1
|
Murphy EA, Kleiner FH, Helliwell KE, Wheeler GL. Channels of Evolution: Unveiling Evolutionary Patterns in Diatom Ca 2+ Signalling. PLANTS (BASEL, SWITZERLAND) 2024; 13:1207. [PMID: 38732422 PMCID: PMC11085791 DOI: 10.3390/plants13091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Diatoms are important primary producers in marine and freshwater environments, but little is known about the signalling mechanisms they use to detect changes in their environment. All eukaryotic organisms use Ca2+ signalling to perceive and respond to environmental stimuli, employing a range of Ca2+-permeable ion channels to facilitate the movement of Ca2+ across cellular membranes. We investigated the distribution of different families of Ca2+ channels in diatom genomes, with comparison to other members of the stramenopile lineage. The four-domain voltage-gated Ca2+ channels (Cav) are present in some centric diatoms but almost completely absent in pennate diatoms, whereas single-domain voltage-gated EukCatA channels were found in all diatoms. Glutamate receptors (GLRs) and pentameric ligand-gated ion channels (pLGICs) also appear to have been lost in several pennate species. Transient receptor potential (TRP) channels are present in all diatoms, but have not undergone the significant expansion seen in brown algae. All diatom species analysed lacked the mitochondrial uniporter (MCU), a highly conserved channel type found in many eukaryotes, including several stramenopile lineages. These results highlight the unique Ca2+-signalling toolkit of diatoms and indicate that evolutionary gains or losses of different Ca2+ channels may contribute to differences in cellular-signalling mechanisms between species.
Collapse
Affiliation(s)
- Eleanor A. Murphy
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Katherine E. Helliwell
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Glen L. Wheeler
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
| |
Collapse
|
2
|
Xue N, Sun M, Gai Z, Bai M, Sun J, Sai S, Zhang L. Genome-Wide Identification and Expression Analysis of Calmodulin (CaM) and Calmodulin-Like (CML) Genes in the Brown Algae Saccharina japonica. PLANTS (BASEL, SWITZERLAND) 2023; 12:1934. [PMID: 37653850 PMCID: PMC10222329 DOI: 10.3390/plants12101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 09/02/2023]
Abstract
Calmodulins (CaMs) and Calmodulin-like proteins (CMLs) are vital in plant growth, development, and stress responses. However, CaMs and CMLs have not been fully identified and characterized in brown algae, which has been evolving independently of the well-studied green plant lineage. In this study, whole-genome searches revealed one SjCaM and eight SjCMLs in Saccharina japonica, and one EsCaM and eleven EsCMLs in Ectocarpus sp. SjCaM and EsCaM encoded identical protein products and shared 88.59-89.93% amino acid identities with Arabidopsis thaliana AtCaMs, thereby indicating that brown algae CaMs retained a similar Ca2+ sensors function as in plants. The phylogenetic and gene structure analysis results showed that there was significant divergence in the gene sequences among brown algae CMLs. Furthermore, evolutionary analysis indicated that the function of brown alga CMLs was relatively conserved, which may be related to the fact that brown algae do not need to face complex environments like terrestrial plants. Regulatory elements prediction and the expression analysis revealed the probable functioning of SjCaM/CML genes in gametophyte development and the stress response in S. japonica. In addition, the SjCaM/SjCMLs interacting proteins and chemicals were preliminarily predicted, suggesting that SjCaM/SjCMLs might play putative roles in Ca2+/CaM-mediated growth and development processes and stimulus responses. Therefore, these results will facilitate our understanding of the evolution of brown algae CaMs/CMLs and the functional identification of SjCaM/SjCMLs.
Collapse
Affiliation(s)
- Nianchao Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Minghui Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Zihan Gai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Meihan Bai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Sun
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Shandong Technology Innovation Center of Algae and Sea Cucumber, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai 264003, China
| | - Shan Sai
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Shandong Technology Innovation Center of Algae and Sea Cucumber, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai 264003, China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
3
|
Abstract
SummaryFertilization in higher plants induces many structural and physiological changes in the fertilized egg, and represents the transition from the haploid female gamete to the diploid zygote, the first cell of a sporophyte. Some changes are induced extremely rapidly following fusion with sperm cells and are the preclusions of egg activation. This review focuses on the early changes that occur in the egg after fusion with sperm cells, but before nuclear fusion. Reported changes include cell shrinkage, cell wall formation, polarity change, oscillation in Ca2+ concentration, and DNA synthesis. In addition, the current understanding of egg activation is summarized and the possible functional relevance of the changes is explored.
Collapse
|
4
|
Universality and Diversity of a Fast, Electrical Block to Polyspermy During Fertilization in Animals. DIVERSITY AND COMMONALITY IN ANIMALS 2018. [DOI: 10.1007/978-4-431-56609-0_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Lopez RA, Renzaglia KS. Arabinogalactan proteins and arabinan pectins abound in the specialized matrices surrounding female gametes of the fern Ceratopteris richardii. PLANTA 2016; 243:947-957. [PMID: 26739842 DOI: 10.1007/s00425-015-2448-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Both male and female gametes of archegoniates are highly specialized cells surrounded by an extraprotoplasmic matrix rich in AGPs, which are speculated to facilitate development and gamete fusion through Ca 2+) oscillations. An additional layer, the egg envelope, forms around the egg periphery, except at the fertilization pore, and contains arabinose-rich polymers that presumably impart flexibility for the rapidly growing zygote and embryo. The abundant AGPs and arabinan pectins associated with the eggs of C. richardii not only are integral to development, fertilization, and early embryogenesis, but also may be involved in desiccation tolerance important to the survival of the reproductive gametophyte. A defining feature of gametogenesis in archegoniates is the deposition of a special matrix outside of the plasmalemma of both egg and sperm cells that displaces the primary cell wall away from the protoplasm. It is within this matrix that gamete differentiation occurs. In leptosporangiate ferns, maturation of the egg cell involves the deposition of a second specialized wall, the so-called egg envelope that surrounds the cell except at the fertilization pore, a narrow site where gamete fusion takes place. We provide the first conclusive evidence of the macromolecular constituents in the unique structures surrounding fern egg cells before and after fertilization. To test the hypotheses that the egg extracellular matrix contains arabinogalactan proteins (AGPs) as does the sperm cell matrix, and that cell wall polysaccharides, especially pectins, are components of the egg envelope, we examined the expression patterns of AGPs and cell wall constituents during oogenesis in Ceratopteris richardii. Utilizing histochemical stains for callose, cellulose and AGPs coupled with immunogold localizations employing a suite of monoclonal antibodies to cell wall components (JIM13, JIM8, LM2, LM5, LM6, LM19, LM20 and anticallose), we demonstrate that AGPs, but not pectins, are abundant in the matrix around egg cells and degrading neck canal and ventral canal cells during archegonial development. A striking finding is that both AGPs and (1,5)-α-L-arabinan pectin epitopes are principle components of the egg envelope before and after fertilization, suggesting that they are important in both egg maturation and gamete fusion.
Collapse
Affiliation(s)
- Renee A Lopez
- Department of Plant Biology, MC: 6509, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA.
| | - Karen S Renzaglia
- Department of Plant Biology, MC: 6509, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA
| |
Collapse
|
6
|
Pónya Z, Corsi I, Hoffmann R, Kovács M, Dobosy A, Kovács AZ, Cresti M, Barnabás B. When isolated at full receptivity, in vitro fertilized wheat (Triticum aestivum, L.) egg cells reveal [Ca2+]cyt oscillation of intracellular origin. Int J Mol Sci 2014; 15:23766-91. [PMID: 25535074 PMCID: PMC4284791 DOI: 10.3390/ijms151223766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/19/2014] [Accepted: 09/25/2014] [Indexed: 11/28/2022] Open
Abstract
During in vitro fertilization of wheat (Triticum aestivum, L.) in egg cells isolated at various developmental stages, changes in cytosolic free calcium ([Ca2+]cyt) were observed. The dynamics of [Ca2+]cyt elevation varied, reflecting the difference in the developmental stage of the eggs used. [Ca2+]cyt oscillation was exclusively observed in fertile, mature egg cells fused with the sperm cell. To determine how [Ca2+]cyt oscillation in mature egg cells is generated, egg cells were incubated in thapsigargin, which proved to be a specific inhibitor of the endoplasmic reticulum (ER) Ca2+-ATPase in wheat egg cells. In unfertilized egg cells, the addition of thapsigargin caused an abrupt transient increase in [Ca2+]cyt in the absence of extracellular Ca2+, suggesting that an influx pathway for Ca2+ is activated by thapsigargin. The [Ca2+]cyt oscillation seemed to require the filling of an intracellular calcium store for the onset of which, calcium influx through the plasma membrane appeared essential. This was demonstrated by omitting extracellular calcium from (or adding GdCl3 to) the fusion medium, which prevented [Ca2+]cyt oscillation in mature egg cells fused with the sperm. Combined, these data permit the hypothesis that the first sperm-induced transient increase in [Ca2+]cyt depletes an intracellular Ca2+ store, triggering an increase in plasma membrane Ca2+ permeability, and this enhanced Ca2+ influx results in [Ca2+]cyt oscillation.
Collapse
Affiliation(s)
- Zsolt Pónya
- Department of Plant Production and Plant Protection, Institute of Plant Science, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár H-7400, Hungary.
| | - Ilaria Corsi
- Dipartimento di Scienze Ambientali "G. Sarfatti", University of Siena, Siena 53100, Italy.
| | - Richárd Hoffmann
- Department of Plant Production and Plant Protection, Institute of Plant Science, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár H-7400, Hungary.
| | - Melinda Kovács
- Institute of Physiology, Biochemistry and Animal Health, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár H-7400, Hungary.
| | - Anikó Dobosy
- Department of Plant Production and Plant Protection, Institute of Plant Science, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár H-7400, Hungary.
| | - Attila Zoltán Kovács
- Department of Technology of Animal Breeding and Management, Faculty of Agricultural and Environmental Sciences Kaposvár University, Kaposvár H-7400, Hungary.
| | - Mauro Cresti
- Dipartimento di Scienze Ambientali "G. Sarfatti", University of Siena, Siena 53100, Italy.
| | - Beáta Barnabás
- Department of Plant Cell Biology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvàsàr H-2462, Hungary.
| |
Collapse
|
7
|
Verret F, Wheeler G, Taylor AR, Farnham G, Brownlee C. Calcium channels in photosynthetic eukaryotes: implications for evolution of calcium-based signalling. THE NEW PHYTOLOGIST 2010; 187:23-43. [PMID: 20456068 DOI: 10.1111/j.1469-8137.2010.03271.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Much of our current knowledge on the mechanisms by which Ca(2+) signals are generated in photosynthetic eukaryotes comes from studies of a relatively small number of model species, particularly green plants and algae, revealing some common features and notable differences between 'plant' and 'animal' systems. Physiological studies from a broad range of algal cell types have revealed the occurrence of animal-like signalling properties, including fast action potentials and fast propagating cytosolic Ca(2+) waves. Genomic studies are beginning to reveal the widespread occurrence of conserved channel types likely to be involved in Ca(2+) signalling. However, certain widespread 'ancient' channel types appear to have been lost by certain groups, such as the embryophytes. More recent channel gene loss is also evident from comparisons of more closely related algal species. The underlying processes that have given rise to the current distributions of Ca(2+) channel types include widespread retention of ancient Ca(2+) channel genes, horizontal gene transfer (including symbiotic gene transfer and acquisition of bacterial genes), gene loss and gene expansion within taxa. The assessment of the roles of Ca(2+) channel genes in diverse physiological, developmental and life history processes represents a major challenge for future studies.
Collapse
Affiliation(s)
- Frédéric Verret
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Glen Wheeler
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| | - Alison R Taylor
- Department of Biology and Marine Biology, University of North Carolina, 601 S. College Road, Wilmington, NC 28403, USA
| | - Garry Farnham
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| | - Colin Brownlee
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
8
|
Fan YF, Jiang L, Gong HQ, Liu CM. Sexual reproduction in higher plants I: fertilization and the initiation of zygotic program. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:860-867. [PMID: 18713396 DOI: 10.1111/j.1744-7909.2008.00705.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sexual plant reproduction is a critical developmental step in the life cycle of higher plants, to allow maternal and paternal genes to be transmitted in a highly regulated manner to the next generation. During evolution, a whole set of signal transduction machinery is developed by plants to ensure an error-free recognition between male and female gametes and initiation of zygotic program. In the past few years, the molecular machineries underlying this biological process have been elucidated, particularly on the importance of synergid cells in pollen tube guidance, the Ca(++) spike as the immediate response of fertilization and the epigenetic regulation of parental gene expressions in early zygotic embryogenesis. This review outlines the most recent development in this area.
Collapse
Affiliation(s)
- Yong-Feng Fan
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
9
|
Abstract
The onset of development in most species studied is triggered by one of the largest and longest calcium transients known to us. It is the most studied and best understood aspect of the calcium signals that accompany and control development. Its properties and mechanisms demonstrate what embryos are capable of and thus how the less-understood calcium signals later in development may be generated. The downstream targets of the fertilization calcium signal have also been identified, providing some pointers to the probable targets of calcium signals further on in the process of development. In one species or another, the fertilization calcium signal involves all the known calcium-releasing second messengers and many of the known calcium-signalling mechanisms. These calcium signals also usually take the form of a propagating calcium wave or waves. Fertilization causes the cell cycle to resume, and therefore fertilization signals are cell-cycle signals. In some early embryonic cell cycles, calcium signals also control the progress through each cell cycle, controlling mitosis. Studies of these early embryonic calcium-signalling mechanisms provide a background to the calcium-signalling events discussed in the articles in this issue.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell and Molecular Biology, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
10
|
P�nya Z, Krist�f Z, Ciampolini F, Faleri C, Cresti M. Structural change in the endoplasmic reticulum during the in situ development and in vitro fertilisation of wheat egg cells. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/s00497-004-0226-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Grebe M, Xu J, Scheres B. Cell axiality and polarity in plants--adding pieces to the puzzle. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:520-526. [PMID: 11641068 DOI: 10.1016/s1369-5266(00)00210-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant cell polarity is important for cellular function and multicellular development. Classical physiological and cell biological analyses identified cues that orient cell polarity and suggested molecules that translate a cue into intracellular asymmetry. A range of proteins that either mark or are involved in the establishment of a (polar) axis are now available, as are many relevant mutants. These tools are likely to facilitate a dissection of the molecular mechanisms behind cell and organ polarity in the near future.
Collapse
Affiliation(s)
- M Grebe
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | |
Collapse
|
12
|
Plieth C. Plant calcium signaling and monitoring: pros and cons and recent experimental approaches. PROTOPLASMA 2001; 218:1-23. [PMID: 11732314 DOI: 10.1007/bf01288356] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This review focusses on Ca(2+)-mediated plant cell signaling and optical methods for in vivo [Ca2+] monitoring and imaging in plants. The cytosolic free calcium concentration has long been considered the central cellular key in plants. However, more and more data are turning up that critically question this view. Conflicting arguments show that there are still many open questions. One conclusion is that the cytosolic free Ca2+ concentration is just one of many cellular network parameters orchestrating complex cellular signaling. Novel experimental strategies which unveil interference of cellular parameters and communication of transduction pathways are required to understand this network. To date only optical methods are able to provide both kinetic and spatial information about cellular key parameters simultaneously. Focussing on calcium there are currently three classes of calcium indicators employed (i.e., chemical fluorescent dyes, luminescent indicators, and green-fluorescent-protein-based indicators). Properties and capabilities as well as advantages and disadvantages of these indicators when used in plant systems are discussed. Finally, general experimental strategies are mentioned which are able to answer open questions raised here.
Collapse
Affiliation(s)
- C Plieth
- Zentrum für Biochemie und Molekularbiologie, Christian-Albrechts-Universität, Am Botanischen Garten 1-9, 24118 Kiel, Federal Republic of Germany.
| |
Collapse
|
13
|
Antoine AF, Faure JE, Cordeiro S, Dumas C, Rougier M, Feijó JA. A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plants. Proc Natl Acad Sci U S A 2000; 97:10643-8. [PMID: 10973479 PMCID: PMC27078 DOI: 10.1073/pnas.180243697] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2000] [Indexed: 11/18/2022] Open
Abstract
In this paper, we report direct measurement of an influx of extracellular Ca(2+) induced by gamete fusion in flowering plants. This result was obtained during maize in vitro fertilization with the use of an extracellular Ca(2+)-selective vibrating probe. Ca(2+) influx recorded at the surface of isolated egg cells, with or without adhesion of a male sperm cell, was close to zero and stable over time. Gamete fusion, however, triggered a Ca(2+) influx in the vicinity of the sperm entry site with a delay of 1.8 +/- 0.6 sec. The Ca(2+) influx spread subsequently through the whole egg cell plasma membrane as a wavefront, progressing at an estimated rate of 1.13 micrometer.(-1). Once established, Ca(2+) influx intensities were sustained, monotonic and homogeneous over the whole egg cell, with an average peak influx of 14.92 pmol .cm(-2).(-1) and an average duration of 24.4 min. The wavefront spread of channel activation correlates well with the cytological modifications induced by fertilization, such as egg cell contraction, and with the cytosolic Ca(2+) ((c)[Ca(2+)]) elevation previously reported. Calcium influx was inhibited effectively by gadolinium, possibly implicating mechanosensitive channels. Furthermore, artificial influxes created by incubation with Ca(2+) ionophores mimicked some aspects of egg activation. Taken together, these results suggest that, during fertilization in higher plants, gamete membrane fusion starts the first embryonic events by channel opening and Ca(2+) influx. In turn, (c)[Ca(2+)] may work as a trigger and possibly a space and time coordinator of many aspects of egg activation.
Collapse
Affiliation(s)
- A F Antoine
- Laboratoire Reproduction et Développement des Plantes, Unité Mixte de Recherche 5667 Centre National de la Recherche Scientifique/Institut National de la Recherche Scientifique/Ecole Normale Supérieure/Université de Lyon I, France
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Fucoid zygotes establish a rhizoid-thallus growth axis in response to environmental signals; however, these extrinsic cues are not necessary for polarization, suggesting that zygotes may have inherent polarity. The hypothesis that sperm entry provides a default pathway for polarization of zygotes cultured in the absence of environmental signals was tested, and was supported by several lines of evidence. First, an F-actin patch, a cortical marker of the rhizoid pole, formed at the sperm entry site within minutes of fertilization. Second, the sperm entry site predicted the site of polar adhesive secretion (the first morphological manifestation of the rhizoid pole) and the position of rhizoid outgrowth. Third, when fertilization was restricted to one hemisphere of the egg, rhizoid outgrowth always occurred from that hemisphere. Fourth, delivery of sperm to one location within a population of eggs resulted in polarization of both adhesive secretion and rhizoid outgrowth toward the sperm source. Finally, induction of polyspermy using low sodium seawater increased the frequency of formation of two rhizoids. Sperm entry therefore provides an immediate default axis that can later be overridden by environmental cues.
Collapse
Affiliation(s)
- W E Hable
- University of Utah, Department of Biology, Salt Lake City, UT 84112-0840, USA.
| | | |
Collapse
|
15
|
Digonnet C, Aldon D, Leduc N, Dumas C, Rougier M. First evidence of a calcium transient in flowering plants at fertilization. Development 1997; 124:2867-74. [PMID: 9247330 DOI: 10.1242/dev.124.15.2867] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report here the first evidence of a transient elevation of free cytosolic Ca2+ following fusion of sperm and egg cell in a flowering plant by the use of an in vitro fertilization system recently developed in maize. Imaging changes in cytosolic Ca2+ at fertilization was undertaken by egg cell loading with the fluorescent Ca2+ indicator dye fluo-3 under controlled physiological conditions. The gamete adhesion step did not induce any cytosolic Ca2+ variation in the egg cell, whereas the fusion step triggered a transient cytosolic Ca2+ rise in the fertilized egg cell, lasting several minutes. This rise occurred after the establishment of gamete cytoplasm continuity. Through these observations, we open the way to the identification of the early signals induced by fertilization in flowering plants that give rise to the calcium transient and to investigations of the role of Ca2+ during egg activation and early zygote development in plants, as has been reported for other better characterized animal and algae systems.
Collapse
Affiliation(s)
- C Digonnet
- Ecole Normale Supérieure de Lyon, Reproduction et Développement des Plantes, UMR 9938 CNRS/INRA/ENS, France
| | | | | | | | | |
Collapse
|
16
|
|