1
|
Mizumoto N, Nozaki T. The significance of social interactions in synchronized swarming flight in a termite. Biol Lett 2024; 20:20240423. [PMID: 39561804 PMCID: PMC11576101 DOI: 10.1098/rsbl.2024.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/14/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024] Open
Abstract
In social insects, individuals of working caste coordinate their actions to manage various collective tasks. Such collective behaviours exist not only in workers but also in winged reproductives (alates). During certain seasons, newly emerged alates fly from the nest to disperse and find mating partners in a synchronized manner. This 'swarming' behaviour is one of the collective behaviours that involve the greatest number of individuals in social insects. However, such synchronization is considered to be caused by the response to specific environmental cues rather than behavioural coordination among colony members. Here, we show that a termite Reticulitermes kanmonensis shows synchronized dispersal flight among alates within the same colony even under the constant temperature environment. Under the semi-field environment with fluctuating temperatures, alates within the same colony synchronized their dispersal flight under higher temperatures, while flight was suppressed under lower temperatures. We observed that termites synchronized their dispersal flights even under constant temperature conditions in the laboratory (20℃), indicating that environmental cues are not always necessary for synchronization. In either case, higher synchronization happened with a larger number of alates. These results suggest that social factors interplay with environmental cues to enable the synchronized swarming flight of social insects.
Collapse
Affiliation(s)
- Nobuaki Mizumoto
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tomonari Nozaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| |
Collapse
|
2
|
Hernández ML, Dujardin JP, Villacís AG, Yumiseva CA, Remón C, Mougabure-Cueto G. Resistance to deltamethrin in Triatoma infestans (Hemiptera: Reduviidae): does it influence the phenotype of antennae, wings, and heads? Acta Trop 2023:106976. [PMID: 37352997 DOI: 10.1016/j.actatropica.2023.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
In vector control terms, insecticide resistance is the development of the capacity, of an insect population, to tolerate doses of an insecticide that are lethal to most individuals in a typical population of the same species. The genetic changes that determine resistance may have adaptive costs in the resistant phenotype or, conversely, may result in an adaptive advantage when compared to susceptible insects in the environment without insecticides. Triatoma infestans is one of the main vectors of Trypanosoma cruzi in the southern cone of South America. High insecticide resistance in T. infestans was detected in Argentina in Salta and Chaco provinces. The objective of this study was to determine the possible morphometric changes in wings, heads, and the antennal phenotype of deltamethrin-resistant T. infestans (RR) males and females compared to susceptible insects (SS), evaluating its implication in adaptive processes such as olfactory capacity, dispersion, and probability of colonizing new habitats, among others. Nine type I landmarks were marked on wings, 5 type II landmarks on heads, and 10 antennal sensilla were counted on 106 adults of both sexes (resistant and susceptible from first and second laboratory generations). Morphological divergence was observed between the two groups (RR and SS). The RR insects showed smaller sizes of wings and heads and shape compatible with lower dispersal potential and different active dispersal behaviors. Antennae also revealed sensory simplification in RR and divergence between RR and SS, although more marked in females. This study characterizes for the first time T. infestans RR and SS through wings, heads, and antennae. The results suggest a lower dispersive potential in resistant insects and the differences described lay the foundations for the identification of a resistance biomarker in triatomines.
Collapse
Affiliation(s)
- M L Hernández
- Unidad Operativa de Vectores y Ambiente (UnOVE). Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias. Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos Malbrán (CeNDIE- ANLIS Malbrán). Santa María de Punilla, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - J P Dujardin
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, F-34398 Montpellier, France
| | - A G Villacís
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica de Ecuador, Quito, Ecuador
| | - C A Yumiseva
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica de Ecuador, Quito, Ecuador
| | - C Remón
- Unidad Operativa de Vectores y Ambiente (UnOVE). Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias. Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos Malbrán (CeNDIE- ANLIS Malbrán). Santa María de Punilla, Córdoba, Argentina
| | - G Mougabure-Cueto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Fisiología de Insectos, Instituto De Biodiversidad y Biología Experimental y Aplicada, IBBEA (UBA-CONICET). Buenos Aires, Argentina
| |
Collapse
|
3
|
Gigena GV, Rodríguez CS, Fiad FG, Hernández ML, Carbajal-de-la-Fuente AL, Piccinali RV, Sánchez Casaccia P, Rojas de Arias A, Lobbia P, Abrahan L, Bustamante Gomez M, Espinoza J, Cano F, Nattero J. Phenotypic variability in traits related to flight dispersal in the wing dimorphic species Triatoma guasayana. Parasit Vectors 2023; 16:8. [PMID: 36624528 PMCID: PMC9830765 DOI: 10.1186/s13071-022-05570-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/02/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Triatoma guasayana is considered an emerging vector of Chagas disease in the Southern Cone of South America. The presence of a triatomine population with brachypterous individuals, in which both wings are reduced, has recently been reported for this species. The aim of the present study was to determine if flight-related traits varied across populations, if these traits could explain differences in flight capacity across populations and if flight-related traits are associated with geographic and/or climatic variation. METHODS The study involved 66 male T. guasayana specimens from 10 triatomine populations. Digital images of wing, head and pronotum were used to estimate linear and geometric morphometric variables. Variations in size and shape were analysed using one-way analysis of variance and canonical variate analysis (CVA), respectively. Mantel tests were applied to analyse the relationship between morphometric and geographic distances, and the association between size measurements was analysed using Pearson's correlation. We explored covariation between size and shape variables using partial least square analyses (PLS). The association of geographic and climatic variables with size measurements was tested using linear regression analyses. We performed PLS analyses for shape measurements. RESULTS Wing size differed significantly across triatomine populations. The CVA showed that wing shape of the brachypterous population is well discriminated from that of the other populations. The Mantel test showed a positive and significant association between wing shape and geographic distances. The heads of the brachypterous population were significantly larger than those of the other populations. Similar to wing shape, the head shape of the brachypterous population was well discriminated from those of the other populations. Pronotum width did not show significant differences across populations. Geographic and climatic factors were associated with size and shape of both the wing and head, but not with pronotum width. CONCLUSIONS Most of the traits related to flight dispersal varied across populations. Wing shape and head shape were found to be better markers for differentiated morphological variation across populations. Head measurements also varied in accordance with this condition. Geographic and climatic variables were associated with most of the flight-related traits.
Collapse
Affiliation(s)
- Gisel V. Gigena
- grid.423606.50000 0001 1945 2152Cátedras de Morfología Animal y de Introducción a la Biología, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Facultad de Ciencias Exactas Físicas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de Córdoba, Av. Vélez Sársfield 299, X5000JJC Córdoba, Argentina
| | - Claudia S. Rodríguez
- grid.423606.50000 0001 1945 2152Cátedras de Morfología Animal y de Introducción a la Biología, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Facultad de Ciencias Exactas Físicas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de Córdoba, Av. Vélez Sársfield 299, X5000JJC Córdoba, Argentina
| | - Federico G. Fiad
- grid.423606.50000 0001 1945 2152Cátedras de Morfología Animal y de Introducción a la Biología, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Facultad de Ciencias Exactas Físicas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de Córdoba, Av. Vélez Sársfield 299, X5000JJC Córdoba, Argentina
| | - María Laura Hernández
- grid.423606.50000 0001 1945 2152Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina ,Unidad Operativa de Vectores y Ambiente (UnOVE), Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos Malbrán, Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias (CeNDIE), Santa María de Punilla, Córdoba, Argentina
| | - Ana Laura Carbajal-de-la-Fuente
- grid.419202.c0000 0004 0433 8498Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias (CeNDIE), Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos Malbrán” (ANLIS), Av. Paseo Colón 568, Buenos Aires, Argentina
| | - Romina V. Piccinali
- grid.7345.50000 0001 0056 1981Departamento de Ecología Genética y Evolución, Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981Instituto de Ecología, Genética y Evolución (IEGEBA), Intendente Güiraldes, CONICET/Universidad de Buenos Aires, 2160, Ciudad Universitaria, Pabellón 2, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Paz Sánchez Casaccia
- grid.419202.c0000 0004 0433 8498Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias (CeNDIE), Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos Malbrán” (ANLIS), Av. Paseo Colón 568, Buenos Aires, Argentina ,Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 entre 15 de agosto y Oleary, Asunción, Paraguay
| | - Antonieta Rojas de Arias
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 entre 15 de agosto y Oleary, Asunción, Paraguay
| | - Patricia Lobbia
- grid.423606.50000 0001 1945 2152Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina ,Unidad Operativa de Vectores y Ambiente (UnOVE), Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos Malbrán, Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias (CeNDIE), Santa María de Punilla, Córdoba, Argentina
| | - Luciana Abrahan
- grid.507426.2Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), UNLAR, SEGEMAR, UNCa, CONICET, Entre Ríos y Mendoza S/N, Anillaco , 5301 La Rioja, Provincia de La Rioja Argentina
| | - Marinely Bustamante Gomez
- grid.441790.f0000 0004 0489 2878Departamento de Apoyo y Asesoramiento a Proyectos, Universidad Privada del Valle, Campus Tiquipaya, Cochabamba, Bolivia
| | - Jorge Espinoza
- grid.10491.3d0000 0001 2176 4059Departamento de Biología, Laboratorio de Entomología Médica, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Florencia Cano
- Programa de Control de Vectores, Ministerio de Salud Pública de San Juan, San Juan, Argentina
| | - Julieta Nattero
- grid.7345.50000 0001 0056 1981Departamento de Ecología Genética y Evolución, Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981Instituto de Ecología, Genética y Evolución (IEGEBA), Intendente Güiraldes, CONICET/Universidad de Buenos Aires, 2160, Ciudad Universitaria, Pabellón 2, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
4
|
Abstract
Ants are ecologically one of the most important groups of insects and exhibit impressive capabilities for visual learning and orientation. Studies on numerous ant species demonstrate that ants can learn to discriminate between different colours irrespective of light intensity and modify their behaviour accordingly. However, the findings across species are variable and inconsistent, suggesting that our understanding of colour vision in ants and what roles ecological and phylogenetic factors play is at an early stage. This review provides a brief synopsis of the critical findings of the past century of research by compiling studies that address molecular, physiological and behavioural aspects of ant colour vision. With this, we aim to improve our understanding of colour vision and to gain deeper insights into the mysterious and colourful world of ants. This article is part of the theme issue ‘Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods’.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Biology, Lund Vision Group, University of Lund, 223 62 Lund, Sweden
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
| |
Collapse
|
5
|
Stöckl AL, Foster JJ. Night skies through animals' eyes-Quantifying night-time visual scenes and light pollution as viewed by animals. Front Cell Neurosci 2022; 16:984282. [PMID: 36274987 PMCID: PMC9582234 DOI: 10.3389/fncel.2022.984282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A large proportion of animal species enjoy the benefits of being active at night, and have evolved the corresponding optical and neural adaptations to cope with the challenges of low light intensities. However, over the past century electric lighting has introduced direct and indirect light pollution into the full range of terrestrial habitats, changing nocturnal animals' visual worlds dramatically. To understand how these changes affect nocturnal behavior, we here propose an animal-centered analysis method based on environmental imaging. This approach incorporates the sensitivity and acuity limits of individual species, arriving at predictions of photon catch relative to noise thresholds, contrast distributions, and the orientation cues nocturnal species can extract from visual scenes. This analysis relies on just a limited number of visual system parameters known for each species. By accounting for light-adaptation in our analysis, we are able to make more realistic predictions of the information animals can extract from nocturnal visual scenes under different levels of light pollution. With this analysis method, we aim to provide context for the interpretation of behavioral findings, and to allow researchers to generate specific hypotheses for the behavior of nocturnal animals in observed light-polluted scenes.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, Universität Konstanz, Konstanz, Germany
| | - James Jonathan Foster
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
Johnson RA, Rutowski RL. Color, activity period, and eye structure in four lineages of ants: Pale, nocturnal species have evolved larger eyes and larger facets than their dark, diurnal congeners. PLoS One 2022; 17:e0257779. [PMID: 36137088 PMCID: PMC9499225 DOI: 10.1371/journal.pone.0257779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
The eyes of insects display an incredible diversity of adaptations to enhance vision across the gamut of light levels that they experience. One commonly studied contrast is the difference in eye structure between nocturnal and diurnal species, with nocturnal species typically having features that enhance eye sensitivity such as larger eyes, larger eye facets, and larger ocelli. In this study, we compared eye structure between workers of closely related nocturnal and diurnal above ground foraging ant species (Hymenoptera: Formicidae) in four genera (Myrmecocystus, Aphaenogaster, Temnothorax, Veromessor). In all four genera, nocturnal species tend to have little cuticular pigment (pale), while diurnal species are heavily pigmented (dark), hence we could use cuticle coloration as a surrogate for activity pattern. Across three genera (Myrmecocystus, Aphaenogaster, Temnothorax), pale species, as expected for nocturnally active animals, had larger eyes, larger facet diameters, and larger visual spans compared to their dark, more day active congeners. This same pattern occurred for one pale species of Veromessor, but not the other. There were no consistent differences between nocturnal and diurnal species in interommatidial angles and eye parameters both within and among genera. Hence, the evolution of eye features that enhance sensitivity in low light levels do not appear to have consistent correlated effects on features related to visual acuity. A survey across several additional ant genera found numerous other pale species with enlarged eyes, suggesting these traits evolved multiple times within and across genera. We also compared the size of the anterior ocellus in workers of pale versus dark species of Myrmecocystus. In species with larger workers, the anterior ocellus was smaller in pale than in dark species, but this difference mostly disappeared for species with smaller workers. Presence of the anterior ocellus also was size-dependent in the two largest pale species.
Collapse
Affiliation(s)
- Robert A. Johnson
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Ronald L. Rutowski
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
7
|
Polidori C, Piwczynski M, Ronchetti F, Johnston NP, Szpila K. Host-trailing satellite flight behaviour is associated with greater investment in peripheral visual sensory system in miltogrammine flies. Sci Rep 2022; 12:2773. [PMID: 35177753 PMCID: PMC8854417 DOI: 10.1038/s41598-022-06704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Insect sensory systems are the subjects of different selective pressures that shape their morphology. In many species of the flesh fly subfamily Miltogramminae (Diptera: Sarcophagidae) that are kleptoparasitic on bees and wasps, females perch on objects close to the host nests and, once a returning host is detected, they follow it in flight at a fixed distance behind until reaching the nest. We hypothesized that such satellite (SAT) flight behaviour, which implies a finely coordinated trailing flight, is associated with an improved visual system, compared to species adopting other, non-satellite (NON-SAT) strategies. After looking at body size and common ancestry, we found that SAT species have a greater number of ommatidia and a greater eye surface area when compared to NON-SAT species. Ommatidium area is only affected by body size, suggesting that selection changes disproportionately (relative to body size variation) the number of ommatidia and as a consequence the eye area, instead of ommatidium size. SAT species also tend to have larger ocelli, but their role in host-finding was less clear. This suggests that SAT species may have a higher visual acuity by increasing ommatidia number, as well as better stability during flight and motion perception through larger ocelli. Interestingly, antennal length was significantly reduced in SAT species, and ommatidia number negatively correlated with antennal length. While this finding does not imply a selection pressure of improved antennal sensory system in species adopting NON-SAT strategies, it suggests an inverse resource (i.e. a single imaginal disc) allocation between eyes and antennae in this fly subfamily.
Collapse
Affiliation(s)
- Carlo Polidori
- Dipartimento di Scienze e Politiche Ambientali, Università Degli Studi di Milano, via Celoria 26, 20133, Milan, Italy.
| | - Marcin Piwczynski
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Federico Ronchetti
- Department of Animal Ecology and Tropical Biology, University of Wuerzburg, Hubland Nord, 97074, Würzburg, Germany
| | - Nikolas P Johnston
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Krzysztof Szpila
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
8
|
Control of testes mass by androgen receptor paralogs in a cichlid. J Comp Physiol B 2021; 192:107-114. [PMID: 34643776 DOI: 10.1007/s00360-021-01417-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
Steroid hormones play numerous important and diverse roles in the differentiation and development of vertebrate primary and secondary reproductive characteristics. However, the exact role of androgen receptors-which bind circulating androgens-in this regulatory pathway is unclear. Teleost fishes further complicate this question by having two paralogs of the androgen receptor (ARα and ARβ) resulting from a duplication of their ancestral genome. We investigated the functional role of these two ARs on adult testes mass, by eliminating receptor function of one or both paralogs using CRISPR/Cas9 genome edited Astatotilapia burtoni, an African cichlid fish. Fish with two or more functional AR alleles were more likely to be male compared to fish with one or fewer, suggesting that the two paralogs may play redundant roles in the A. burtoni sex determination system. We replicated previous work showing that fish lacking functional ARβ possess testes smaller than wild-type fish, while fish lacking ARα possess testes larger than wild-type fish. However, we found novel evidence supporting a complex relationship between the two AR paralogs in the regulation of testes mass. For instance, the effects of ARα mutation on testes mass are eliminated in homozygous ARβ mutants but the reverse is not true. These results suggest a dynamic relationship between these two AR paralogs where ARβ functions may be permissive to ARα functions in the control of testes mass. This mechanism may contribute to the robust physiological plasticity displayed by A. burtoni and other social teleost fishes.
Collapse
|
9
|
Freelance CB, Tierney SM, Rodriguez J, Stuart-Fox DM, Wong BBM, Elgar MA. The eyes have it: dim-light activity is associated with the morphology of eyes but not antennae across insect orders. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The perception of cues and signals in visual, olfactory and auditory modalities underpins all animal interactions and provides crucial fitness-related information. Sensory organ morphology is under strong selection to optimize detection of salient cues and signals in a given signalling environment, the most well-studied example being selection on eye design in different photic environments. Many dim-light active species have larger compound eyes relative to body size, but little is known about differences in non-visual sensory organ morphology between diurnal and dim-light active insects. Here, we compare the micromorphology of the compound eyes (visual receptors) and antennae (olfactory and mechanical receptors) in representative pairs of day active and dim-light active species spanning multiple taxonomic orders of insects. We find that dim-light activity is associated with larger compound eye ommatidia and larger overall eye surface area across taxonomic orders but find no evidence that morphological adaptations that enhance the sensitivity of the eye in dim-light active insects are accompanied by morphological traits of the antennae that may increase sensitivity to olfactory, chemical or physical stimuli. This suggests that the ecology and natural history of species is a stronger driver of sensory organ morphology than is selection for complementary investment between sensory modalities.
Collapse
Affiliation(s)
| | - Simon M Tierney
- School of BioSciences, The University of Melbourne, Victoria, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia
| | - Juanita Rodriguez
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Devi M Stuart-Fox
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Mark A Elgar
- School of BioSciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Phillips ZI. Emigrating Together but Not Establishing Together: A Cockroach Rides Ants and Leaves. Am Nat 2021; 197:138-145. [PMID: 33417528 DOI: 10.1086/711876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractSymbionts of ant colonies can hitchhike on winged ant reproductives (alates) during colony nuptial flights. Attaphila fungicola Wheeler, a miniature cockroach that lives in the nests of Texas leaf-cutter ants (Atta texana Buckley), hitchhikes on female alates (winged queens). Hitchhiking roaches are presumably vertically transmitted from leaf-cutter parent colonies to daughter colonies, remaining with female alates as they transition into foundresses (workerless queens); however, foundresses have limited resources and high mortality rates. Rather than remaining with foundresses likely to die (vertical transmission), roaches might abandon them during dispersal to infect higher-quality later stages of colony development (female alate-vectored transmission). In field experiments, I find evidence for female alate-vectored transmission and discover that roaches use a second hitchhiking step (riding foraged plant material) to infect established colonies. This work reveals a novel relationship between host dispersal and symbiont transmission and shows that colony development can be an important selection pressure on transmission.
Collapse
|
11
|
Effects of traffic-regulated street lighting on nocturnal insect abundance and bat activity. Basic Appl Ecol 2020. [DOI: 10.1016/j.baae.2020.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Arganda S, Hoadley AP, Razdan ES, Muratore IB, Traniello JFA. The neuroplasticity of division of labor: worker polymorphism, compound eye structure and brain organization in the leafcutter ant Atta cephalotes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:651-662. [PMID: 32506318 DOI: 10.1007/s00359-020-01423-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
Abstract
Our understanding of how sensory structure design is coupled with neural processing capacity to adaptively support division of labor is limited. Workers of the remarkably polymorphic fungus-growing ant Atta cephalotes are behaviorally specialized by size: the smallest workers (minims) tend fungi in dark subterranean chambers while larger workers perform tasks outside the nest. Strong differences in worksite light conditions are predicted to influence sensory and processing requirements for vision. Analyzing confocal scans of worker eyes and brains, we found that eye structure and visual neuropils appear to have been selected to maximize task performance according to light availability. Minim eyes had few ommatidia, large interommatidial angles and eye parameter values, suggesting selection for visual sensitivity over acuity. Large workers had larger eyes with disproportionally more and larger ommatidia, and smaller interommatidial angles and eye parameter values, indicating peripheral sensory adaptation to ambient rainforest light. Optic lobes and mushroom body collars were disproportionately small in minims. Within the optic lobe, lamina and lobula relative volumes increased with worker size whereas medulla volume decreased. Visual system phenotypes thus correspond to task specializations in dark or light environments and illustrate a functional neuroplasticity underpinning division of labor in this socially complex agricultural ant.
Collapse
Affiliation(s)
- Sara Arganda
- Department of Biology, Boston University, Boston, USA.
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31062, Toulouse, France.
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain.
| | | | - Evan S Razdan
- Department of Biology, Boston University, Boston, USA
| | | | - James F A Traniello
- Department of Biology, Boston University, Boston, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
13
|
Wen C, Ma T, Deng Y, Liu C, Liang S, Wen J, Wang C, Wen X. Morphological and optical features of the apposition compound eye of Monochamus alternatus Hope (Coleoptera: Cerambycidae). Micron 2019; 128:102769. [PMID: 31627039 DOI: 10.1016/j.micron.2019.102769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
The Japanese pine sawyer beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae) is currently the most destructive forest pest as it transmits the pine wilt nematode Bursaphelenchus xylophilus. Morphological, optical features and dark/light adaptational changes of the compound eyes of M. alternatus adults were examined by light, scanning and transmission electron microscopy. The eye of M. alternatus is apposition type and contains 489-712 ommatidia, depending on the beetle's body size. Each ommatidium features a large corneal lens, composed of a thick inner lens (ILU) and a thin outer lens unit (OLU); an acone-type of cone of four cone cells, a semi-fused type of rhabdom formed by eight retinular cells (two central cells: R7-R8 surrounded by six peripheral cells: R1-R6). Dark/light adaptational changes affect size and shape of the cones as well as the rhabdom's cross-sectional area and outline, to optimize the amount of light that reaches the photopigment. The compound eyes of M. alternatus have an F-number of 0.94, an interommatidial angle of 5.34°, an eye parameter P of 4.98 μm rad and a ratio of acceptance to interommatidial angle of 0.45. The eye is characterized by relatively poor spatial resolution, but can be expected to exhibit high absolute sensitivity and contrast in dim light.
Collapse
Affiliation(s)
- Chao Wen
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Tao Ma
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yangxiao Deng
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Chuanhe Liu
- Instrumental Analysis and Research Center, South China Agricultural university, Guangzhou, China
| | - Shiping Liang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Junbao Wen
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Cai Wang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| | - Xiujun Wen
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
14
|
A Comparative Study on Current Outdoor Lighting Policies in China and Korea: A Step toward a Sustainable Nighttime Environment. SUSTAINABILITY 2019. [DOI: 10.3390/su11143989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Light pollution is a serious environmental issue with many adverse effects on human health and the ecosystem as a whole. Accordingly, many countries have issued laws and regulations to limit the effects of artificial lighting at night (ALAN). The Republic of Korea and China are among the few countries that have drafted laws to curb light pollution. In the present study, we gathered data related to light pollution regulations and ordinances in both China and Korea. We then carried out a comparative analysis of the light pollution laws of both countries. We found that, although the two countries share a similar socio-economic background, they have different approaches to the issue of light pollution. The information provided in this study serves as a guideline to countries that wish to develop their own light pollution policies. In addition, the conclusions provided in our study offer potential improvements to local and national light pollution policies in both the Republic of Korea and China.
Collapse
|
15
|
Beston SM, Dudycha JL, Post DM, Walsh MR. The evolution of eye size in response to increased fish predation in Daphnia. Evolution 2019; 73:792-802. [PMID: 30843603 DOI: 10.1111/evo.13717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 01/27/2023]
Abstract
Variation in eye size is ubiquitous across taxa. Increased eye size is correlated with improved vision and increased fitness via shifts in behavior. Tests of the drivers of eye size evolution have focused on macroevolutionary studies evaluating the importance of light availability. Predator-induced mortality has recently been identified as a potential driver of eye size variation. Here, we tested the influence of increased predation by the fish predator, the alewife (Alosa pseudoharengus) on eye size evolution in waterfleas (Daphnia ambigua) from lakes in Connecticut. We quantified the relative eye size of Daphnia from lakes with and without alewife using wild-caught and third-generation laboratory reared specimens. This includes comparisons between lakes where alewife are present seasonally (anadromous) or permanently (landlocked). Wild-caught specimens did not differ in eye size across all lakes. However, third-generation lab reared Daphnia from lakes with alewife, irrespective of the form of alewife predation, exhibited significantly larger eyes than Daphnia from lakes without alewife. This genetically based increase in eye size may enhance the ability of Daphnia to detect predators. Alternatively, such shifts in eye size may be an indirect response to Daphnia aggregating at the bottom of lakes. To test these mechanisms, we collected Daphnia as a function of depth and found that eye size differed in Daphnia found at the surface versus the bottom of the water column between anadromous alewife and no alewife lakes. However, we found no evidence of Daphnia aggregating at the bottom of lakes. Such results indicate that the evolution of a larger eye may be explained by a connection between eyes and enhanced survival. We discuss the cause of the lack of concordance in eye size variation between our phenotypic and genetic specimens and the ultimate drivers of eye size.
Collapse
Affiliation(s)
- Shannon M Beston
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208
| | - David M Post
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 06520
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| |
Collapse
|
16
|
Mishra M, Chakraborty I, Basu S. A study of the role of vision in the foraging behaviour of the pyrrhocorid bug Antilochus conquebertii (Insecta; Hemiptera; Pyrrhocoridae). INVERTEBRATE NEUROSCIENCE 2019; 19:2. [PMID: 30603776 DOI: 10.1007/s10158-018-0222-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
Our study aims to describe (1) external morphology of the compound eye of Antilochus conquebertii, (2) postembryonic changes involving the eye's shape and size and (3) behaviour of the animal with respect to the organization of the compound eye. With each moult of the insect, the structural units of the compound eye increase in size as well as the number, resulting in an overall increase in eye size. The resolution of the adult eye is better than the young one. The adult possesses UV and polarization sensitivity in its eye. Parallel to the changes of the eye the behaviour of the adult animal changes, rendering it increasingly nocturnal and less active in under illuminated conditions. The current study describes the eye and its functional relationship with the behaviour of the animal at the nymphal and adult developmental stage.
Collapse
Affiliation(s)
- Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | | | - Srirupa Basu
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India
| |
Collapse
|
17
|
Pruitt JN, Berdahl A, Riehl C, Pinter-Wollman N, Moeller HV, Pringle EG, Aplin LM, Robinson EJH, Grilli J, Yeh P, Savage VM, Price MH, Garland J, Gilby IC, Crofoot MC, Doering GN, Hobson EA. Social tipping points in animal societies. Proc Biol Sci 2018; 285:20181282. [PMID: 30232162 PMCID: PMC6170811 DOI: 10.1098/rspb.2018.1282] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/31/2018] [Indexed: 11/12/2022] Open
Abstract
Animal social groups are complex systems that are likely to exhibit tipping points-which are defined as drastic shifts in the dynamics of systems that arise from small changes in environmental conditions-yet this concept has not been carefully applied to these systems. Here, we summarize the concepts behind tipping points and describe instances in which they are likely to occur in animal societies. We also offer ways in which the study of social tipping points can open up new lines of inquiry in behavioural ecology and generate novel questions, methods, and approaches in animal behaviour and other fields, including community and ecosystem ecology. While some behaviours of living systems are hard to predict, we argue that probing tipping points across animal societies and across tiers of biological organization-populations, communities, ecosystems-may help to reveal principles that transcend traditional disciplinary boundaries.
Collapse
Affiliation(s)
- Jonathan N Pruitt
- Department of Ecology, Evolution and Marine Biology, University of California - Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Andrew Berdahl
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA 98195, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Christina Riehl
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Holly V Moeller
- Department of Ecology, Evolution and Marine Biology, University of California - Santa Barbara, Santa Barbara, CA 93106, USA
| | | | - Lucy M Aplin
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Ornithology, Radolfzell, 78315, Germany
| | - Elva J H Robinson
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | | | - Pamela Yeh
- Department of Ecology and Evolutionary Biology, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Van M Savage
- Department of Ecology and Evolutionary Biology, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | | | | | - Ian C Gilby
- School of Human Evolution and Social Change, and Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA
| | - Margaret C Crofoot
- Department of Anthropology, University of California Davis, Davis, CA 95616, USA
| | - Grant N Doering
- Department of Ecology, Evolution and Marine Biology, University of California - Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | |
Collapse
|
18
|
Ghaninia M, Berger SL, Reinberg D, Zwiebel LJ, Ray A, Liebig J. Antennal Olfactory Physiology and Behavior of Males of the Ponerine Ant Harpegnathos saltator. J Chem Ecol 2018; 44:999-1007. [PMID: 30191433 DOI: 10.1007/s10886-018-1013-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/27/2018] [Accepted: 08/27/2018] [Indexed: 11/26/2022]
Abstract
In comparison to the large amount of study on the communication abilities of females in ant societies and their associated chemical ecology and sensory physiology, such study of male ants has been largely ignored; accordingly, little is known about their olfactory sensory capabilities. To address this, we explored peripheral odor sensitivities in male Harpegnathos saltator by measuring the electrophysiological activity of olfactory sensory neurons within antennal trichoid and coeloconic sensilla using an extracellular recording technique. In an initial trial of 46 compounds, sensilla trichodea responded strongly to two alarm pheromone components, while a limited number of non-hydrocarbon odorants elicited strong responses in sensilla coeloconica. Both sensillar types responded indifferently to 31 cuticular hydrocarbons (CHCs) and synthetic long-chain hydrocarbons (HCs) typically found on insect cuticle. In a search for sensilla responding to CHCs and other compounds, we found some sensilla that responded to synthetic HCs and CHCs from virgin queen postpharyngeal glands that are potentially used in close range mate recognition. Olfactometer bioassays of male ants to 15 non-HCs correlated sensory responsiveness to the respective behavioral responses. Comparing olfactory responses between H. saltator males and females, we found that sensilla coeloconica and basiconica of workers showed greater responses and broader selectivity to all compounds. The rarity of CHC-responding trichoid sensilla in Harpegnathos males suggests a more specific role in sexual communication compared to that in females, which use CHCs in a broader communication context.
Collapse
Affiliation(s)
- Majid Ghaninia
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ, 85283, USA.
- Division of Entomology, Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources, Grogan, Iran.
| | - Shelley L Berger
- Departments of Cell and Developmental Biology, Genetics and Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Danny Reinberg
- Howard Hughes, Medical Institute and Department of Molecular Pharmacology and Biochemistry, New York University School of Medicine, New York, NY, 10016, USA
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Anandasankar Ray
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ, 85283, USA
| |
Collapse
|
19
|
Baudier KM, D’Amelio CL, Malhotra R, O’Connor MP, O’Donnell S. Extreme Insolation: Climatic Variation Shapes the Evolution of Thermal Tolerance at Multiple Scales. Am Nat 2018; 192:347-359. [DOI: 10.1086/698656] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Narendra A, Ribi WA. Ocellar structure is driven by the mode of locomotion and activity time in Myrmecia ants. ACTA ACUST UNITED AC 2018; 220:4383-4390. [PMID: 29187620 DOI: 10.1242/jeb.159392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
Abstract
Insects have exquisitely adapted their compound eyes to suit the ambient light intensity in the different temporal niches they occupy. In addition to the compound eye, most flying insects have simple eyes known as ocelli, which assist in flight stabilisation, horizon detection and orientation. Among ants, typically the flying alates have ocelli while the pedestrian workers lack this structure. The Australian ant genus Myrmecia is one of the few ant genera in which both workers and alates have three ocellar lenses. Here, we studied the variation in the ocellar structure in four sympatric species of Myrmecia that are active at different times of the day. In addition, we took advantage of the walking and flying modes of locomotion in workers and males, respectively, to ask whether the type of movement influences the ocellar structure. We found that ants active in dim light had larger ocellar lenses and wider rhabdoms compared with those in bright-light conditions. In the ocellar rhabdoms of workers active in dim-light habitats, typically each retinula cell contributed microvilli in more than one direction, probably destroying polarisation sensitivity. The organisation of the ocellar retina in the day-active workers and the males suggests that in these animals some cells are sensitive to the pattern of polarised skylight. We found that the night-flying males had a tapetum that reflects light back to the rhabdom, increasing their optical sensitivity. We discuss the possible functions of ocelli to suit the different modes of locomotion and the discrete temporal niches that animals occupy.
Collapse
Affiliation(s)
- Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Willi A Ribi
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
21
|
Stöckl A, Smolka J, O'Carroll D, Warrant E. Resolving the Trade-off Between Visual Sensitivity and Spatial Acuity-Lessons from Hawkmoths. Integr Comp Biol 2017; 57:1093-1103. [PMID: 28992251 DOI: 10.1093/icb/icx058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The visual systems of many animals, particularly those active during the day, are optimized for high spatial acuity. However, at night, when photons are sparse and the visual signal competes with increased noise levels, fine spatial resolution cannot be sustained and is traded-off for the greater sensitivity required to see in dim light. High spatial acuity demands detectors and successive visual processing units whose receptive fields each cover only a small area of visual space, in order to reassemble a finely sampled and well resolved image. However, the smaller the sampled area, the fewer the photons that can be collected, and thus the worse the visual sensitivity becomes-leading to the classical trade-off between sensitivity and resolution. Nocturnal animals usually resolve this trade-off in favour of sensitivity, and thus have lower spatial acuity than their diurnal counterparts. Here we review results highlighting how hawkmoths, a highly visual group of insects with species active at different light intensities, resolve the trade-off between sensitivity and spatial resolution. We compare adaptations both in the optics and retina, as well as at higher levels of neural processing in a nocturnal and a diurnal hawkmoth species, and also give a perspective on the behavioral consequences. We broaden the scope of our review by drawing comparisons with the adaptive strategies used by other nocturnal and diurnal insects.
Collapse
Affiliation(s)
- Anna Stöckl
- Department of Biology, Lund University, Lund 22362, Sweden
| | - Jochen Smolka
- Department of Biology, Lund University, Lund 22362, Sweden
| | | | - Eric Warrant
- Department of Biology, Lund University, Lund 22362, Sweden
| |
Collapse
|
22
|
Narendra A, Kamhi JF, Ogawa Y. Moving in Dim Light: Behavioral and Visual Adaptations in Nocturnal Ants. Integr Comp Biol 2017; 57:1104-1116. [DOI: 10.1093/icb/icx096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
23
|
Beston SM, Wostl E, Walsh MR. The evolution of vertebrate eye size across an environmental gradient: phenotype does not predict genotype in a Trinidadian killifish. Evolution 2017; 71:2037-2049. [PMID: 28574174 DOI: 10.1111/evo.13283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 11/28/2022]
Abstract
Vertebrates exhibit substantial variation in eye size. Eye size correlates positively with visual capacity and behaviors that enhance fitness, such as predator avoidance. This foreshadows a connection between predation and eye size evolution. Yet, the conditions that favor evolutionary shifts in eye size, besides the well-known role for light availability, are unclear. We tested the influence of predation on the evolution of eye size in Trinidadian killifish, Rivulus hartii. Rivulus are located across a series of communities where they coexist with visually oriented piscivores ("high predation" sites), and no predators ("Rivulus-only" sites). Wild-caught Rivulus from high predation sites generally exhibited a smaller relative eye size than communities that lack predators. Yet, such differences were inconsistent across rivers. Second-generation common garden reared fish revealed repeatable decreases in eye size in Rivulus from high predation sites. We performed additional experiments that tested the importance of light and resources on eye size evolution. Sites that differ in light or resource availability did not differ in eye size. Our results argue that differences in predator-induced mortality underlie genetically-based shifts in vertebrate eye size. We discuss the drivers of eye size evolution in light of the nonparallel trends between the phenotypic and common garden results.
Collapse
Affiliation(s)
- Shannon M Beston
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Elijah Wostl
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| |
Collapse
|
24
|
Into the black and back: the ecology of brain investment in Neotropical army ants (Formicidae: Dorylinae). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2016; 103:31. [DOI: 10.1007/s00114-016-1353-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/28/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
25
|
Hernández ML, Dujardin JP, Gorla DE, Catalá SS. Can body traits, other than wings, reflect the flight ability of Triatominae bugs? Rev Soc Bras Med Trop 2015; 48:682-91. [PMID: 26676492 DOI: 10.1590/0037-8682-0249-2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/16/2015] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Insects of the subfamily Triatominae are vectors of Trypanosoma cruzi , the Chagas disease parasite, and their flying behavior has epidemiological importance. The flying capacity is strikingly different across and within Triatominae species, as well as between sexes or individuals. Many Triatoma infestans individuals have wings but no flying muscles. In other Triatominae species, no clear relationships were found between wing length and flying behavior. If wing presence or size is not reflective of the flying behavior, which other parts of the body could be considered as reliable markers of this important function? METHODS The genus Mepraia has exceptional characteristics with invariably wingless females and wingless or winged males. We calculated the porous surface exposed to odorant molecules to estimate the olfactory capacity of Mepraia spinolai . The head shape and thorax size were estimated using the geometric morphometric approach and traditional morphometric techniques, respectively. RESULTS Alary polymorphism in M. spinolai was significantly associated with consistent modification of the thorax size, head shape, and notable change in the estimated olfactory capacity. The macropterous individuals had a larger olfactory surface and thorax size and significantly different head shape compared to those of the micropterous individuals. CONCLUSIONS We concluded that these structural changes could be associated with the flying potential of Triatominae. Thus, morphological attributes not found on wings could help determine the likely flying potential of the bugs.
Collapse
Affiliation(s)
- María Laura Hernández
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica, Anillaco, La Rioja, Argentina
| | - Jean Pierre Dujardin
- Unité Mixte de Recherche 177-Interactions Hôte-Vecteur-Parasite-Enrironnement dans les Maladies Tropicales Négligées dues aux Trypanosomatidés, Institut de Recherches pour le Développement, Montpellier, France
| | - David Eladio Gorla
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica, Anillaco, La Rioja, Argentina
| | - Silvia Susana Catalá
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica, Anillaco, La Rioja, Argentina
| |
Collapse
|
26
|
Yilmaz A, Aksoy V, Camlitepe Y, Giurfa M. Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants. Front Behav Neurosci 2014; 8:205. [PMID: 24982621 PMCID: PMC4056385 DOI: 10.3389/fnbeh.2014.00205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/21/2014] [Indexed: 11/13/2022] Open
Abstract
Insects have evolved physiological adaptations and behavioral strategies that allow them to cope with a broad spectrum of environmental challenges and contribute to their evolutionary success. Visual performance plays a key role in this success. Correlates between life style and eye organization have been reported in various insect species. Yet, if and how visual ecology translates effectively into different visual discrimination and learning capabilities has been less explored. Here we report results from optical and behavioral analyses performed in two sympatric ant species, Formica cunicularia and Camponotus aethiops. We show that the former are diurnal while the latter are cathemeral. Accordingly, F. cunicularia workers present compound eyes with higher resolution, while C. aethiops workers exhibit eyes with lower resolution but higher sensitivity. The discrimination and learning of visual stimuli differs significantly between these species in controlled dual-choice experiments: discrimination learning of small-field visual stimuli is achieved by F. cunicularia but not by C. aethiops, while both species master the discrimination of large-field visual stimuli. Our work thus provides a paradigmatic example about how timing of foraging activities and visual environment match the organization of compound eyes and visually-driven behavior. This correspondence underlines the relevance of an ecological/evolutionary framework for analyses in behavioral neuroscience.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Biology, Faculty of Sciences, Trakya University Edirne, Turkey ; Department of Behavioral Physiology and Sociobiology, University of Würzburg Würzburg, Germany
| | - Volkan Aksoy
- Department of Biology, Faculty of Sciences, Trakya University Edirne, Turkey
| | - Yilmaz Camlitepe
- Department of Biology, Faculty of Sciences, Trakya University Edirne, Turkey
| | - Martin Giurfa
- Research Centre for Animal Cognition, Université de Toulouse Toulouse, France ; CNRS, Research Centre for Animal Cognition Toulouse, France
| |
Collapse
|
27
|
Muscedere ML, Gronenberg W, Moreau CS, Traniello JFA. Investment in higher order central processing regions is not constrained by brain size in social insects. Proc Biol Sci 2014; 281:20140217. [PMID: 24741016 DOI: 10.1098/rspb.2014.0217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The extent to which size constrains the evolution of brain organization and the genesis of complex behaviour is a central, unanswered question in evolutionary neuroscience. Advanced cognition has long been linked to the expansion of specific brain compartments, such as the neocortex in vertebrates and the mushroom bodies in insects. Scaling constraints that limit the size of these brain regions in small animals may therefore be particularly significant to behavioural evolution. Recent findings from studies of paper wasps suggest miniaturization constrains the size of central sensory processing brain centres (mushroom body calyces) in favour of peripheral, sensory input centres (antennal and optic lobes). We tested the generality of this hypothesis in diverse eusocial hymenopteran species (ants, bees and wasps) exhibiting striking variation in body size and thus brain size. Combining multiple neuroanatomical datasets from these three taxa, we found no universal size constraint on brain organization within or among species. In fact, small-bodied ants with miniscule brains had mushroom body calyces proportionally as large as or larger than those of wasps and bees with brains orders of magnitude larger. Our comparative analyses suggest that brain organization in ants is shaped more by natural selection imposed by visual demands than intrinsic design limitations.
Collapse
Affiliation(s)
- Mario L Muscedere
- Undergraduate Program in Neuroscience, Boston University, , 2 Cummington Mall, Boston, MA 02215, USA, Department of Neuroscience, University of Arizona, , 611 Gould-Simpson Science Building, Tucson, AZ 85721, USA, Department of Science and Education, Field Museum of Natural History, , 1400 South Lake Shore Drive, Chicago, IL 60605, USA, Department of Biology, Boston University, , 5 Cummington Mall, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
28
|
Koch SI, Groh K, Vogel H, Hannson BS, Kleineidam CJ, Grosse-Wilde E. Caste-specific expression patterns of immune response and chemosensory related genes in the leaf-cutting ant, Atta vollenweideri. PLoS One 2013; 8:e81518. [PMID: 24260580 PMCID: PMC3829964 DOI: 10.1371/journal.pone.0081518] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/14/2013] [Indexed: 02/07/2023] Open
Abstract
Leaf-cutting ants are evolutionary derived social insects with elaborated division of labor and tremendous colony sizes with millions of workers. Their social organization is mainly based on olfactory communication using different pheromones and is promoted by a pronounced size-polymorphism of workers that perform different tasks within the colony. The size polymorphism and associated behaviors are correlated to distinct antennal lobe (AL) phenotypes. Two worker phenotypes differ in number of olfactory glomeruli in the AL and the presence or absence of an extremely large glomerulus (macroglomerulus), involved in trail-pheromone reception. The males' AL contains three macroglomeruli which are presumably involved in detection of sex-pheromone components. We investigated the antennal transcriptome data of all major castes (males, queens and workers) and two worker subcastes (large and tiny workers). In order to identify putative odorant receptor genes involved in pheromone detection, we identified differentially expressed odorant receptor genes (OR-genes) using custom microarrays. In total, we found 185 OR-gene fragments that are clearly related to ORs and we identified orthologs for 70 OR-genes. Among them one OR-gene differs in relative expression between the two worker subcastes by a factor of >3 and thus is a very promising candidate gene for the trail-pheromone receptor. Using the relative expression of OR-genes in males versus queens, we identified 2 candidates for sex-pheromone receptor genes in males. In addition, we identified genes from all other chemosensory related gene families (13 chemosensory protein genes, 8 odorant binding protein genes, 2 sensory-neuron membrane protein genes, 7 ionotropic receptor genes, 2 gustatory receptor genes), and we found ant-specific expansions in the chemosensory protein gene family. In addition, a large number of genes involved in immune defense exhibited differential expression across the three different castes, and some genes even between the two worker subcastes.
Collapse
Affiliation(s)
- Sarah I. Koch
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Katrin Groh
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S. Hannson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail: (CJK); (EGW)
| |
Collapse
|
29
|
Narendra A, Reid SF, Raderschall CA. Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels. PLoS One 2013; 8:e58801. [PMID: 23484052 PMCID: PMC3590162 DOI: 10.1371/journal.pone.0058801] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/08/2013] [Indexed: 11/21/2022] Open
Abstract
Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available.
Collapse
Affiliation(s)
- Ajay Narendra
- ARC Centre of Excellence in Vision Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | |
Collapse
|
30
|
Abstract
The costs and benefits of investing in expensive sensory systems are shaped by environments that vary in the ease with which sensory information can be accessed. Fish provide an excellent model system in which to address questions of sensory evolution; while fishes rely heavily on vision, their visual environment is far more diverse and challenging than that of terrestrial animals. Turbidity, for example, alters the quantity of ambient light, its color, and the ability of animals to resolve borders of objects. Several comparative studies suggest that turbidity is associated with a reduction in the resources devoted to vision. Using these as a guide, we tested the prediction that turbidity and eye size would be negatively associated in populations of red shiners ( Cyprinella lutrensis (Baird and Girard, 1853)), a small-bodied cyprinid that is common and abundant in habitats spanning nearly the entire range of turbidity found in the Great Plains of the United States. We found that eye size was positively associated with turbidity, perhaps surprising given previous comparative work, but consistent with the finding that red shiners from turbid habitats display more intense nuptial coloration. This result highlights the need for further investigations of among-population variation to fully understand the mechanisms underlying sensory system diversity in animals.
Collapse
Affiliation(s)
- M.B. Dugas
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - N.R. Franssen
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
31
|
Gaston KJ, Davies TW, Bennie J, Hopkins J. Reducing the ecological consequences of night-time light pollution: options and developments. J Appl Ecol 2012; 49:1256-1266. [PMID: 23335816 PMCID: PMC3546378 DOI: 10.1111/j.1365-2664.2012.02212.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 08/31/2012] [Indexed: 11/28/2022]
Abstract
Much concern has been expressed about the ecological consequences of night‐time light pollution. This concern is most often focused on the encroachment of artificial light into previously unlit areas of the night‐time environment, but changes in the spectral composition, duration and spatial pattern of light are also recognized as having ecological effects. Here, we examine the potential consequences for organisms of five management options to reduce night‐time light pollution. These are to (i) prevent areas from being artificially lit; (ii) limit the duration of lighting; (iii) reduce the ‘trespass’ of lighting into areas that are not intended to be lit (including the night sky); (iv) change the intensity of lighting; and (v) change the spectral composition of lighting. Maintaining and increasing natural unlit areas is likely to be the most effective option for reducing the ecological effects of lighting. However, this will often conflict with other social and economic objectives. Decreasing the duration of lighting will reduce energy costs and carbon emissions, but is unlikely to alleviate many impacts on nocturnal and crepuscular animals, as peak times of demand for lighting frequently coincide with those in the activities of these species. Reducing the trespass of lighting will maintain heterogeneity even in otherwise well‐lit areas, providing dark refuges that mobile animals can exploit. Decreasing the intensity of lighting will reduce energy consumption and limit both skyglow and the area impacted by high‐intensity direct light. Shifts towards ‘whiter’ light are likely to increase the potential range of environmental impacts as light is emitted across a broader range of wavelengths. Synthesis and applications. The artificial lightscape will change considerably over coming decades with the drive for more cost‐effective low‐carbon street lighting solutions and growth in the artificially lit area. Developing lighting strategies that minimize adverse ecological impacts while balancing the often conflicting requirements of light for human utility, comfort and safety, aesthetic concerns, energy consumption and carbon emission reduction constitute significant future challenges. However, as both lighting technology and understanding of its ecological effects develop, there is potential to identify adaptive solutions that resolve these conflicts.
The artificial lightscape will change considerably over coming decades with the drive for more cost‐effective low‐carbon street lighting solutions and growth in the artificially lit area. Developing lighting strategies that minimize adverse ecological impacts while balancing the often conflicting requirements of light for human utility, comfort and safety, aesthetic concerns, energy consumption and carbon emission reduction constitute significant future challenges. However, as both lighting technology and understanding of its ecological effects develop, there is potential to identify adaptive solutions that resolve these conflicts.
Collapse
Affiliation(s)
- Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter Penryn, Cornwall, TR10 9EZ, UK
| | | | | | | |
Collapse
|
32
|
Kyba CCM, Ruhtz T, Fischer J, Hölker F. Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS One 2011; 6:e17307. [PMID: 21399694 PMCID: PMC3047560 DOI: 10.1371/journal.pone.0017307] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/27/2011] [Indexed: 11/18/2022] Open
Abstract
The diurnal cycle of light and dark is one of the strongest environmental factors for life on Earth. Many species in both terrestrial and aquatic ecosystems use the level of ambient light to regulate their metabolism, growth, and behavior. The sky glow caused by artificial lighting from urban areas disrupts this natural cycle, and has been shown to impact the behavior of organisms, even many kilometers away from the light sources. It could be hypothesized that factors that increase the luminance of the sky amplify the degree of this “ecological light pollution”. We show that cloud coverage dramatically amplifies the sky luminance, by a factor of 10.1 for one location inside of Berlin and by a factor of 2.8 at 32 km from the city center. We also show that inside of the city overcast nights are brighter than clear rural moonlit nights, by a factor of 4.1. These results have important implications for choronobiological and chronoecological studies in urban areas, where this amplification effect has previously not been considered.
Collapse
|
33
|
Schwarz S, Narendra A, Zeil J. The properties of the visual system in the Australian desert ant Melophorus bagoti. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:128-134. [PMID: 21044895 DOI: 10.1016/j.asd.2010.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 05/30/2023]
Abstract
The Australian desert ant Melophorus bagoti shows remarkable visual navigational skills relying on visual rather than on chemical cues during their foraging trips. M. bagoti ants travel individually through a visually cluttered environment guided by landmarks as well as by path integration. An examination of their visual system is hence of special interest and we address this here. Workers exhibit distinct size polymorphism and their eye and ocelli size increases with head size. The ants possess typical apposition eyes with about 420-590 ommatidia per eye, a horizontal visual field of approximately 150° and facet lens diameters between 8 and 19 μm, depending on body size, with frontal facets being largest. The average interommatidial angle Δϕ is 3.7°, the average acceptance angle of the rhabdom Δρ(rh) is 2.9°, with average rhabdom diameter of 1.6 μm and the average lens blur at half-width Δρ(l) is 2.3°. With a Δρ(rh)/Δϕ ratio of much less than 2, the eyes undersample the visual scene but provide high contrast, and surprising detail of the landmark panorama that has been shown to be used for navigation.
Collapse
Affiliation(s)
- Sebastian Schwarz
- Department of Brain, Behaviour and Evolution, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | |
Collapse
|
34
|
Franco EL, Gimenes M. Pollination of Cambessedesia wurdackii in Brazilian campo rupestre vegetation, with special reference to crepuscular bees. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:97. [PMID: 22208813 PMCID: PMC3391928 DOI: 10.1673/031.011.9701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/04/2011] [Indexed: 05/31/2023]
Abstract
Cambessedesia wurdackii Martins (Myrtales: Melastomataceae) is presumably endemic to the Chapada Diamantina, Bahia State, Brazil. A majority of the species of this family are pollinated by diurnal bees that buzz the floral anthers to collect pollen. The present work examined the interactions between C. wurdackii and visiting bees, focusing on temporal, morphological, and behavioral features, especially in regards to the crepuscular bees Megalopta sodalis (Vachal) (Hymenoptera: Halictidae) and Ptiloglossa off. dubia Moure (Hymenoptera: Colletidae). The study was undertaken in an area of campo rupestre montane savanna vegetation located in the Chapada Diamantina Mountains of Bahia State, Brazil, between August/2007 and July/2008. Flowering in C. wurdackii occurred from April through July, with a peak in May. A total of 592 visits by diurnal and crepuscular bees to the flowers of C. wurdackii were recorded, with a majority of the visits made by M. sodalis and P. dubia (92%) near sunrise and sunset. The anthers of C. wurdackii are arranged in two tiers, which favors cross pollination. The morphological, temporal and behavioral characteristics of M. sodalis and P. dubia indicated that they were potential pollinators of C. wurdackii, in spite of the fact that the colorful and showy flowers of this species are more typical of a diurnal melittophilous pollination syndrome.
Collapse
Affiliation(s)
- Emanuella Lopes Franco
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Avenida Transnordestina, S/N, Bairro Novo Horizonte, 44036-900 Feira de Santana — BA, Brasil
| | - Miriam Gimenes
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Avenida Transnordestina, S/N, Bairro Novo Horizonte, 44036-900 Feira de Santana — BA, Brasil
| |
Collapse
|
35
|
Abstract
With their highly sensitive visual systems, nocturnal insects have evolved a remarkable capacity to discriminate colors, orient themselves using faint celestial cues, fly unimpeded through a complicated habitat, and navigate to and from a nest using learned visual landmarks. Even though the compound eyes of nocturnal insects are significantly more sensitive to light than those of their closely related diurnal relatives, their photoreceptors absorb photons at very low rates in dim light, even during demanding nocturnal visual tasks. To explain this apparent paradox, it is hypothesized that the necessary bridge between retinal signaling and visual behavior is a neural strategy of spatial and temporal summation at a higher level in the visual system. Exactly where in the visual system this summation takes place, and the nature of the neural circuitry that is involved, is currently unknown but provides a promising avenue for future research.
Collapse
Affiliation(s)
- Eric Warrant
- Department of Biology, University of Lund, S-22362 Lund, Sweden
| | | |
Collapse
|
36
|
Narendra A, Reid SF, Greiner B, Peters RA, Hemmi JM, Ribi WA, Zeil J. Caste-specific visual adaptations to distinct daily activity schedules in Australian Myrmecia ants. Proc Biol Sci 2010; 278:1141-9. [PMID: 20926444 DOI: 10.1098/rspb.2010.1378] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animals are active at different times of the day and their activity schedules are shaped by competition, time-limited food resources and predators. Different temporal niches provide different light conditions, which affect the quality of visual information available to animals, in particular for navigation. We analysed caste-specific differences in compound eyes and ocelli in four congeneric sympatric species of Myrmecia ants, with emphasis on within-species adaptive flexibility and daily activity rhythms. Each caste has its own lifestyle: workers are exclusively pedestrian; alate females lead a brief life on the wing before becoming pedestrian; alate males lead a life exclusively on the wing. While workers of the four species range from diurnal, diurnal-crepuscular, crepuscular-nocturnal to nocturnal, the activity times of conspecific alates do not match in all cases. Even within a single species, we found eye area, facet numbers, facet sizes, rhabdom diameters and ocelli size to be tuned to the distinct temporal niche each caste occupies. We discuss these visual adaptations in relation to ambient light levels, visual tasks and mode of locomotion.
Collapse
Affiliation(s)
- Ajay Narendra
- Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Kuebler L, Kelber C, Kleineidam C. Distinct antennal lobe phenotypes in the leaf-cutting ant (Atta vollenweideri). J Comp Neurol 2010; 518:352-65. [DOI: 10.1002/cne.22217] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Bacci M, Solomon SE, Mueller UG, Martins VG, Carvalho AO, Vieira LG, Silva-Pinhati ACO. Phylogeny of leafcutter ants in the genus Atta Fabricius (Formicidae: Attini) based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 2009; 51:427-37. [DOI: 10.1016/j.ympev.2008.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/24/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
|
39
|
AGUZZI JACOPO, COSTA CORRADO, ANTONUCCI FRANCESCA, COMPANY JOANB, MENESATTI PAOLO, SARDÁ FRANCESC. Influence of diel behaviour in the morphology of decapod natantia. Biol J Linn Soc Lond 2009. [DOI: 10.1111/j.1095-8312.2008.01162.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Wcislo WT, Tierney SM. Behavioural environments and niche construction: the evolution of dim-light foraging in bees. Biol Rev Camb Philos Soc 2008; 84:19-37. [PMID: 19046401 DOI: 10.1111/j.1469-185x.2008.00059.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Most bees forage for floral resources during the day, but temporal patterns of foraging activity vary extensively, and foraging in dim-light environments has evolved repeatedly. Facultative dim-light foraging behaviour is known in five of nine families of bees, while obligate behaviour is known in four families and evolved independently at least 19 times. The light intensity under which bees forage varies by a factor of 10(8), and therefore the evolution of dim-light foraging represents the invasion of a new, extreme niche. The repeated evolution of dim-light foraging behaviour in bees allows tests of the hypothesis that behaviour acts as an evolutionary pacemaker. With the exception of one species of Apis, facultative dim-light foragers show no external structural traits that are thought to enable visually mediated flight behaviour in low-light environments. By contrast, most obligate dim-light foragers show a suite of convergent optical traits such as enlarged ocelli and compound eyes. In one intensively studied species (Megalopta genalis) these optical changes are associated with neurobiological changes to enhance photon capture. The available ecological evidence suggests that an escape from competition for pollen and nectar resources and avoidance of natural enemies are driving factors in the evolution of obligate dim-light foraging.
Collapse
Affiliation(s)
- William T Wcislo
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá.
| | | |
Collapse
|
41
|
Warrant EJ. Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps. J Exp Biol 2008; 211:1737-46. [DOI: 10.1242/jeb.015396] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In response to the pressures of predation, parasitism and competition for limited resources, several groups of (mainly) tropical bees and wasps have independently evolved a nocturnal lifestyle. Like their day-active (diurnal)relatives, these insects possess apposition compound eyes, a relatively light-insensitive eye design that is best suited to vision in bright light. Despite this, nocturnal bees and wasps are able to forage at night, with many species capable of flying through a dark and complex forest between the nest and a foraging site, a behaviour that relies heavily on vision and is limited by light intensity. In the two best-studied species – the Central American sweat bee Megalopta genalis (Halictidae) and the Indian carpenter bee Xylocopa tranquebarica (Apidae) – learned visual landmarks are used to guide foraging and homing. Their apposition eyes,however, have only around 30 times greater optical sensitivity than the eyes of their closest diurnal relatives, a fact that is apparently inconsistent with their remarkable nocturnal visual abilities. Moreover, signals generated in the photoreceptors, even though amplified by a high transduction gain, are too noisy and slow to transmit significant amounts of information in dim light. How have nocturnal bees and wasps resolved these paradoxes? Even though this question remains to be answered conclusively, a mounting body of theoretical and experimental evidence suggests that the slow and noisy visual signals generated by the photoreceptors are spatially summed by second-order monopolar cells in the lamina, a process that could dramatically improve visual reliability for the coarser and slower features of the visual world at night.
Collapse
Affiliation(s)
- Eric J. Warrant
- Department of Cell and Organism Biology, Zoology Building, University of Lund, Helgonavägen 3, S-22362 Lund, Sweden
| |
Collapse
|
42
|
Greiner B, Narendra A, Reid SF, Dacke M, Ribi WA, Zeil J. Eye structure correlates with distinct foraging-bout timing in primitive ants. Curr Biol 2007; 17:R879-80. [PMID: 17956745 DOI: 10.1016/j.cub.2007.08.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
KAPUSTJANSKIJ A, STREINZER M, PAULUS HF, SPAETHE J. Bigger is better: implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebees. Funct Ecol 2007. [DOI: 10.1111/j.1365-2435.2007.01329.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Warrant EJ, Kelber A, Wallén R, Wcislo WT. Ocellar optics in nocturnal and diurnal bees and wasps. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:293-305. [PMID: 18089077 DOI: 10.1016/j.asd.2006.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Accepted: 08/02/2006] [Indexed: 05/25/2023]
Abstract
Nocturnal bees, wasps and ants have considerably larger ocelli than their diurnal relatives, suggesting an active role in vision at night. In a first step to understanding what this role might be, the morphology and physiological optics of ocelli were investigated in three tropical rainforest species - the nocturnal sweat bee Megalopta genalis, the nocturnal paper wasp Apoica pallens and the diurnal paper wasp Polistes occidentalis - using hanging-drop techniques and standard histological methods. Ocellar image quality, in addition to lens focal length and back focal distance, was determined in all three species. During flight, the ocellar receptive fields of both nocturnal species are centred very dorsally, possibly in order to maximise sensitivity to the narrow dorsal field of light that enters through gaps in the rainforest canopy. Since all ocelli investigated had a slightly oval shape, images were found to be astigmatic: images formed by the major axis of the ocellus were located further from the proximal surface of the lens than images formed by the minor axis. Despite being astigmatic, images formed at either focal plane were reasonably sharp in all ocelli investigated. When compared to the position of the retina below the lens, measurements of back focal distance reveal that the ocelli of Megalopta are highly underfocused and unable to resolve spatial detail. This together with their very large and tightly packed rhabdoms suggests a role in making sensitive measurements of ambient light intensity. In contrast, the ocelli of the two wasps form images near the proximal boundary of the retina, suggesting the potential for modest resolving power. In light of these results, possible roles for ocelli in nocturnal bees and wasps are discussed, including the hypothesis that they might be involved in nocturnal homing and navigation, using two main cues: the spatial pattern of bright patches of daylight visible through the rainforest canopy, and compass information obtained from polarised skylight (from the setting sun or the moon) that penetrates these patches.
Collapse
Affiliation(s)
- Eric J Warrant
- Department of Cell & Organism Biology, Zoology Building, University of Lund, Helgonavägen 3, S-22362 Lund, Sweden
| | | | | | | |
Collapse
|