1
|
Bhunjun CS, Dong Y, Jayawardena RS, Jeewon R, Phukhamsakda C, Bundhun D, Hyde KD, Sheng J. A polyphasic approach to delineate species in Bipolaris. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00446-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
2
|
Zhong S, Steffenson BJ. Genetic and molecular characterization of mating type genes inCochliobolus sativus. Mycologia 2019. [DOI: 10.1080/00275514.2001.12063220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 55108
| | - Brian J. Steffenson
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 55108
| |
Collapse
|
3
|
Bengyella L, Yekwa EL, Nawaz K, Iftikhar S, Tambo E, Alisoltani A, Feto NA, Roy P. Global invasive Cochliobolus species: cohort of destroyers with implications in food losses and insecurity in the twenty-first century. Arch Microbiol 2017; 200:119-135. [PMID: 28831526 DOI: 10.1007/s00203-017-1426-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 11/25/2022]
Abstract
Matching the global food demand by 2050 and to ensure the stability of food security in over than 99 countries, it is necessary to scale up the production of food such as sorghum, wheat, rice, maize and sugarcane which are however natural hosts of Cochliobolus species. Cochliobolus species major epidemics such as the Great Bengal famine, Southern corn leaf blight, and Northern leaf spot blight were associated with substantial economic losses in the past decades. Thus, there is an urgent need to establish a specific coordinated global surveillance program for the migration of invasive Cochliobolus species, planning contextual control programs engaging all agricultural stakeholders and information sharing in real time for prevention of disastrous Cochliobolus disease outbreak effects. We discuss pertinent outcome of interactions of cash crops with Cochliobolus species having devastating impact on the livelihood of farmers and food security. While post-genomic era elucidated prominent differences among Cochliobolus heterostrophus, C. carbonum, C. victoriae, C. lunatus and C. miyabeanus, their destructive potentials and implications in food losses remained unearthed. Intriguingly, the annual colossal losses caused by Cochliobolus species in the production perspective of sorghum, wheat, rice, maize, cassava and soybean is estimated over 10 billion USD worldwide. This paper provides a comprehensive analysis of the invasive Cochliobolus species distribution and diversity, evolving pathogenicity, persistent diseases, threats and epidemics, consequences on food crops production and increasing global food insecurity issues.
Collapse
Affiliation(s)
- Louis Bengyella
- Omics Research Group, Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, 1911, Gauteng, South Africa.
- School of Basic and Biomedical Sciences (SBBS), The University of Health and Allied Sciences, Ho, Volta Region, Ghana.
| | - Elsie Laban Yekwa
- Division of Medical Virology, The Stellenbosch University, Stellenbosch, Cape Town, 8000, Western Cape, P.O. Box 241, South Africa
| | - Kiran Nawaz
- Institute of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Sehrish Iftikhar
- Institute of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Ernest Tambo
- Department of Biochemistry and Pharmaceutical Sciences, Université des Montagnes, Bangangté, Cameroon.
| | - Arghavan Alisoltani
- Omics Research Group, Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, 1911, Gauteng, South Africa
| | - Naser Aliye Feto
- Omics Research Group, Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, 1911, Gauteng, South Africa
| | - Pranab Roy
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, 721657, India.
| |
Collapse
|
4
|
Abstract
Approximately 20% of species in the fungal kingdom are only known to reproduce by asexual means despite the many supposed advantages of sexual reproduction. However, in recent years, sexual cycles have been induced in a series of emblematic "asexual" species. We describe how these discoveries were made, building on observations of evidence for sexual potential or "cryptic sexuality" from population genetic analyses; the presence, distribution, and functionality of mating-type genes; genome analyses revealing the presence of genes linked to sexuality; the functionality of sex-related genes; and formation of sex-related developmental structures. We then describe specific studies that led to the discovery of mating and sex in certain Candida, Aspergillus, Penicillium, and Trichoderma species and discuss the implications of sex including the beneficial exploitation of the sexual cycle. We next consider whether there might be any truly asexual fungal species. We suggest that, although rare, imperfect fungi may genuinely be present in nature and that certain human activities, combined with the genetic flexibility that is a hallmark of the fungal kingdom, might favor the evolution of asexuality under certain conditions. Finally, we argue that fungal species should not be thought of as simply asexual or sexual, but rather as being composed of isolates on a continuum of sexual fertility.
Collapse
MESH Headings
- Cell Cycle/genetics
- Evolution, Molecular
- Fungi/classification
- Fungi/genetics
- Genes, Fungal/genetics
- Genes, Mating Type, Fungal/genetics
- Genes, Mating Type, Fungal/physiology
- Genetics, Population
- Genome, Fungal
- Humans
- Recombination, Genetic
- Reproduction
- Reproduction, Asexual
- Sex
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Paul S Dyer
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
5
|
Zainudin NAIM, Condon B, De Bruyne L, Van Poucke C, Bi Q, Li W, Höfte M, Turgeon BG. Virulence, Host-Selective Toxin Production, and Development of Three Cochliobolus Phytopathogens Lacking the Sfp-Type 4'-Phosphopantetheinyl Transferase Ppt1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1130-1141. [PMID: 26168137 DOI: 10.1094/mpmi-03-15-0068-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 is required for activation of nonribosomal peptide synthetases, including α-aminoadipate reductase (AAR) for lysine biosynthesis and polyketide synthases, enzymes that biosynthesize peptide and polyketide secondary metabolites, respectively. Deletion of the PPT1 gene, from the maize pathogen Cochliobolus heterostrophus and the rice pathogen Cochliobolus miyabeanus, yielded strains that were significantly reduced in virulence to their hosts. In addition, ppt1 mutants of C. heterostrophus race T and Cochliobolus victoriae were unable to biosynthesize the host-selective toxins (HST) T-toxin and victorin, respectively, as judged by bioassays. Interestingly, ppt1 mutants of C. miyabeanus were shown to produce tenfold higher levels of the sesterterpene-type non-HST ophiobolin A, as compared with the wild-type strain. The ppt1 strains of all species were also reduced in tolerance to oxidative stress and iron depletion; both phenotypes are associated with inability to produce extracellular siderophores biosynthesized by the nonribosomal peptide synthetase Nps6. Colony surfaces were hydrophilic, a trait previously associated with absence of C. heterostrophus Nps4. Mutants were decreased in asexual sporulation and C. heterostrophus strains were female-sterile in sexual crosses; the latter phenotype was observed previously with mutants lacking Nps2, which produces an intracellular siderophore. As expected, mutants were albino, since they cannot produce the polyketide melanin and were auxotrophic for lysine because they lack an AAR.
Collapse
Affiliation(s)
- Nur Ain Izzati Mohd Zainudin
- 1 Section of Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- 2 Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Bradford Condon
- 1 Section of Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Lieselotte De Bruyne
- 3 Department of Crop Protection, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Christof Van Poucke
- 4 Department of Bioanalysis, Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University; and
| | - Qing Bi
- 1 Section of Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Wei Li
- 1 Section of Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- 5 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Monica Höfte
- 3 Department of Crop Protection, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - B Gillian Turgeon
- 1 Section of Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
6
|
Abstract
The genus Bipolaris includes important plant pathogens with worldwide distribution. Species recognition in the genus has been uncertain due to the lack of molecular data from ex-type cultures as well as overlapping morphological characteristics. In this study, we revise the genus Bipolaris based on DNA sequence data derived from living cultures of fresh isolates, available ex-type cultures from worldwide collections and observation of type and additional specimens. Combined analyses of ITS, GPDH and TEF gene sequences were used to reconstruct the molecular phylogeny of the genus Bipolaris for species with living cultures. The GPDH gene is determined to be the best single marker for species of Bipolaris. Generic boundaries between Bipolaris and Curvularia are revised and presented in an updated combined ITS and GPDH phylogenetic tree. We accept 47 species in the genus Bipolaris and clarify the taxonomy, host associations, geographic distributions and species' synonymies. Modern descriptions and illustrations are provided for 38 species in the genus with notes provided for the other taxa when recent descriptions are available. Bipolaris cynodontis, B. oryzae, B. victoriae, B. yamadae and B. zeicola are epi- or neotypified and a lectotype is designated for B. stenospila. Excluded and doubtful species are listed with notes on taxonomy and phylogeny. Seven new combinations are introduced in the genus Curvularia to accomodate the species of Bipolaris transferred based on the phylogenetic analysis. A taxonomic key is provided for the morphological identification of species within the genus.
Collapse
Affiliation(s)
- D.S. Manamgoda
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
- World Agro-forestry Centre, East and Central Asia, Kunming 650201, China
- Systematic Mycology and Microbiology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville 20705, MA, USA
| | - A.Y. Rossman
- Systematic Mycology and Microbiology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville 20705, MA, USA
| | - L.A. Castlebury
- Systematic Mycology and Microbiology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville 20705, MA, USA
| | - P.W. Crous
- CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - H. Madrid
- CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Center for Genomics and Bioinformatics and Medicine Faculty, Mayor University, Camino La Piramide 5750, Huechuraba, Santiago, Chile
| | - E. Chukeatirote
- Institute of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - K.D. Hyde
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
- World Agro-forestry Centre, East and Central Asia, Kunming 650201, China
- Institute of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
7
|
Condon BJ, Leng Y, Wu D, Bushley KE, Ohm RA, Otillar R, Martin J, Schackwitz W, Grimwood J, MohdZainudin N, Xue C, Wang R, Manning VA, Dhillon B, Tu ZJ, Steffenson BJ, Salamov A, Sun H, Lowry S, LaButti K, Han J, Copeland A, Lindquist E, Barry K, Schmutz J, Baker SE, Ciuffetti LM, Grigoriev IV, Zhong S, Turgeon BG. Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens. PLoS Genet 2013; 9:e1003233. [PMID: 23357949 PMCID: PMC3554632 DOI: 10.1371/journal.pgen.1003233] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 11/14/2012] [Indexed: 11/17/2022] Open
Abstract
The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP-encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.
Collapse
Affiliation(s)
- Bradford J. Condon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Dongliang Wu
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Kathryn E. Bushley
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Robin A. Ohm
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Robert Otillar
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Joel Martin
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Wendy Schackwitz
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - NurAinIzzati MohdZainudin
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chunsheng Xue
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Rui Wang
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Viola A. Manning
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Braham Dhillon
- Department of Forest Sciences, University of British Columbia, Vancouver, Canada
| | - Zheng Jin Tu
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Asaf Salamov
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Hui Sun
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Steve Lowry
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Kurt LaButti
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - James Han
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Alex Copeland
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Erika Lindquist
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Kerrie Barry
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Jeremy Schmutz
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Scott E. Baker
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Lynda M. Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Igor V. Grigoriev
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - B. Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
8
|
|
9
|
Lu S, Platz GJ, Edwards MC, Friesen TL. Mating type locus-specific polymerase chain reaction markers for differentiation of Pyrenophora teres f. teres and P. teres f. maculata, the causal agents of barley net blotch. PHYTOPATHOLOGY 2010; 100:1298-1306. [PMID: 20731534 DOI: 10.1094/phyto-05-10-0135] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Fourteen single nucleotide polymorphisms (SNPs) were identified at the mating type (MAT) loci of Pyrenophora teres f. teres (Ptt), which causes net form (NF) net blotch, and P. teres f. maculata (Ptm), which causes spot form (SF) net blotch of barley. MAT-specific SNP primers were developed for polymerase chain reaction (PCR) and the two forms were differentiated by distinct PCR products: PttMAT1-1 (1,143 bp) and PttMAT1-2 (1,421 bp) for NF MAT1-1 and MAT1-2 isolates; PtmMAT1-1 (194 bp) and PtmMAT1-2 (939 bp) for SF MAT1-1 and MAT1-2 isolates, respectively. Specificity was validated using 37 NF and 17 SF isolates collected from different geographic regions. Both MAT1-1 and MAT1-2 SNP primers retained respective specificity when used in duplex PCR. No cross-reactions were observed with DNA from P. graminea, P. tritici-repentis, or other ascomycetes, or barley. Single or mixed infections of the two different forms were also differentiated. This study provides the first evidence that the limited SNPs at the MAT locus are sufficient for distinguishing closely related heterothallic ascomycetes at subspecies levels, thus allowing pathogenicity and mating type characteristics of the fungus to be determined simultaneously. Methods presented will facilitate pathogen detection, disease management, and epidemiological studies.
Collapse
Affiliation(s)
- Shunwen Lu
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND 58102-2765, USA.
| | | | | | | |
Collapse
|
10
|
Meiosis and ascospore development in Cochliobolus heterostrophus. Fungal Genet Biol 2008; 45:554-64. [DOI: 10.1016/j.fgb.2007.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 11/20/2022]
|
11
|
Lu SW, Kroken S, Lee BN, Robbertse B, Churchill ACL, Yoder OC, Turgeon BG. A novel class of gene controlling virulence in plant pathogenic ascomycete fungi. Proc Natl Acad Sci U S A 2003; 100:5980-5. [PMID: 12730371 PMCID: PMC156312 DOI: 10.1073/pnas.0931375100] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insertional mutants of the fungal maize pathogen Cochliobolus heterostrophus were screened for altered virulence. One mutant had 60% reduction in lesion size relative to WT but no other detectable change in phenotype. Analysis of sequence at the insertion site revealed a gene (CPS1) encoding a protein with two AMP-binding domains. CPS1 orthologs were detected in all Cochliobolus spp. examined, in several other classes of ascomycete fungi, and in animals but not in basidiomycete fungi, bacteria, or plants. Phylogenetic analysis suggested that CPS1 represents a previously undescribed subset of adenylate-forming enzymes that have diverged from certain acyl-CoA ligases, which in bacteria are involved in biosynthesis of nonribosomal peptides or polyketidepeptide hybrids. Disruption of CPS1 caused reduced virulence of both race T and race O of C. heterostrophus on maize, of Cochliobolus victoriae on oats, and of Gibberella zeae on wheat. These results suggest that CPS1 functions as a general fungal virulence factor in plant pathogenic ascomycetes.
Collapse
Affiliation(s)
- Shun-Wen Lu
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Goodwin SB, Waalwijk C, Kema GHJ, Cavaletto JR, Zhang G. Cloning and analysis of the mating-type idiomorphs from the barley pathogen Septoria passerinii. Mol Genet Genomics 2003; 269:1-12. [PMID: 12715148 DOI: 10.1007/s00438-002-0795-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2002] [Accepted: 12/05/2002] [Indexed: 10/25/2022]
Abstract
The genus Septoria contains more than 1000 species of plant pathogenic fungi, most of which have no known sexual stage. Species of Septoria without a known sexual stage could be recent derivatives of sexual species that have lost the ability to mate. To test this hypothesis, the mating-type region of S. passerinii, a species with no known sexual stage, was cloned, sequenced, and compared to that of its close relative S. tritici (sexual stage: Mycosphaerella graminicola). Both of the S. passerinii mating-type idiomorphs were approximately 3 kb in size and contained a single reading frame interrupted by one (MAT-2) or two (MAT-1) putative introns. The putative products of MAT-1 and MAT-2 are characterized by alpha-box and high-mobility-group sequences, respectively, similar to those in the mating-type genes of M. graminicolaand other fungi. The mating-type genes of S. passerinii and M. graminicolaare evolving rapidly, approximately ten times faster than the internal transcribed spacer region of the ribosomal DNA, and are not closely related to those from Cochliobolusor other loculoascomycetes in the order Pleosporales. Therefore, the class Loculoascomycetes may be polyphyletic. Furthermore, differences between the phylogenetic trees may indicate separate evolutionary histories for the MAT-1 and MAT-2 idiomorphs. A three-primer multiplex-PCR technique was developed that allowed rapid identification of the mating types of isolates of S. passerinii. Both mating types were present in approximately equal frequencies and often on the same leaf in fields in Minnesota and North Dakota. Analyses with isozyme and random amplified polymorphic DNA markers revealed that each isolate had a unique genotype. The common occurrence of both mating types on the same leaf and the high levels of genotypic diversity indicate that S. passerinii is almost certainly not an asexual derivative of a sexual fungus. Instead, sexual reproduction probably plays an integral role in the life cycle of S. passerinii and may be much more important than previously believed in this (and possibly other) "asexual" species of Septoria.
Collapse
Affiliation(s)
- S B Goodwin
- USDA-ARS, Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA.
| | | | | | | | | |
Collapse
|
13
|
Chaturvedi V, Fan J, Stein B, Behr MJ, Samsonoff WA, Wickes BL, Chaturvedi S. Molecular genetic analyses of mating pheromones reveal intervariety mating or hybridization in Cryptococcus neoformans. Infect Immun 2002; 70:5225-35. [PMID: 12183574 PMCID: PMC128272 DOI: 10.1128/iai.70.9.5225-5235.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sexual mating of the pathogenic yeast Cryptococcus neoformans is important for pathogenesis studies because the fungal virulence is linked to the alpha mating type (MAT(alpha)). We characterized C. neoformans mating pheromones (MF(alpha) 1 and MFa1) from 122 strains to understand intervariety hybridization or mating and intervariety virulence. MF(alpha) 1 in three C. neoformans varieties showed (a) specific nucleotide polymorphisms, (b) different copy numbers and chromosomal localizations, and (c) unique deduced amino acids in two geographic populations of C. neoformans var. gattii. MF(alpha) 1 of different varieties cross-hybridized in Southern hybridizations. Their phylogenetic analyses showed purifying selection (neutral evolution). These observations suggested that MAT(alpha) strains from any of the three C. neoformans varieties could mate or hybridize in nature with MATa strains of C. neoformans var. neoformans. A few serotype A/D diploid strains provided evidence for mating or hybridization, while a majority of A/D strains tested positive for haploid MF(alpha) 1 identical to that of C. neoformans var. grubii. MF(alpha) 1 sequence and copy numbers in diploids were identical to those of C. neoformans var. grubii, while their MFa1 sequences were identical to those of C. neoformans var. neoformans; thus, these strains were hybrids. The mice survival curves and histological lesions revealed A/D diploids to be highly pathogenic, with pathogenicity levels similar to that of the C. neoformans var. grubii type strain and unlike the low pathogenicity levels of C. neoformans var. neoformans strains. In contrast to MF(alpha) 1 in three varieties, MFa1 amplicons and hybridization signals could be obtained only from two C. neoformans var. neoformans reference strains and eight A/D diploids. This suggested that a yet undiscovered MFa pheromone(s) in C. neoformans var. gattii and C. neoformans var. grubii is unrelated to, highly divergent from, or rarer than that in C. neoformans var. neoformans. These observations could form the basis for future studies on the role of intervariety mating in C. neoformans biology and virulence.
Collapse
Affiliation(s)
- Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, School of Public Health, State University of New York, Albany 12201-2002, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Chen F, Goodwin PH, Khan A, Hsiang T. Population structure and mating-type genes of Colletotrichum graminicola from Agrostis palustris. Can J Microbiol 2002; 48:427-36. [PMID: 12109882 DOI: 10.1139/w02-034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eighty-seven isolates of Colletotrichum graminicola, mostly from Agrostis palustris, were collected in grass fields, most of which were in Ontario, Canada. Specific primers were designed to amplify the mating-type (MAT) genes and, among 35 isolates tested, all yielded a band of the expected size for MAT2. For six isolates, the MAT2 PCR products were sequenced and found to be similar to that reported for MAT2 of C. graminicola from maize. Based on 119 polymorphic bands from 10 random amplified polymorphic DNA primers, analyses of genetic distances were found to generally cluster isolates by host and geographic origin. Among 42 isolates from a grass field in Ontario, significant spatial autocorrelation was found to occur within a 20-m distance, implying that this is the effective propagule dispersal distance. Although clonal propagation was observed in the 87 isolates with 67 unique genotypes, the extent of genetic variation in local populations implies some occurrence of sexual or asexual recombination.
Collapse
Affiliation(s)
- Fajun Chen
- Department of Environmental Biology, University of Guelph, ON, Canada
| | | | | | | |
Collapse
|
15
|
Zhong S, Steffenson BJ. Virulence and Molecular Diversity in Cochliobolus sativus. PHYTOPATHOLOGY 2001; 91:469-476. [PMID: 18943591 DOI: 10.1094/phyto.2001.91.5.469] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Spot blotch, caused by the fungal pathogen Cochliobolus sativus, is an important disease of barley in many production areas of the world. To assess genetic diversity in this pathogen, a worldwide collection of C. sativus isolates was evaluated for virulence on barley and DNA polymorphism. Three pathotypes (0, 1, and 2) were identified among the 22 isolates tested in this study and the 36 isolates characterized previously on three barley differentials (ND5883, Bowman, and NDB112) that differ in their resistance to C. sativus. Pathotype 2, which exhibits high virulence on cv. Bowman, was only found in North Dakota, whereas the other two pathotypes occurred in many other regions of the world. Genetic diversity of the 58 C. sativus isolates, together with isolates of three related pathogenic Cochliobolus spp. (C. heterostrophus, C. carbonum, and C. victoriae) was analyzed using amplified fragment length polymorphism (AFLP) markers. A total of 577 polymorphic AFLP markers were recorded among the 70 isolates of the four Cochliobolus spp. using eight primer combinations. Cluster analysis revealed distinct groups corresponding to the four different species, except in one case where race 0 of C. carbonum was placed in an outgroup that may belong to a different species. In C. sativus, 95 polymorphic AFLP markers were detected with the eight primer pairs used, and each isolate exhibited a unique AFLP pattern. Allelic diversity in the pathotype 2 group was lower (0.10) than in the pathotype 0 (0.23) and pathotype 1 (0.15) groups, indicating that pathotype 2 may have arisen more recently. Cluster analysis did not reveal a close correlation between pathotypes and AFLP groups, although two AFLP markers unique to pathotype 2 isolates were identified. This low correlation suggests that genetic exchange may have occurred through parasexual recombination in the fungal population. Some isolates collected from different regions of the world were clustered into the same AFLP group, suggesting that migration of the fungal pathogen around these regions has occurred.
Collapse
|
16
|
Turgeon BG, Yoder OC. Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol 2000; 31:1-5. [PMID: 11118130 DOI: 10.1006/fgbi.2000.1227] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- B G Turgeon
- Department of Plant Pathology, Cornell University, 334 Plant Science Building, Ithaca, New York 14853, USA.
| | | |
Collapse
|
17
|
Rosewich UL, Kistler HC. Role of Horizontal Gene Transfer in the Evolution of Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2000; 38:325-363. [PMID: 11701846 DOI: 10.1146/annurev.phyto.38.1.325] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although evidence for horizontal gene transfer (HGT) in eukaryotes remains largely anecdotal, literature on HGT in fungi suggests that it may have been more important in the evolution of fungi than in other eukaryotes. Still, HGT in fungi has not been widely accepted because the mechanisms by which it may occur are unknown, because it is usually not directly observed but rather implied as an outcome, and because there are often equally plausible alternative explanations. Despite these reservations, HGT has been justifiably invoked for a variety of sequences including plasmids, introns, transposons, genes, gene clusters, and even whole chromosomes. In some instances HGT has also been confirmed under experimental conditions. It is this ability to address the phenomenon in an experimental setting that makes fungi well suited as model systems in which to study the mechanisms and consequences of HGT in eukaryotic organisms.
Collapse
Affiliation(s)
- U Liane Rosewich
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, Minnesota 55108; e-mail: ,
| | - H Corby Kistler
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, Minnesota 55108; e-mail: ,
| |
Collapse
|
18
|
Hiscock SJ, Kües U. Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 193:165-295. [PMID: 10494623 DOI: 10.1016/s0074-7696(08)61781-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Plants and fungi show an astonishing diversity of mechanisms to promote outbreeding, the most widespread of which is sexual incompatibility. Sexual incompatibility involves molecular recognition between mating partners. In fungi and algae, highly polymorphic mating-type loci mediate mating through complementary interactions between molecules encoded or regulated by different mating-type haplotypes, whereas in flowering plants polymorphic self-incompatibility loci regulate mate recognition through oppositional interactions between molecules encoded by the same self-incompatibility haplotypes. This subtle mechanistic difference is a consequence of the different life cycles of fungi, algae, and flowering plants. Recent molecular and biochemical studies have provided fascinating insights into the mechanisms of mate recognition and are beginning to shed light on evolution and population genetics of these extraordinarily polymorphic genetic systems of incompatibility.
Collapse
Affiliation(s)
- S J Hiscock
- Department of Plant Sciences, University of Oxford, United Kingdom
| | | |
Collapse
|
19
|
Turgeon BG. Application of mating type gene technology to problems in fungal biology. ANNUAL REVIEW OF PHYTOPATHOLOGY 1998; 36:115-137. [PMID: 15012495 DOI: 10.1146/annurev.phyto.36.1.115] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In ascomycetes, the single mating type locus (MAT) controls sexual development. This locus is structurally unusual because the two alternate forms ("alleles") are completely dissimilar sequences, encoding different transcription factors, yet they occupy the same chromosomal position. Recently developed procedures allow efficient cloning of MAT genes from a wide array of filamentous ascomycetes, thereby providing MAT-based technology for application to several ongoing issues in fungal biology. This article first outlines the basic nature of MAT genes, then addresses the following topics: efficient cloning of MAT genes; the unusual molecular characteristics of these genes; phylogenetics using MAT; the issues of why some fungi are self-sterile, others self-fertile, and yet others asexual; the long-standing mystery of possible mating type switching in filamentous fungi; and finally the evolutionary origins of pathogenic capability.
Collapse
Affiliation(s)
- B G Turgeon
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
20
|
Turgeon BG, Berbee ML. Evolution of Pathogenic and Reproductive Strategies in Cochliobolus and Related Genera. MOLECULAR GENETICS OF HOST-SPECIFIC TOXINS IN PLANT DISEASE 1998. [DOI: 10.1007/978-94-011-5218-1_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|