis of the Selected Genetic Variants in Immune-Related Genes and Multiple Sclerosis Risk. Mol Neurobiol 2024; 61:8175-8187. [PMID: 38478144 DOI: 10.1007/s12035-024-04095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 09/21/2024]
Abstract
Previous studies have suggested that certain variants in immune-related genes may participate in the pathogenesis of multiple sclerosis (MS), including rs17824933 in the CD6 gene, rs1883832 in the CD40 gene, rs2300747 in the CD58 gene, rs763361 in the CD226 gene, rs16944 in the IL-1β gene, rs2243250 in the IL-4 gene, and rs12722489 and rs2104286 in the IL-2Rα gene. However, the results remained inconclusive and conflicting. In view of this, a comprehensive meta-analysis including all eligible studies was conducted to investigate the association between these 8 selected genetic variants and MS risk. Up to June 2023, 64 related studies were finally included in this meta-analysis. The odds ratios (ORs) and corresponding 95% confidence intervals (CIs) calculated by the random-effects model were used to evaluate the strength of association. Publication bias test, sensitivity analyses, and trial sequential analysis (TSA) were conducted to examine the reliability of statistical results. Our results indicated that rs17824933 in the CD6 gene, rs1883832 in the CD40 gene, rs2300747 in the CD58 gene, rs763361 in the CD226 gene, and rs12722489 and rs2104286 in the IL-2Rα gene may serve as the susceptible factors for MS pathogenesis, while rs16944 in the IL-1β gene and rs2243250 in the IL-4 gene may not be associated with MS risk. However, the present findings need to be confirmed and reinforced in future studies.
Collapse
Affiliation(s)
- Weiguang Zhou
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Weiqiong Hu
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Lingyu Tang
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaorui Ma
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiaxi Liao
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhiyan Yu
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Meifang Qi
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bifeng Chen
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China.
| | - Jing Li
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
3
|
Mehmood A, Shah S, Guo RY, Haider A, Shi M, Ali H, Ali I, Ullah R, Li B. Methyl-CpG-Binding Protein 2 Emerges as a Central Player in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Cell Mol Neurobiol 2023; 43:4071-4101. [PMID: 37955798 PMCID: PMC11407427 DOI: 10.1007/s10571-023-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
MECP2 and its product methyl-CpG binding protein 2 (MeCP2) are associated with multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), which are inflammatory, autoimmune, and demyelinating disorders of the central nervous system (CNS). However, the mechanisms and pathways regulated by MeCP2 in immune activation in favor of MS and NMOSD are not fully understood. We summarize findings that use the binding properties of MeCP2 to identify its targets, particularly the genes recognized by MeCP2 and associated with several neurological disorders. MeCP2 regulates gene expression in neurons, immune cells and during development by modulating various mechanisms and pathways. Dysregulation of the MeCP2 signaling pathway has been associated with several disorders, including neurological and autoimmune diseases. A thorough understanding of the molecular mechanisms underlying MeCP2 function can provide new therapeutic strategies for these conditions. The nervous system is the primary system affected in MeCP2-associated disorders, and other systems may also contribute to MeCP2 action through its target genes. MeCP2 signaling pathways provide promise as potential therapeutic targets in progressive MS and NMOSD. MeCP2 not only increases susceptibility and induces anti-inflammatory responses in immune sites but also leads to a chronic increase in pro-inflammatory cytokines gene expression (IFN-γ, TNF-α, and IL-1β) and downregulates the genes involved in immune regulation (IL-10, FoxP3, and CX3CR1). MeCP2 may modulate similar mechanisms in different pathologies and suggest that treatments for MS and NMOSD disorders may be effective in treating related disorders. MeCP2 regulates gene expression in MS and NMOSD. However, dysregulation of the MeCP2 signaling pathway is implicated in these disorders. MeCP2 plays a role as a therapeutic target for MS and NMOSD and provides pathways and mechanisms that are modulated by MeCP2 in the regulation of gene expression.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Arsalan Haider
- Key Lab of Health Psychology, Institute of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
4
|
Shen X. Research progress on pathogenesis and clinical treatment of neuromyelitis optica spectrum disorders (NMOSDs). Clin Neurol Neurosurg 2023; 231:107850. [PMID: 37390569 DOI: 10.1016/j.clineuro.2023.107850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/11/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Neuromyelitis optica spectrum disorders (NMOSDs) are characteristically referred to as various central nervous system (CNS)-based inflammatory and astrocytopathic disorders, often manifested by the axonal damage and immune-mediated demyelination targeting optic nerves and the spinal cord. This review article presents a detailed view of the etiology, pathogenesis, and prescribed treatment options for NMOSD therapy. Initially, we present the epidemiology of NMOSDs, highlighting the geographical and ethnical differences in the incidence and prevalence rates of NMOSDs. Further, the etiology and pathogenesis of NMOSDs are emphasized, providing discussions relevant to various genetic, environmental, and immune-related factors. Finally, the applied treatment strategies for curing NMOSD are discussed, exploring the perspectives for developing emergent innovative treatment strategies.
Collapse
Affiliation(s)
- Xinyu Shen
- Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, PR China.
| |
Collapse
|
5
|
Frau J, Coghe G, Lorefice L, Fenu G, Cocco E. The Role of Microorganisms in the Etiopathogenesis of Demyelinating Diseases. Life (Basel) 2023; 13:1309. [PMID: 37374092 DOI: 10.3390/life13061309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS), neuromyelitis optica (NMO) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD) are inflammatory diseases of the central nervous system (CNS) with a multifactorial aetiology. Environmental factors are important for their development and microorganisms could play a determining role. They can directly damage the CNS, but their interaction with the immune system is even more important. The possible mechanisms involved include molecular mimicry, epitope spreading, bystander activation and the dual cell receptor theory. The role of Epstein-Barr virus (EBV) in MS has been definitely established, since being seropositive is a necessary condition for the onset of MS. EBV interacts with genetic and environmental factors, such as low levels of vitamin D and human endogenous retrovirus (HERV), another microorganism implicated in the disease. Many cases of onset or exacerbation of neuromyelitis optica spectrum disorder (NMOSD) have been described after infection with Mycobacterium tuberculosis, EBV and human immunodeficiency virus; however, no definite association with a virus has been found. A possible role has been suggested for Helicobacter pylori, in particular in individuals with aquaporin 4 antibodies. The onset of MOGAD could occur after an infection, mainly in the monophasic course of the disease. A role for the HERV in MOGAD has been hypothesized. In this review, we examined the current understanding of the involvement of infectious factors in MS, NMO and MOGAD. Our objective was to elucidate the roles of each microorganism in initiating the diseases and influencing their clinical progression. We aimed to discuss both the infectious factors that have a well-established role and those that have yielded conflicting results across various studies.
Collapse
Affiliation(s)
- Jessica Frau
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Giancarlo Coghe
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | | | - Eleonora Cocco
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
6
|
Murata R, Kinoshita S, Matsuda K, Kawaguchi A, Shibuya A, Shibuya K. G307S DNAM-1 Mutation Exacerbates Autoimmune Encephalomyelitis via Enhancing CD4 + T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2304-2312. [PMID: 36323412 DOI: 10.4049/jimmunol.2200608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 02/17/2024]
Abstract
Although rs763361, which causes a nonsynonymous glycine-to-serine mutation at residue 307 (G307S mutation) of the DNAX accessory molecule-1 (DNAM-1) immunoreceptor, is a single-nucleotide polymorphism associated with autoimmune disease susceptibility, little is known about how the single-nucleotide polymorphism is involved in pathogenesis. In this study, we established human CD4+ T cell transfectants stably expressing wild-type (WT) or G307S DNAM-1 and showed that the costimulatory signal from G307S DNAM-1 induced greater proinflammatory cytokine production and cell proliferation than that from wild-type DNAM-1. The G307S mutation also enhanced the recruitment of the tyrosine kinase Lck and augmented p-Tyr322 of DNAM-1. We also established a mouse myelin Ag-specific CD4+ T cell transfectant stably expressing the chimeric DNAM-1 (chDNAM-1) consisting of the extracellular, transmembrane, and a part of intracellular regions of mouse DNAM-1 (residues 1-285) fused with the part of the intracellular region (residues 286-336) of human WT or G307S chDNAM-1. Adoptive transfer of the mouse T cell transfectant expressing the G307S chDNAM-1 into mice exacerbated experimental autoimmune encephalomyelitis compared with the transfer of cells expressing the WT chDNAM-1. These findings suggest that rs763361 is a gain-of-function mutation that enhances DNAM-1-mediated costimulatory signaling for proinflammatory responses.
Collapse
Affiliation(s)
- Rikito Murata
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- PhD Program in Human Biology, University of Tsukuba, Tsukuba, Japan
| | - Shota Kinoshita
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- PhD Program in Human Biology, University of Tsukuba, Tsukuba, Japan
| | - Kenshiro Matsuda
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kawaguchi
- Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; and
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan;
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan;
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
8
|
Ghafouri-Fard S, Azimi T, Taheri M. A Comprehensive Review on the Role of Genetic Factors in Neuromyelitis Optica Spectrum Disorder. Front Immunol 2021; 12:737673. [PMID: 34675927 PMCID: PMC8524039 DOI: 10.3389/fimmu.2021.737673] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) comprise a variety of disorders being described by optic neuritis and myelitis. This disorder is mostly observed in sporadic form, yet 3% of cases are familial NMO. Different series of familial NMO cases have been reported up to now, with some of them being associated with certain HLA haplotypes. Assessment of HLA allele and haplotypes has also revealed association between some alleles within HLA-DRB1 or other loci and sporadic NMO. More recently, genome-wide SNP arrays have shown some susceptibility loci for NMO. In the current manuscript, we review available information about the role of genetic factors in NMO.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Azimi
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakin Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Rosas-Madrigal S, Villarreal-Molina MT, Flores-Rivera J, Rivas-Alonso V, Macias-Kauffer LR, Ordoñez G, Chima-Galán MDC, Acuña-Alonzo V, Macín-Pérez G, Barquera R, Granados J, Valle-Rios R, Corona T, Carnevale A, Romero-Hidalgo S. Interaction of HLA Class II rs9272219 and TMPO rs17028450 (Arg690Cys) Variants Affects Neuromyelitis Optica Spectrum Disorder Susceptibility in an Admixed Mexican Population. Front Genet 2021; 12:647343. [PMID: 34335680 PMCID: PMC8320513 DOI: 10.3389/fgene.2021.647343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/23/2021] [Indexed: 12/02/2022] Open
Abstract
Neuromyelitis Optica Spectrum Disorder (NMOSD) is a demyelinating autoimmune disease of the central nervous system, more prevalent in individuals of non-European ancestry. Few studies have analyzed genetic risk factors in NMOSD, and HLA class II gene variation has been associated NMOSD risk in various populations including Mexicans. Thymopoietin (TMPO) has not been tested as a candidate gene for NMOSD or other autoimmune disease, however, experimental evidence suggests this gene may be involved in negative selection of autoreactive T cells and autoimmunity. We thus investigated whether the missense TMPO variant rs17028450 (Arg630Cys, frequent in Latin America) is associated with NMOSD, and whether this variant shows an interaction with HLA-class II rs9272219, previously associated with NMOSD risk. A total of 119 Mexican NMOSD patients, 1208 controls and 357 Native Mexican individuals were included. The HLA rs9272219 “T” risk allele frequency ranged from 21 to 68%, while the rs17028450 “T” minor allele frequency was as high as 18% in Native Mexican groups. Both rs9272219 and rs17028450 were significantly associated with NMOSD risk under additive models (OR = 2.48; p = 8 × 10–10 and OR = 1.59; p = 0.0075, respectively), and a significant interaction between both variants was identified with logistic regression models (p = 0.048). Individuals bearing both risk alleles had an estimated 3.9-fold increased risk of NMOSD. To our knowledge, this is the first study reporting an association of TMPO gene variation with an autoimmune disorder and the interaction of specific susceptibility gene variants, that may contribute to the genetic architecture of NMOSD in admixed Latin American populations.
Collapse
Affiliation(s)
- Sandra Rosas-Madrigal
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - José Flores-Rivera
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez" (INNN), Mexico City, Mexico
| | - Verónica Rivas-Alonso
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez" (INNN), Mexico City, Mexico
| | - Luis Rodrigo Macias-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a La Salud, Facultad de Química, UNAM/INMEGEN, Mexico City, Mexico
| | | | | | | | | | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Julio Granados
- Departamento de Trasplantes, Instituto Nacional de Ciencias Medicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Ricardo Valle-Rios
- División de Investigación, Facultad de Medicina, Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Teresa Corona
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez" (INNN), Mexico City, Mexico
| | - Alessandra Carnevale
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Sandra Romero-Hidalgo
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
10
|
Zhong X, Chen C, Sun X, Wang J, Li R, Chang Y, Fan P, Wang Y, Wu Y, Peng L, Lu Z, Qiu W. Whole-exome sequencing reveals the major genetic factors contributing to neuromyelitis optica spectrum disorder in Chinese patients with aquaporin 4-IgG seropositivity. Eur J Neurol 2021; 28:2294-2304. [PMID: 33559384 DOI: 10.1111/ene.14771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease. Although genetic factors are involved in its pathogenesis, limited evidence is available in this area. The aim of the present study was to identify the major genetic factors contributing to NMOSD in Chinese patients with aquaporin 4 (AQP4)-IgG seropositivity. METHODS Whole-exome sequencing (WES) was performed on 228 Chinese NMOSD patients seropositive for AQP4-IgG and 1400 healthy controls in Guangzhou, South China. Human leukocyte antigen (HLA) sequencing was also utilized. Genotype model and haplotype, gene burden, and enrichment analyses were conducted. RESULTS A significant region of the HLA composition is on chromosome 6, and great variation was observed in DQB1, DQA2 and DQA1. HLA sequencing confirmed that the most significant allele was HLA-DQB1*05:02 (p < 0.01, odds ratio [OR] 3.73). The genotype model analysis revealed that HLA-DQB1*05:02 was significantly associated with NMOSD in the additive effect model and dominant effect model (p < 0.05). The proportion of haplotype "HLA-DQB1*05:02-DRB1*15:01" was significantly greater in the NMOSD patients than the controls, at 8.42% and 1.23%, respectively (p < 0.001, OR 7.39). The gene burden analysis demonstrated that loss-of-function mutations in NOP16 were more common in the NMOSD patients (11.84%) than the controls (5.71%; p < 0.001, OR 2.22). The IgG1-G390R variant was significantly more common in NMOSD, and the rate of the T allele was 0.605 in patients and 0.345 in the controls (p < 0.01, OR 2.92). The enrichment analysis indicated that most of the genetic factors were mainly correlated with nervous and immune processes. CONCLUSIONS Human leukocyte antigen is highly correlated with NMOSD. NOP16 and IgG1-G390R play important roles in disease susceptibility.
Collapse
Affiliation(s)
- Xiaonan Zhong
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaobo Sun
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingqi Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rui Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ping Fan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunting Wu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lisheng Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Bai L, Jiang J, Li H, Zhang R. Role of CD226 Rs763361 Polymorphism in Susceptibility to Multiple Autoimmune Diseases. Immunol Invest 2019; 49:926-942. [PMID: 31854233 DOI: 10.1080/08820139.2019.1703737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Gly307Ser (rs763361) polymorphism in Cluster of Differentiation 226 (CD226) gene has been implicated in susceptibility to autoimmune diseases (ADs) with controversial results. This study aimed to conduct a meta-analysis for examining the relationship between CD226 rs763361 polymorphism and ADs risk. Methods: a literature search was performed to identify relevant studies published in Embase, PubMed, Wanfang, and China National Knowledge Infrastructure. In the most appropriate genetic models, pooled odds ratio (OR) with 95% confidence interval (CI) was calculated for evaluating the strength of the associations. Besides standard meta-analysis, cumulative meta-analysis was also conducted to assess the trend in OR over time. Also, we performed subgroup and sensitivity analysis, and checked for the heterogeneity and publication bias. Results: Twenty-nine reports with 51 independent studies, comprising 18157 cases and 29904 controls, were enrolled in this meta-analysis. Among overall and various ethnic populations (Europeans, Asians, Africans, and South Americans), CD226 rs763361 polymorphism was significantly associated with ADs susceptibility; in the subgroup analysis by disease type, rs763361 polymorphism revealed significant associations with the risk of RA, SLE, T1D, and MS. The sensitivity analysis and cumulative meta-analysis confirmed the stability and robustness of these significant results. However, no evidence of stable significant association emerged in the subgroup analysis of SSc. Conclusion: These findings demonstrate that CD226 rs763361 polymorphism confers susceptibility to ADs in the overall population, Europeans, Asians, Africans, and South Americans. rs763361 polymorphism in CD226 gene may be a potential susceptible predictor of ADs especially RA, SLE, T1D, and MS.
Collapse
Affiliation(s)
- Linfu Bai
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jinyue Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - He Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Rui Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| |
Collapse
|
12
|
Identifying the culprits in neurological autoimmune diseases. J Transl Autoimmun 2019; 2:100015. [PMID: 32743503 PMCID: PMC7388404 DOI: 10.1016/j.jtauto.2019.100015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
The target organ of neurological autoimmune diseases (NADs) is the central or peripheral nervous system. Multiple sclerosis (MS) is the most common NAD, whereas Guillain-Barré syndrome (GBS), myasthenia gravis (MG), and neuromyelitis optica (NMO) are less common NADs, but the incidence of these diseases has increased exponentially in the last few years. The identification of a specific culprit in NADs is challenging since a myriad of triggering factors interplay with each other to cause an autoimmune response. Among the factors that have been associated with NADs are genetic susceptibility, epigenetic mechanisms, and environmental factors such as infection, microbiota, vitamins, etc. This review focuses on the most studied culprits as well as the mechanisms used by these to trigger NADs. Neurological autoimmune diseases are caused by a complex interaction between genes, environmental factors, and epigenetic deregulation. Infectious agents can cause an autoimmune reaction to myelin epitopes through molecular mimicry and/or bystander activation. Gut microbiota dysbiosis contributes to neurological autoimmune diseases. Smoking increases the risk of NADs through inflammatory signaling pathways, oxidative stress, and Th17 differentiation. Deficiency in vitamin D favors NAD development through direct damage to the central and peripheral nervous system.
Collapse
|
13
|
Zhong X, Zhou Y, Lu T, Wang Z, Fang L, Peng L, Kermode AG, Qiu W. Infections in neuromyelitis optica spectrum disorder. J Clin Neurosci 2017; 47:14-19. [PMID: 29066232 DOI: 10.1016/j.jocn.2017.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/01/2017] [Indexed: 12/19/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory astrocytopathy that has both genetic and environmental causes. A growing body of evidence suggests that the presence of several infectious agents correlates with the development of NMOSD. In this review, we summarize studies that either support or present evidence against the hypothesized association between infection and NMOSD. We will also present an overview of potential mechanisms underlying the pathogenesis of NMOSD. Finally, we provide some beneficial properties that infectious elements may have based on "hygiene hypothesis". It is of great clinical significance to further investigate the complex mechanisms by which infections may affect autoimmune diseases to develop better strategies to prevent and treat them, although so far no causal link between infectious agents and NMOSD has been established.
Collapse
Affiliation(s)
- Xiaonan Zhong
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yifan Zhou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingting Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhanhang Wang
- Department of Neurology, Guangdong 999 Brain Hospital, China
| | - Ling Fang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lisheng Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Allan G Kermode
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Department of Neurology, Sir Charles Gairdner Hospital, Queen Elizabeth II Medical Centre, Perth, Australia; Institute of Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Wei Q, Yanyu C, Rui L, Caixia L, Youming L, Jianhua H, Weihua M, Xiaobo S, Wen X, Ying C, Zhengqi L, Xueqiang H. Human aquaporin 4 gene polymorphisms in Chinese patients with neuromyelitis optica. J Neuroimmunol 2014; 274:192-6. [DOI: 10.1016/j.jneuroim.2014.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/01/2014] [Accepted: 07/05/2014] [Indexed: 11/27/2022]
|
15
|
Isobe N, Oksenberg JR. Genetic studies of multiple sclerosis and neuromyelitis optica: Current status in European, African American and Asian populations. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/cen3.12078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Noriko Isobe
- Department of Neurology; School of Medicine; University of California; San Francisco CA USA
| | - Jorge R. Oksenberg
- Department of Neurology; School of Medicine; University of California; San Francisco CA USA
| |
Collapse
|
16
|
Mai W, Hu X, Lu Z, Qiu W, Peng F, Wang Y. Preliminary study on the association of AQP4 promoter polymorphism with anti-aquaporin-4 antibody positivity in Southern Han Chinese patients with idiopathic demyelinating disorders of central nervous system. J Neuroimmunol 2013; 255:75-80. [DOI: 10.1016/j.jneuroim.2012.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
|