1
|
Broumandnia F, Rajabpour A, Hamed Ghodoum Parizipour M, Yarahmadi F. Morphological and molecular identification of four isolates of the entomopathogenic fungal genus Akanthomyces and their effects against Bemisia tabaci on cucumber. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:628-636. [PMID: 34001296 DOI: 10.1017/s0007485321000298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The cotton whitefly, Bemisia tabaci Gen. (Hem., Aleyrodidae), is a key pest of many vegetables. Entomopathogenic fungi are promising microbial control agents against B. tabaci, but limited information is available concerning indigenous Iranian isolates. In this study, three isolates of Akanthomyces lecanii (PAL6, PAL7, and PAL8) and one isolate of A. muscarius (AGM5) were obtained from citrus hemipteran pests, Pulvinaria aurantii Cock. and Aphis gossypii Glover, in Mazandaran province, northern Iran. The isolates were then morphologically and molecularly identified. The efficacies of five different agar media for vegetative growth and conidiation of each isolate were determined. Potato dextrose agar was the medium on which the fungal mycelia developed at a relatively high rate. However, the highest rate of conidiation was found on Sabouraud dextrose agar. To determine the effects of the isolates on B. tabaci, a dose-response bioassay was carried out to estimate lethal concentration (LC50) and lethal time (LT50) values of each fungal isolate to second instar nymphs. The mean LC50 values of A. lecanii isolates ranged from 4.22 × 106 to 7.35 × 1013 conidia ml-1 at 5 to 7 days after the treatment. For A. muscarius, the values varied from 9.2 × 104 to 8.7 × 1010 conidia ml-1 at 5 to 7 days after the treatment. The lowest and the highest mean LC50 values were observed for A. mucarius (AGM5) and A. lecanii (isolate PAL6), respectively. The mean LT50 values of A. lecanii and A. muscarius isolates were 7.1-9.0 and 4.9-7.2 days, respectively. The LT50 values of A. muscarius were significantly lower than the other isolates. Overall, all isolates, especially A. muscarius (AGM5), exhibited appropriate potential as a biological control agent against B. tabaci.
Collapse
Affiliation(s)
- Fereshteh Broumandnia
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| | - Ali Rajabpour
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| | - Mohamad Hamed Ghodoum Parizipour
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| | - Fatemeh Yarahmadi
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| |
Collapse
|
2
|
Rybakova D, Wikström M, Birch-Jensen F, Postma J, Ehlers RU, Schmuck M, Kollmann R, Köhl J, Berg G. Verticillium Wilt in Oilseed Rape-the Microbiome is Crucial for Disease Outbreaks as Well as for Efficient Suppression. PLANTS 2020; 9:plants9070866. [PMID: 32650549 PMCID: PMC7412322 DOI: 10.3390/plants9070866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Microbiome management is a promising way to suppress verticillium wilt, a severe disease in Brassica caused by Verticillium longisporum. In order to improve current biocontrol strategies, we compared bacterial Verticillium antagonists in different assays using a hierarchical selection and evaluation scheme, and we integrated outcomes of our previous studies. The result was strongly dependent on the assessment method chosen (in vitro, in vivo, in situ), on the growth conditions of the plants and their genotype. The most promising biocontrol candidate identified was a Brassica endophyte Serratia plymuthica F20. Positive results were confirmed in field trials and by microscopically visualizing the three-way interaction. Applying antagonists in seed treatment contributes to an exceptionally low ecological footprint, supporting efficient economic and ecological solutions to controlling verticillium wilt. Indigenous microbiome, especially soil and seed microbiome, has been identified as key to understanding disease outbreaks and suppression. We suggest that verticillium wilt is a microbiome-driven disease caused by a reduction in microbial diversity within seeds and in the soil surrounding them. We strongly recommend integrating microbiome data in the development of new biocontrol and breeding strategies and combining both strategies with the aim of designing healthy microbiomes, thus making plants more resilient toward soil-borne pathogens.
Collapse
Affiliation(s)
- Daria Rybakova
- Graz University of Technology, Environmental Biotechnology, Petersgasse 12, 8010 Graz, Austria; (D.R.); (M.S.)
| | - Mariann Wikström
- Agro Plantarum AB, Kärrarpsvägen 410, S-265 90 Åstorp, Sweden; (M.W.); (F.B.-J.)
| | - Fia Birch-Jensen
- Agro Plantarum AB, Kärrarpsvägen 410, S-265 90 Åstorp, Sweden; (M.W.); (F.B.-J.)
| | - Joeke Postma
- Wageningen University & Research, 6708 PB Wageningen, Netherlands; (J.P.); (J.K.)
| | - Ralf Udo Ehlers
- E-nema GmbH, Klausdorfer Str. 28–36, 24223 Schwentinental, Germany;
| | - Maria Schmuck
- Graz University of Technology, Environmental Biotechnology, Petersgasse 12, 8010 Graz, Austria; (D.R.); (M.S.)
| | - René Kollmann
- Strateco OG, Ruckerlberggasse 13, 8010 Graz, Austria;
- Sekem Energy GmbH, Steinberg 132, 8151 Hitzendorf, Austria
| | - Jürgen Köhl
- Wageningen University & Research, 6708 PB Wageningen, Netherlands; (J.P.); (J.K.)
| | - Gabriele Berg
- Graz University of Technology, Environmental Biotechnology, Petersgasse 12, 8010 Graz, Austria; (D.R.); (M.S.)
- Correspondence: ; Tel.: +43-316-873-8819
| |
Collapse
|
3
|
One stop shop III: taxonomic update with molecular phylogeny for important phytopathogenic genera: 51–75 (2019). FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00433-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
4
|
Spitzer T, Matušinsky P. Detecting Pathogens of Verticillium Wilt in Winter Oilseed Rape Using ELISA and PCR - Comparison of the Two Methods and With Visual Stand Evaluation. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2017. [DOI: 10.11118/actaun201765010205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
5
|
Depotter JRL, Deketelaere S, Inderbitzin P, Tiedemann AV, Höfte M, Subbarao KV, Wood TA, Thomma BPHJ. Verticillium longisporum, the invisible threat to oilseed rape and other brassicaceous plant hosts. MOLECULAR PLANT PATHOLOGY 2016; 17:1004-16. [PMID: 26663851 PMCID: PMC6638321 DOI: 10.1111/mpp.12350] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 05/21/2023]
Abstract
INTRODUCTION The causal agents of Verticillium wilts are globally distributed pathogens that cause significant crop losses every year. Most Verticillium wilts are caused by V. dahliae, which is pathogenic on a broad range of plant hosts, whereas other pathogenic Verticillium species have more restricted host ranges. In contrast, V. longisporum appears to prefer brassicaceous plants and poses an increasing problem to oilseed rape production. TAXONOMY Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Subclass Hypocreomycetida; Family Plectosphaerellaceae; genus Verticillium. DISEASE SYMPTOMS Dark unilateral stripes appear on the stems of apparently healthy looking oilseed rape plants at the end of the growing season. Microsclerotia are subsequently formed in the stem cortex beneath the epidermis. GENOME Verticillium longisporum is the only non-haploid species in the Verticillium genus, as it is an amphidiploid hybrid that carries almost twice as much genetic material as the other Verticillium species as a result of interspecific hybridization. DISEASE MANAGEMENT There is no effective fungicide treatment to control Verticillium diseases, and resistance breeding is the preferred strategy for disease management. However, only a few Verticillium wilt resistance genes have been identified, and monogenic resistance against V. longisporum has not yet been found. Quantitative resistance exists mainly in the Brassica C-genome of parental cabbage lines and may be introgressed in oilseed rape breeding lines. COMMON NAME Oilseed rape colonized by V. longisporum does not develop wilting symptoms, and therefore the common name of Verticillium wilt is unsuitable for this crop. Therefore, we propose 'Verticillium stem striping' as the common name for Verticillium infections of oilseed rape.
Collapse
Affiliation(s)
- Jasper R L Depotter
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
- Department of Crops and Agronomy, National Institute of Agricultural Botany, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Silke Deketelaere
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Coupure links 653, Ghent University, B-9000, Ghent, Belgium
| | - Patrik Inderbitzin
- Department of Plant Pathology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Andreas Von Tiedemann
- Department of Crop Sciences, Plant Pathology and Crop Protection Division, Georg-August University Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Coupure links 653, Ghent University, B-9000, Ghent, Belgium
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thomas A Wood
- Department of Crops and Agronomy, National Institute of Agricultural Botany, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
| |
Collapse
|
6
|
Yu JM, Cafarov IH, Babadoost M. Morphology, Molecular Identity, and Pathogenicity of Verticillium dahliae and V. longisporum Associated with Internally Discolored Horseradish Roots. PLANT DISEASE 2016; 100:749-757. [PMID: 30688617 DOI: 10.1094/pdis-08-15-0846-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During 2008 to 2009, 255 isolates of Verticillium were obtained from internally discolored horseradish roots collected from California, Illinois, and Ontario. Twenty representative isolates were selected according to morphological features and geographic origin for further characterization. Based on the conidial size, the isolates were divided into two groups: Verticillium dahliae (4.4 ± 1.23 μm) and V. longisporum (7.8 ± 1.76 μm). Genetic diversity of the isolates was determined by sequence analysis of the internal transcribed spacer (ITS) and two mitochondrial genes (cytochrome oxidase subunit III [cox3] and NADH dehydrogenase subunit I [nad1]). Based on ITS analysis, Verticillium isolates were divided into two clades: V. dahliae and V. longisporum. However five isolates of V. longisporum (identified based on conidial size) were clustered with a V. dahliae clade, whereas the other five isolates formed a distinct V. longisporum clade. Combined analysis of the mitochondrial genes cox3 and nad1 showed that the two genetic clades of V. longisporum in ITS region analysis corresponded to the previously reported V. longisporum lineage A1/D3 and A1/D2. Pathogenicity tests revealed that all tested Verticillium isolates caused internal discoloration of horseradish roots, and there were no significant differences in either incidence or severity of root discoloration among the genetic groups.
Collapse
Affiliation(s)
- Jun Myoung Yu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2133
| | - Ibrahim H Cafarov
- Department of Plant Protection, Azerbaijan State Agricultural University, Ganja AZ 2000, Azerbaijan
| | | |
Collapse
|
7
|
Lin R, Liu C, Shen B, Bai M, Ling J, Chen G, Mao Z, Cheng X, Xie B. Analysis of the complete mitochondrial genome of Pochonia chlamydosporia suggests a close relationship to the invertebrate-pathogenic fungi in Hypocreales. BMC Microbiol 2015; 15:5. [PMID: 25636983 PMCID: PMC4360972 DOI: 10.1186/s12866-015-0341-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 01/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background The fungus Pochonia chlamydosporia parasitizes nematode eggs and has become one of the most promising biological control agents (BCAs) for plant-parasitic nematodes, which are major agricultural pests that cause tremendous economic losses worldwide. The complete mitochondrial (mt) genome is expected to open new avenues for understanding the phylogenetic relationships and evolution of the invertebrate-pathogenic fungi in Hypocreales. Results The complete mitogenome sequence of P. chlamydosporia is 25,615 bp in size, containing the 14 typical protein-coding genes, two ribosomal RNA genes, an intronic ORF coding for a putative ribosomal protein (rps3) and a set of 23 transfer RNA genes (trn) which recognize codons for all amino acids. Sequence similarity studies and syntenic gene analyses show that 87.02% and 58.72% of P. chlamydosporia mitogenome sequences match 90.50% of Metarhizium anisopliae sequences and 61.33% of Lecanicillium muscarium sequences with 92.38% and 86.04% identities, respectively. A phylogenetic tree inferred from 14 mt proteins in Pezizomycotina fungi supports that P. chlamydosporia is most closely related to the entomopathogenic fungus M. anisopliae. The invertebrate-pathogenic fungi in Hypocreales cluster together and clearly separate from a cluster comprising plant-pathogenic fungi (Fusarium spp.) and Hypocrea jecorina. A comparison of mitogenome sizes shows that the length of the intergenic regions or the intronic regions is the major size contributor in most of mitogenomes in Sordariomycetes. Evolutionary analysis shows that rps3 is under positive selection, leading to the display of unique evolutionary characteristics in Hypocreales. Moreover, the variability of trn distribution has a clear impact on gene order in mitogenomes. Gene rearrangement analysis shows that operation of transposition drives the rearrangement events in Pezizomycotina, and most events involve in trn position changes, but no rearrangement was found in Clavicipitaceae. Conclusions We present the complete annotated mitogenome sequence of P. chlamydosporia. Based on evolutionary and phylogenetic analyses, we have determined the relationships between the invertebrate-pathogenic fungi in Hypocreales. The invertebrate-pathogenic fungi in Hypocreales referred to in this paper form a monophyletic group sharing a most recent common ancestor. Our rps3 and trn gene order results also establish a foundation for further exploration of the evolutionary trajectory of the fungi in Hypocreales. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0341-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chichuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Baoming Shen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan Province, 410128, China.
| | - Miao Bai
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, Hunan Province, 410128, China.
| | - Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guohua Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xinyue Cheng
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Krimitzas A, Pyrri I, Kouvelis VN, Kapsanaki-Gotsi E, Typas MA. A phylogenetic analysis of Greek isolates of Aspergillus species based on morphology and nuclear and mitochondrial gene sequences. BIOMED RESEARCH INTERNATIONAL 2013; 2013:260395. [PMID: 23762830 PMCID: PMC3665174 DOI: 10.1155/2013/260395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/09/2013] [Indexed: 12/13/2022]
Abstract
Aspergillus species originating from Greece were examined by morphological and molecular criteria to explore the diversity of this genus. The phylogenetic relationships of these species were determined using sequences from the ITS and IGS region of the nuclear rRNA gene complex, two nuclear genes ( β -tubulin (benA) and RNA polymerase II second largest subunit (rpb2)) and two mitochondrial genes (small rRNA subunit (rns) and cytochrome oxidase subunit I (cox1)) and, where available, related sequences from databases. The morphological characters of the anamorphs and teleomorphs, and the single gene phylogenetic trees, differentiated and placed the species examined in the well-supported sections of Aenei, Aspergillus, Bispori, Candidi, Circumdati, Clavati, Cremei, Flavi, Flavipedes, Fumigati, Nidulantes, Nigri, Restricti, Terrei, Usti, and Zonati, with few uncertainties. The combined use of the three commonly employed nuclear genes (benA, rpb2, and ITS), the IGS region, and two less often used mitochondrial gene sequences (rns and cox1) as a single unit resolved several taxonomic ambiguities. A phylogenetic tree was inferred using Neighbour-Joining, Maximum Parsimony, and Bayesian methods. The strains examined formed seven well-supported clades within the genus Aspergillus. Altogether, the concatenated nuclear and mitochondrial sequences offer additional tools for an improved understanding of phylogenetic relationships within this genus.
Collapse
Affiliation(s)
- Antonios Krimitzas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15701 Athens, Greece
| | - Ioanna Pyrri
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15784 Athens, Greece
| | - Vassili N. Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15701 Athens, Greece
| | - Evangelia Kapsanaki-Gotsi
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15784 Athens, Greece
| | - Milton A. Typas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15701 Athens, Greece
| |
Collapse
|
9
|
|
10
|
Inderbitzin P, Davis RM, Bostock RM, Subbarao KV. The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range. PLoS One 2011; 6:e18260. [PMID: 21455321 PMCID: PMC3063834 DOI: 10.1371/journal.pone.0018260] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 02/23/2011] [Indexed: 01/24/2023] Open
Abstract
Hybridization plays a central role in plant evolution, but its overall importance in fungi is unknown. New plant pathogens are thought to arise by hybridization between formerly separated fungal species. Evolution of hybrid plant pathogens from non-pathogenic ancestors in the fungal-like protist Phytophthora has been demonstrated, but in fungi, the most important group of plant pathogens, there are few well-characterized examples of hybrids. We focused our attention on the hybrid and plant pathogen Verticillium longisporum, the causal agent of the Verticillium wilt disease in crucifer crops. In order to address questions related to the evolutionary origin of V. longisporum, we used phylogenetic analyses of seven nuclear loci and a dataset of 203 isolates of V. longisporum, V. dahliae and related species. We confirmed that V. longisporum was diploid, and originated three different times, involving four different lineages and three different parental species. All hybrids shared a common parent, species A1, that hybridized respectively with species D1, V. dahliae lineage D2 and V. dahliae lineage D3, to give rise to three different lineages of V. longisporum. Species A1 and species D1 constituted as yet unknown taxa. Verticillium longisporum likely originated recently, as each V. longisporum lineage was genetically homogenous, and comprised species A1 alleles that were identical across lineages.
Collapse
Affiliation(s)
- Patrik Inderbitzin
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - R. Michael Davis
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Richard M. Bostock
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
11
|
Pagiotti R, Angelini P, Rubini A, Tirillini B, Granetti B, Venanzoni R. Identification and characterisation of human pathogenic filamentous fungi and susceptibility to Thymus schimperi essential oil. Mycoses 2010; 54:e364-76. [DOI: 10.1111/j.1439-0507.2010.01926.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Ghikas DV, Kouvelis VN, Typas MA. Phylogenetic and biogeographic implications inferred by mitochondrial intergenic region analyses and ITS1-5.8S-ITS2 of the entomopathogenic fungi Beauveria bassiana and B. brongniartii. BMC Microbiol 2010; 10:174. [PMID: 20553589 PMCID: PMC2896372 DOI: 10.1186/1471-2180-10-174] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 06/16/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The entomopathogenic fungi of the genus Beauveria are cosmopolitan with a variety of different insect hosts. The two most important species, B. bassiana and B. brongniartii, have already been used as biological control agents of pests in agriculture and as models for the study of insect host - pathogen interactions. Mitochondrial (mt) genomes, due to their properties to evolve faster than the nuclear DNA, to contain introns and mobile elements and to exhibit extended polymorphisms, are ideal tools to examine genetic diversity within fungal populations and genetically identify a species or a particular isolate. Moreover, mt intergenic region can provide valuable phylogenetic information to study the biogeography of the fungus. RESULTS The complete mt genomes of B. bassiana (32,263 bp) and B. brongniartii (33,920 bp) were fully analysed. Apart from a typical gene content and organization, the Beauveria mt genomes contained several introns and had longer intergenic regions when compared with their close relatives. The phylogenetic diversity of a population of 84 Beauveria strains -mainly B. bassiana (n = 76) - isolated from temperate, sub-tropical and tropical habitats was examined by analyzing the nucleotide sequences of two mt intergenic regions (atp6-rns and nad3-atp9) and the nuclear ITS1-5.8S-ITS2 domain. Mt sequences allowed better differentiation of strains than the ITS region. Based on mt and the concatenated dataset of all genes, the B. bassiana strains were placed into two main clades: (a) the B. bassiana s. l. and (b) the "pseudobassiana". The combination of molecular phylogeny with criteria of geographic and climatic origin showed for the first time in entomopathogenic fungi, that the B. bassiana s. l. can be subdivided into seven clusters with common climate characteristics. CONCLUSIONS This study indicates that mt genomes and in particular intergenic regions provide molecular phylogeny tools that combined with criteria of geographic and climatic origin can subdivide the B. bassiana s.l. entomopathogenic fungi into seven clusters with common climate characteristics.
Collapse
Affiliation(s)
- Dimitri V Ghikas
- Department of Genetics, Faculty of Biology, University of Athens, Panepistimiopolis 15701, Athens, Greece
| | - Vassili N Kouvelis
- Department of Genetics, Faculty of Biology, University of Athens, Panepistimiopolis 15701, Athens, Greece
| | - Milton A Typas
- Department of Genetics, Faculty of Biology, University of Athens, Panepistimiopolis 15701, Athens, Greece
| |
Collapse
|
13
|
Collado-Romero M, Jiménez-Díaz RM, Mercado-Blanco J. DNA sequence analysis of conserved genes reveals hybridization events that increase genetic diversity in Verticillium dahliae. Fungal Biol 2010; 114:209-18. [PMID: 20943131 DOI: 10.1016/j.funbio.2009.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 12/13/2009] [Accepted: 12/30/2009] [Indexed: 10/19/2022]
Abstract
The hybrid origin of a Verticillium dahliae isolate belonging to the vegetative compatibility group (VCG) 3 is reported in this work. Moreover, new data supporting the hybrid origin of two V. dahliae var. longisporum (VDLSP) isolates are provided as well as information about putative parentals. Thus, isolates of VDLSP and V. dahliae VCG3 were found harboring multiple sequences of actin (Act), β-tubulin (β-tub), calmodulin (Cal) and histone 3 (H3) genes. Phylogenetic analysis of these sequences, the internal transcribed sequences (ITS-1 and ITS-2) of the rRNA genes and of a V. dahliae-specific sequence provided molecular evidences for the interspecific hybrid origin of those isolates. Sequence analysis suggests that some of VDLSP isolates may have resulted from hybridization events between a V. dahliae isolate of VCG1 and/or VCG4A and, probably, a closely related taxon to Verticillium alboatrum but not this one. Similarly, phylogenetic analysis and PCR markers indicated that a V. dahliae VCG3 isolate might have arisen from a hybridization event between a V. dahliae VCG1B isolate and as yet unidentified parent. This second parental probably does not belong to the Verticillium genus according to the gene sequences dissimilarities found between the VCG3 isolate and Verticillium spp. These results suggest an important role of parasexuality in diversity and evolution in the genus Verticillium and show that interspecific hybrids within this genus may not be rare in nature.
Collapse
Affiliation(s)
- Melania Collado-Romero
- Departamento Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Apartado 4084, 14080 Córdoba, Spain.
| | | | | |
Collapse
|
14
|
Goicoechea N. To what extent are soil amendments useful to control Verticillium wilt? PEST MANAGEMENT SCIENCE 2009; 65:831-839. [PMID: 19402078 DOI: 10.1002/ps.1774] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The genus Verticillium includes several species that attack economically important crops throughout the world. The control of Verticillium spp. becomes especially difficult when they form microsclerotia that can survive in the field soil for several years. It has been common practice to fumigate soil with chemicals such as methyl bromide and/or chloropicrin to control soil-borne fungal pathogens. Other chemicals that are used against Verticillium spp. are the antifungal antibiotic aureofungin, the fungicides benomyl, captan, carbendazim, thiram, azoxystrobin and trifloxystrobin and the plant defence activator acibenzolar-S-methyl. However, the potential risks involved in applying phytochemicals to crop plants for both the environment and human health, together with their limited efficacy for controlling Verticillium-induced diseases, support the need to find alternatives to replace their use or improve their efficacy. Soil amendment with animal or plant organic debris is a cultural practice that has long been used to control Verticillium spp. However, today the organic farming industry is becoming a significant player in the global agricultural production scene. In this review, some of the main results concerning the efficacy of several soil amendments as plant protectors against Verticillium spp. are covered, and the limitations and future perspectives of such products are discussed in terms of the control of plant diseases.
Collapse
Affiliation(s)
- Nieves Goicoechea
- Departamento de Biología Vegetal, Sección Biología Vegetal (Unidad Asociada al CSIC, EEAD, Zaragoza), Facultades de Ciencias y Farmacia, Universidad de Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain.
| |
Collapse
|
15
|
Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV. Diversity, pathogenicity, and management of verticillium species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:39-62. [PMID: 19385730 DOI: 10.1146/annurev-phyto-080508-081748] [Citation(s) in RCA: 420] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The genus Verticillium encompasses phytopathogenic species that cause vascular wilts of plants. In this review, we focus on Verticillium dahliae, placing emphasis on the controversy surrounding the elevation of a long-spored variant as a new species, recent advances in the analysis of compatible and incompatible interactions, highlighted by the use of strains expressing fluorescent proteins, and the genetic diversity among Verticillium spp. A synthesis of the approaches to explore genetic diversity, gene flow, and the potential for cryptic recombination is provided. Control of Verticillium wilt has relied on a panoply of chemical and nonchemical strategies, but is beset with environmental or site-specific efficacy problems. Host resistance remains the most logical choice, but is unavailable in most crops. The genetic basis of resistance to Verticillium wilt is unknown in most crops, as are the subcellular signaling mechanisms associated with Ve-mediated, race-specific resistance. Increased understanding in each of these areas promises to facilitate management of Verticillium wilts across a broad range of crops.
Collapse
|
16
|
Pantou MP, Kouvelis VN, Typas MA. The complete mitochondrial genome of Fusarium oxysporum: Insights into fungal mitochondrial evolution. Gene 2008; 419:7-15. [DOI: 10.1016/j.gene.2008.04.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 04/21/2008] [Accepted: 04/21/2008] [Indexed: 11/26/2022]
|
17
|
Kouvelis VN, Sialakouma A, Typas MA. Mitochondrial gene sequences alone or combined with ITS region sequences provide firm molecular criteria for the classification of Lecanicillium species. ACTA ACUST UNITED AC 2008; 112:829-44. [PMID: 18501578 DOI: 10.1016/j.mycres.2008.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 01/11/2008] [Accepted: 01/24/2008] [Indexed: 11/18/2022]
Abstract
The recent revision of Verticillium sect. Prostrata led to the introduction of the genus Lecanicillium, which comprises the majority of the entomopathogenic strains. Sixty-five strains previously classified as Verticillium lecanii or Verticillium sp. from different geographical regions and hosts were examined and their phylogenetic relationships were determined using sequences from three mitochondrial (mt) genes [the small rRNA subunit (rns), the NADH dehydrogenase subunits 1 (nad1) and 3 (nad3)] and the ITS region. In general, single gene phylogenetic trees differentiated and placed the strains examined in well-supported (by BS analysis) groups of L. lecanii, L. longisporum, L. muscarium, and L. nodulosum, although in some cases a few uncertainties still remained. nad1 was the most informative single gene in phylogenetic analyses and was also found to contain group I introns with putative open reading frames (ORFs) encoding for GIY-YIG endonucleases. The combined use of mt gene sequences resolved taxonomic uncertainties arisen from ITS analysis and, alone or in combination with ITS sequences, helped in placing uncharacterised Verticillium lecanii and Verticillium sp. firmly into Lecanicillium species. Combined gene data from all the mt genes and all the mt genes and the ITS region together, were very similar. Furthermore, a relaxed correlation with host specificity -- at least for Homoptera -- was indicated for the rns and the combined mt gene sequences. Thus, the usefulness of mt gene sequences as a convenient molecular tool in phylogenetic studies of entomopathogenic fungi was demonstrated.
Collapse
Affiliation(s)
- Vassili N Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Panepistemiopolis, Athens, Greece
| | | | | |
Collapse
|
18
|
Kouvelis VN, Ghikas DV, Edgington S, Typas MA, Moore D. Molecular characterization of isolates of Beauveria bassiana obtained from overwintering and summer populations of Sunn Pest (Eurygaster integriceps). Lett Appl Microbiol 2008; 46:414-20. [PMID: 18290810 DOI: 10.1111/j.1472-765x.2008.02331.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To examine whether isolates of the entomopathogenic fungus Beauveria bassiana are more closely associated to their summer hosts compared with overwintering hosts, with recently developed molecular tools based on mitochondrial regions. METHODS AND RESULTS Primers for the traditional ITS1-5.8S-ITS2 region and two mitochondrial intergenic regions, namely, nad3-atp9 and atp6-rns, were used. All amplified products were sequenced, aligned and Neighbour-Joining (NJ), parsimony and Bayesian phylogenetic inference analyses were performed. The isolates examined were grouped with very good support into three distinct groups, two of them showed geographical correlation, but no clear association to their host. CONCLUSIONS The mitochondrial intergenic regions used were more informative than the nuclear ITS1-5.8S-ITS2 sequences. The sequence variability observed, that allowed the phylogenetic placement of the isolates into distinct groups, depended on the geographical origin of the isolates and can be exploited for designing group-specific and isolate-specific primers for their genetic fingerprinting. No clear associations with summer Sunn Pest populations were observed. SIGNIFICANCE AND IMPACT OF THE STUDY Studies on the genetic variability of biocontrol agents like B. bassiana are indispensable for the development of molecular tools for their future monitoring.
Collapse
Affiliation(s)
- V N Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
19
|
Yokoyama E, Arakawa M, Yamagishi K, Hara A. Phylogenetic and structural analyses of the mating-type loci inClavicipitaceae. FEMS Microbiol Lett 2006; 264:182-91. [PMID: 17064371 DOI: 10.1111/j.1574-6968.2006.00447.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Entomopathogens and other econutritional fungi belonging to Clavicipitaceae were phylogenetically analyzed on the basis of the 18S rRNA gene and mating-type genes (MAT1-1-1 and MAT1-2-1). The phylogenies of the mating-type genes yielded better resolutions than that of 18S rRNA gene. Entomopathogens (Cordyceps bassiana, Cordyceps brongniartii, Cordyceps militaris, Cordyceps sinclairii, Cordyceps takaomontana, Isaria cateniannulata, Isaria farinosa, Isaria fumosorosea, Isaria javanica, Lecanicillium muscarium and Torrubiella flava) were considered as a phylogenetically defined group, and were closely related to mycopathogens (Lecanicillium psalliotae and Verticillium fungicola). They located at more descendant positions in the mating-type trees than other fungi, and lacked the mating-type gene MAT1-1-3. The deletion of MAT1-1-3 was supposed to have occurred once in Clavicipitaceae, and a good indication for the evolution of Clavicipitaceae. Other entomopathogens (Cordyceps cylindrica, Cordyceps subsessilis, Metarhizium anisopliae and Nomuraea rileyi) and pathogens of plants, nematodes and slime molds, were relatively related to each other, and possessed MAT1-1-3, but were supposed to be heterogeneous. Root-associated fungi did not form any clade with other species.
Collapse
Affiliation(s)
- Eiji Yokoyama
- The Agricultural High-Tech Research Center, Meijo University, Nagoya, Japan.
| | | | | | | |
Collapse
|
20
|
Pantou MP, Kouvelis VN, Typas MA. The complete mitochondrial genome of the vascular wilt fungus Verticillium dahliae: a novel gene order for Verticillium and a diagnostic tool for species identification. Curr Genet 2006; 50:125-36. [PMID: 16733756 DOI: 10.1007/s00294-006-0079-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 04/18/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
The complete sequence (27,184 bp) of the mitochondrial (mt) genome of the phytopathogenic fungus Verticillium dahliae has been determined. It contains 14 protein-coding genes related to oxidative phosphorylation, two rRNA genes and a set of 25 tRNA genes. A single intron, that harbors an intronic ORF coding for a putative ribosomal protein (rps), is located within the large rRNA gene (rnl). Gene order comparisons of V. dahliae mtDNA and complete mt genomes of Pezizomycotina revealed four units of synteny for Sordariomycetes, namely rnl-trn ((11-12))-nad2-nad3, nad4L-nad5-cob-cox1, nad1-nad4-atp8-atp6 and rns-trn ((1-5))-cox3-trn ((1-5))-nad6-trn ((2-5)). These four units, in different combinations, merged to single continuous unit in the orders of Hypocreales and Sordariales. V. dahliae (Phyllachorales) and all members of the genus showed a unique feature which is the translocation of the nad1-nad4-atp8-atp6-rns-cox3-nad6 region in between genes nad3 and atp9 of the Hypocreales mtDNA gene order. Analysis of mt intergenic sequences of Verticillium species permitted the design of a species-specific primer allowing the discrimination of V. longisporum against V. dahliae and V. albo-atrum. By considering the protein-coding gene sequences as one unit, a phylogenetic comparison with representatives of Ascomycota complete mtDNA was performed.
Collapse
Affiliation(s)
- Malena P Pantou
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Panepistemiopolis, Greece
| | | | | |
Collapse
|