1
|
Wu GR, Baeken C. Depression and metabolic connectivity: insights into the locus coeruleus, HF-rTMS, and anxiety. Transl Psychiatry 2024; 14:459. [PMID: 39488540 PMCID: PMC11531544 DOI: 10.1038/s41398-024-03171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
The use of repetitive Transcranial Magnetic Stimulation (rTMS) in treating major depressive disorder (MDD) is increasingly being explored in precision medicine. However, there's a notable lack of understanding of the underlying neurobiological effects, which limits our ability to correlate specific imaging features with treatment efficacy. As one possible neurobiological mechanism, clinical research has already shown that in MDD, lower norepinephrine release in the locus coeruleus (LC) triggers depressive symptoms, and pharmacological approaches that block norepinephrine reuptake boost its levels, easing depression. Surprisingly, the LC has not received a more pronounced focus in contemporary rTMS research. This study investigates the role of the LC in MDD and its response to high-frequency (HF)-rTMS using 18FDG-PET imaging. We compared LC metabolic connectivity between MDD patients (n = 43) and healthy controls (n = 32). Additionally, we evaluated the predictive value of LC connectivity for HF-rTMS treatment outcomes and examined post-treatment changes in LC metabolic connectivity. Our findings revealed significant differences in LC metabolic connectivity between MDD patients and controls. Baseline LC metabolic connectivity did not predict HF-rTMS treatment outcomes. However, post-treatment analyses showed a significant correlation between improved clinical outcomes and attenuation of LC metabolic connectivity in regions associated with cognitive control and the default mode network. Notably, a reduction in state anxiety moderated this relationship, highlighting the role of anxiety in HF-rTMS efficacy for MDD treatment. Our findings suggest that LC metabolic connectivity, influenced by state anxiety levels, may be crucial in HF-rTMS efficacy, offering further insights for personalized MDD treatment strategies.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium.
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium
- Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
- Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| |
Collapse
|
2
|
Gonsalves MA, White TL, Barredo J, DeMayo MM, DeLuca E, Harris AD, Carpenter LL. Cortical glutamate, Glx, and total N-acetylaspartate: potential biomarkers of repetitive transcranial magnetic stimulation treatment response and outcomes in major depression. Transl Psychiatry 2024; 14:5. [PMID: 38184652 PMCID: PMC10771455 DOI: 10.1038/s41398-023-02715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for individuals with major depressive disorder (MDD) who have not improved with standard therapies. However, only 30-45% of patients respond to rTMS. Predicting response to rTMS will benefit both patients and providers in terms of prescribing and targeting treatment for maximum efficacy and directing resources, as individuals with lower likelihood of response could be redirected to more suitable treatment alternatives. In this exploratory study, our goal was to use proton magnetic resonance spectroscopy to examine how glutamate (Glu), Glx, and total N-acetylaspartate (tNAA) predict post-rTMS changes in overall MDD severity and symptoms, and treatment response. Metabolites were measured in a right dorsal anterior cingulate cortex voxel prior to a standard course of 10 Hz rTMS to the left DLPFC in 25 individuals with MDD. MDD severity and symptoms were evaluated via the Inventory of Depression Symptomatology Self-Report (IDS-SR). rTMS response was defined as ≥50% change in full-scale IDS-SR scores post treatment. Percent change in IDS-SR symptom domains were evaluated using principal component analysis and established subscales. Generalized linear and logistic regression models were used to evaluate the relationship between baseline Glu, Glx, and tNAA and outcomes while controlling for age and sex. Participants with baseline Glu and Glx levels in the lower range had greater percent change in full scale IDS-SR scores post-treatment (p < 0.001), as did tNAA (p = 0.007). Low glutamatergic metabolite levels also predicted greater percent change in mood/cognition symptoms (p ≤ 0.001). Low-range Glu, Glx, and tNAA were associated with greater improvement on the immuno-metabolic subscale (p ≤ 0.003). Baseline Glu predicted rTMS responder status (p = 0.025) and had an area under the receiving operating characteristic curve of 0.81 (p = 0.009), demonstrating excellent discriminative ability. Baseline Glu, Glx, and tNAA significantly predicted MDD improvement after rTMS; preliminary evidence also demonstrates metabolite association with symptom subdomain improvement post-rTMS. This work provides feasibility for a personalized medicine approach to rTMS treatment selection, with individuals with Glu levels in the lower range potentially being the best candidates.
Collapse
Affiliation(s)
- Meghan A Gonsalves
- Neuroscience Graduate Program, Brown University, Providence, RI, USA.
- Butler Hospital Neuromodulation Research Facility, Providence, RI, USA.
- Center of Biomedical Research Excellence (COBRE) for Neuromodulation, Butler Hospital, Providence, RI, USA.
| | - Tara L White
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Jennifer Barredo
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
- Providence VA Medical Center, Providence, RI, USA
- Clinical Neuroimaging Research Core, Brown University, Providence, RI, USA
| | - Marilena M DeMayo
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Emily DeLuca
- Clinical Neuroimaging Research Core, Brown University, Providence, RI, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Linda L Carpenter
- Butler Hospital Neuromodulation Research Facility, Providence, RI, USA
- Center of Biomedical Research Excellence (COBRE) for Neuromodulation, Butler Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Wu GR, Baeken C. Precision targeting in prediction for rTMS clinical outcome in depression: what about sgACC lateralization, metabolic connectivity, and the potential role of the cerebellum? Eur Arch Psychiatry Clin Neurosci 2023; 273:1443-1450. [PMID: 37329365 DOI: 10.1007/s00406-023-01637-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/03/2023] [Indexed: 06/19/2023]
Abstract
Predicting clinical response to repetitive transcranial magnetic stimulation (rTMS) in medication-resistant depression (MRD) has gained great importance in recent years. Mainly, the right subgenual anterior cingulate cortex (sgACC) functional connectivity has been put forward as biomarker in relation to rTMS clinical outcome. Even though the left and right sgACC may have different neurobiological functions, little is known about the possible lateralized predictive role of the sgACC in rTMS clinical outcome. In 43 right-handed antidepressant-free MRD patients, we applied a searchlight-based interregional covariance connectivity approach using the baseline 18FDG-PET scan-collected from two previous high-frequency (HF)-rTMS treatment studies delivering stimulation to the left dorsolateral prefrontal cortex (DLPFC)-and investigated whether unilateral or bilateral sgACC glucose metabolism at baseline would result in different predictive metabolic connectivity patterns. Regardless of sgACC lateralization, the weaker the sgACC seed-based baseline metabolic functional connections with the (left anterior) cerebellar areas, the significantly better the clinical outcome. However, the seed diameter seems to be crucial. Similar significant findings on sgACC metabolic connectivity with the left anterior cerebellum, also unrelated to sgACC lateralization, in relation to clinical outcome were observed when using the HCPex atlas. Although we could not substantiate that specifically right sgACC metabolic connectivity would predict HF-rTMS clinical outcome, our findings suggest considering the entire sgACC in functional connectivity predictions. Given that the interregional covariance connectivity results were significant only when using the Beck Depression Inventory (BDI-II) and not with the Hamilton Depression Rating Scale (HDRS), our sgACC metabolic connectivity observations also suggest the possible involvement of the (left) anterior cerebellum involved in higher-order cognitive processing as part of this predictive value.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.
- School of Psychology, Jiangxi Normal University, Nanchang, China.
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Chou PH, Liu WC, Wang SC, Lin WH, Chung YL, Chang CH, Su KP. Associations between frontal lobe activity and depressive symptoms in patients with major depressive disorder receiving rTMS treatment: a near-infrared spectroscopy study. Front Psychiatry 2023; 14:1235713. [PMID: 37654993 PMCID: PMC10466407 DOI: 10.3389/fpsyt.2023.1235713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction The effects of repetitive transcranial magnetic stimulation (rTMS) on the left dorsolateral prefrontal cortex (DLPFC) in patients with major depressive disorder (MDD) have been proved to have antidepressant effects. However, the absence of biomarkers to assess treatment response remains a challenge. This research aims to explore the relationship between frontal lobe activity, measured using near infrared spectroscopy (NIRS), and changes in symptoms among MDD patients following rTMS treatment. Methods A total of 26 MDD patients underwent 20 sessions of 10 Hz rTMS targeting the left DLPFC. NIRS was used to measure frontal lobe activity during a verbal fluency test at baseline, after 10 rTMS sessions, and after 20 rTMS sessions. Responders were defined as individuals with more than a 50% reduction in symptoms based on the 21-item Hamilton Depression Rating Scale after 20 rTMS sessions. Results Among the 14 responders, an increase in frontal lobe activity was significantly correlated with improvements in depressive symptoms following 10 (p = 0.0001) and 20 rTMS sessions (p = 0.007). Additionally, frontal lobe activity after 10 rTMS sessions was significantly associated with symptom improvement after 20 sessions (p = 0.001). These associations were not observed among non-responders. Conclusion The findings from this study indicate distinct patterns of frontal lobe activity between responders and non-responders to rTMS treatment, suggesting that NIRS has the potential to serve as a biomarker for monitoring treatment response in MDD patients undergoing rTMS.
Collapse
Affiliation(s)
- Po-Han Chou
- Department of Psychiatry, Hsinchu Hospital, China Medical University, Hsinchu, Taiwan
| | - Wen-Chun Liu
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Shao-Cheng Wang
- Department of Psychiatry, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Wei-Hao Lin
- Department of Psychiatry, Puli Branch, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Lun Chung
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| | | | - Kuan-Pin Su
- An-Nan Hospital, China Medical University, Tainan, Taiwan
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Yang KC, Chou YH. Molecular imaging findings for treatment resistant depression. PROGRESS IN BRAIN RESEARCH 2023; 278:79-116. [PMID: 37414495 DOI: 10.1016/bs.pbr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Approximately 40% of patients with major depressive disorder (MDD) had limited response to conventional antidepressant treatments, resulting in treatment-resistant depression (TRD), a debilitating subtype that yielded a significant disease burden worldwide. Molecular imaging techniques, such as positron emission tomography (PET) and single photon emission tomography (SPECT), can measure targeted macromolecules or biological processes in vivo. These imaging tools provide a unique possibility to explore the pathophysiology and treatment mechanisms underlying TRD. This work reviewed and summarized prior PET and SPECT studies to examine the neurobiology and treatment-induced changes of TRD. A total of 51 articles were included with supplementary information from studies for MDD and healthy controls (HC). We found that there were altered regional blood flow or metabolic activity in several brain regions, such as the anterior cingulate cortex, prefrontal cortex, insula, hippocampus, amygdala, parahippocampus, and striatum. These regions have been suggested to engage in the pathophysiology or treatment resistance of depression. There was also limited data to demonstrate the changes in the markers of serotonin, dopamine, amyloid, and microglia over some regions in TRD. Moreover, several observed abnormal imaging indices were linked to treatment outcomes, supporting their specificity and clinical relevance. To address the limitations of the included studies, we proposed that future studies needed longitudinal designs, multimodal approaches, and radioligands targeting specific neural substrates for TRD to evaluate their baseline and treatment-related alterations in TRD. Adequate data sharing and reproducible data analysis can facilitate advances in this field.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Quality Management, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Wu GR, Baeken C. Brainstem glucose metabolism predicts reward dependence scores in treatment-resistant major depression. Psychol Med 2022; 52:3260-3266. [PMID: 33504370 PMCID: PMC9693681 DOI: 10.1017/s0033291720005425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/22/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND It has been suggested that individual differences in temperament could be involved in the (non-)response to antidepressant (AD) treatment. However, how neurobiological processes such as brain glucose metabolism may relate to personality features in the treatment-resistant depressed (TRD) state remains largely unclear. METHODS To examine how brainstem metabolism in the TRD state may predict Cloninger's temperament dimensions Harm Avoidance (HA), Novelty Seeking (NS), and Reward Dependence (RD), we collected 18fluorodeoxyglucose positron emission tomography (18FDG PET) scans in 40 AD-free TRD patients. All participants were assessed with the Temperament and Character Inventory (TCI). We applied a multiple kernel learning (MKL) regression to predict the HA, NS, and RD from brainstem metabolic activity, the origin of respectively serotonergic, dopaminergic, and noradrenergic neurotransmitter (NT) systems. RESULTS The MKL model was able to significantly predict RD but not HA and NS from the brainstem metabolic activity. The MKL pattern regression model identified increased metabolic activity in the pontine nuclei and locus coeruleus, the medial reticular formation, the dorsal/median raphe, and the ventral tegmental area that contributed to the predictions of RD. CONCLUSIONS The MKL algorithm identified a likely metabolic marker in the brainstem for RD in major depression. Although 18FDG PET does not investigate specific NT systems, the predictive value of brainstem glucose metabolism on RD scores however indicates that this temperament dimension in the TRD state could be mediated by different monoaminergic systems, all involved in higher order reward-related behavior.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Faculty of Psychology, Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Chris Baeken
- Department of Psychiatry University Hospital (UZBrussel), Brussels, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
- Department of Head and Skin, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Kinney KR, Hanlon CA. Changing Cerebral Blood Flow, Glucose Metabolism, and Dopamine Binding Through Transcranial Magnetic Stimulation: A Systematic Review of Transcranial Magnetic Stimulation-Positron Emission Tomography Literature. Pharmacol Rev 2022; 74:918-932. [PMID: 36779330 PMCID: PMC9580100 DOI: 10.1124/pharmrev.122.000579] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation tool currently used as a treatment in multiple psychiatric and neurologic disorders. Despite its widespread use, we have an incomplete understanding of the way in which acute and chronic sessions of TMS affect various neural and vascular systems. This systematic review summarizes the state of our knowledge regarding the effects TMS may be having on cerebral blood flow, glucose metabolism, and neurotransmitter release. Forty-five studies were identified. Several key themes emerged: 1) TMS transiently increases cerebral blood flow in the area under the coil; 2) TMS to the prefrontal cortex increases glucose metabolism in the anterior cingulate cortex of patients with depression; and 3) TMS to the motor cortex and prefrontal cortex decreases dopamine receptor availability in the ipsilateral putamen and caudate respectively. There is, however, a paucity of literature regarding the effects TMS may have on other neurotransmitter and neuropeptide systems of interest, all of which may shed vital light on existing biologic mechanisms and future therapeutic development. SIGNIFICANCE STATEMENT: Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation tool currently used as a treatment in multiple psychiatric and neurologic disorders. This systematic review summarizes the state of our knowledge regarding the effects TMS on cerebral blood flow, glucose metabolism, and neurotransmitter release.
Collapse
Affiliation(s)
- Kaitlin R Kinney
- Department of Cancer Biology (K.R.K., C.A.H.) and Department of Physiology and Pharmacology (C.A.H.), Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Colleen A Hanlon
- Department of Cancer Biology (K.R.K., C.A.H.) and Department of Physiology and Pharmacology (C.A.H.), Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
8
|
Chen MH, Cheng CM, Li CT, Tsai SJ, Lin WC, Bai YM, Su TP. Comparative study of low-dose ketamine infusion and repetitive transcranial magnetic stimulation in treatment-resistant depression: A posthoc pooled analysis of two randomized, double-blind, placebo-controlled studies. Psychiatry Res 2022; 316:114749. [PMID: 35940087 DOI: 10.1016/j.psychres.2022.114749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND This posthoc analysis compared the antidepressant and antisuicidal effects of low-dose ketamine infusion with those of repetitive transcranial magnetic stimulation (rTMS) on treatment-resistant depression (TRD). METHODS In the ketamine infusion trial, 48 patients with TRD were randomized to receive a single infusion of 0.5 mg/kg ketamine or normal saline. In the rTMS trial, 105 patients were randomly assigned to intermittent theta-burst stimulation (iTBS), 10-Hz rTMS, or sham stimulation. The 17-item Hamilton Rating Scale for Depression (HDRS) was administered. RESULTS The antidepressant effect was prominent at Day 7 postinfusion in the ketamine group but steadily accumulated with the treatment duration from Day 7 to 14 in the iTBS and 10-Hz rTMS groups, regardless of the level of treatment resistance (all p < .01). Low-dose ketamine infusion and iTBS exerted superior effects on suicidal symptoms (HDRS item 3) than the other three groups (p < .001). The antidepressant effect of iTBS/10-Hz rTMS may persist for up to 3 months; however, the antidepressant effect of a single low-dose ketamine infusion did not persist over a month. DISCUSSION Both low-dose ketamine infusion and rTMS/TBS must be included in TRD treatment but may be applied in different clinical situations.
Collapse
Affiliation(s)
- Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec.2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec.2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec.2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec.2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec.2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec.2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec.2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan.
| |
Collapse
|
9
|
Ikawa H, Tochigi M, Noda Y, Oba H, Kaminaga T, Sakurai K, Ikebuchi E, Hayashi N, Kunugi H. A preliminary study on predictors of treatment response to repetitive transcranial magnetic stimulation in patients with treatment-resistant depression in Japan. Neuropsychopharmacol Rep 2022; 42:478-484. [PMID: 36039823 PMCID: PMC9773710 DOI: 10.1002/npr2.12290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Brain imaging studies have reported that the effect of repetitive transcranial magnetic stimulation (rTMS) is associated with the activities of the dorsolateral prefrontal cortex (DLPFC) and ventral medial prefrontal cortex (VMPFC). However, few studies have been conducted in Japanese patients. AIM We aimed to identify brain regions associated with depressive symptom changes by measuring regional cerebral blood flow (rCBF) in the DLPFC and VMPFC before and after the high-frequency rTMS to the left DLPFC in Japanese patients with treatment-resistant depression. METHOD Fourteen patients participated in the rTMS study and were assessed with the 17-item Hamilton depression rating scale (HAM-D17 ). Among them, 13 participants underwent magnetic resonance imaging scan of the brain using the arterial spin labeling method. The rCBF was calculated using the fine stereotactic region of interest template (FineSRT) program for automated analysis. We focused on eight regions reported in previous studies. RESULTS Depression severity significantly decreased after 2 week (HAM-D17 :11.4 ± 2.8, P = 0.00027) and 4 week (HAM-D17 : 11.0 ± 3.7, P = 0.0023) of rTMS treatment. There was no significant change in rCBF at each region in the pre-post design. However, there was a significantly negative correlation between baseline rCBF in the right DLPFC and the improvement in HAM-D17 score (r = -0.559, P = 0.047). CONCLUSION We obtained supportive evidence for the effectiveness of rTMS to the prefrontal cortex in treatment-resistant depression, which may be associated with reduced rCBF of the right DLPFC before initiation of rTMS.
Collapse
Affiliation(s)
- Haruki Ikawa
- Department of NeuropsychiatryTeikyo University School of Medicine, Graduate School of MedicineItabashiJapan,Tokyo‐Yokohama TMS clinicKawasakiJapan
| | - Mamoru Tochigi
- Department of NeuropsychiatryTeikyo University School of Medicine, Graduate School of MedicineItabashiJapan,Health Care Center, the University of Electro‐CommunicationsTokyoJapan
| | - Yoshihiro Noda
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Hiroshi Oba
- Department of RadiologyTeikyo University School of Medicine, Graduate School of MedicineItabashiJapan
| | - Tatsuro Kaminaga
- Department of RadiologyTeikyo University School of Medicine, Graduate School of MedicineItabashiJapan
| | - Keita Sakurai
- Department of RadiologyNational Center for Geriatrics and GerontologyObuJapan
| | - Emi Ikebuchi
- Department of NeuropsychiatryTeikyo University School of Medicine, Graduate School of MedicineItabashiJapan,Teikyo Heisei University, Graduate School of Clinical PsychologyToshimaJapan
| | - Naoki Hayashi
- Department of NeuropsychiatryTeikyo University School of Medicine, Graduate School of MedicineItabashiJapan,Nishigahara HospitalKitaJapan
| | - Hiroshi Kunugi
- Department of NeuropsychiatryTeikyo University School of Medicine, Graduate School of MedicineItabashiJapan
| |
Collapse
|
10
|
Li CT, Juan CH, Lin HC, Cheng CM, Wu HT, Yang BH, Tsai SJ, Su TP, Fitzgerald PB. Cortical excitatory and inhibitory correlates of the fronto-limbic circuit in major depression and differential effects of left frontal brain stimulation in a randomized sham-controlled trial. J Affect Disord 2022; 311:364-370. [PMID: 35618168 DOI: 10.1016/j.jad.2022.05.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Major depressive disorder (MDD), particularly treatment-resistant ones, is associated with abnormal fronto-limbic glucose metabolism. 10-Hz repetitive transcranial magnetic stimulation (rTMS) over left prefrontal cortex (PFC) is believed to normalize the abnormal metabolism to treat depression. However, the exact molecular mechanisms underlying the mood circuit of depressed brains and whether brain stimulation techniques regulate the underlying molecules remain elusive. METHODS Whole-brain glucose metabolism and cortical excitatory and inhibitory markers including P30, N45, P60, N100, and LICI (long-interval cortical inhibition) of TMS-evoked potentials from left DLPFC were measured in 40 subjects with MDD patients. The neurophysiological markers were repeated immediately after 1st session of left PFC rTMS, intermittent theta-burst stimulation (iTBS), and sham (randomly assigned). RESULTS Brain glucose metabolism in the limbic structures significantly correlated with left PFC P30 (mainly GABA-A and glutamate receptor mediated) and with LICI (mainly GABA-B receptor mediated inhibition) (FWE-corrected p < 0.001). Correlations between other neurophysiological markers (left PFC N45, P60, and N100) and posterior cingulate cortex, a key region in the default mode network, were also noted. One session of rTMS significantly decreased left PFC P60 (mainly glutamate receptor mediated), while a significant group effect was found for LICI (iTBS < sham). CONCLUSION The first study showed that the underlying molecular mechanisms of fronto-limbic circuit of MDD brains involved glutamatergic excitation and GABAergic inhibition at specific time points. In addition, one session of rTMS mainly modulated glutamatergic neurotransmission at left PFC, while the mechanisms of iTBS might involve GABA-B receptor mediated inhibition. CLINICAL TRIALS REGISTRY NUMBER UMIN000044951.
Collapse
Affiliation(s)
- Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Institute of Brain Science and Brain Research Center, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan.
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Hui-Ting Wu
- Institute of Brain Science and Brain Research Center, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Institute of Brain Science and Brain Research Center, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Institute of Brain Science and Brain Research Center, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia.
| |
Collapse
|
11
|
Wu GR, Duprat R, Baeken C. Accelerated iTBS changes perfusion patterns in medication resistant depression. J Affect Disord 2022; 306:276-280. [PMID: 35306123 DOI: 10.1016/j.jad.2022.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 01/22/2023]
Abstract
Accelerated intermittent Theta Burst Stimulation (aiTBS) is a new non-invasive brain stimulation protocol developed to rapidly treat medication resistant depression (MRD). However, to examine potential neurobiological changes only few sham-controlled studies combining pre/post treatment measures and brain imaging data are available. Consequently, with this Arterial Spin Labeling (ASL) brain imaging study, we investigated in 45 antidepressant-free MRD patients whether clinical improvement following aiTBS treatment applied to the left dorsolateral prefrontal cortex (Trial registration: http://clinicaltrials.gov/show/NCT01832805) would be associated with specific changes in brain perfusion patterns. We primarily expected frontolimbic perfusion changes following active and not sham aiTBS. Our ASL brain imaging findings showed that active aiTBS resulted in prompt perfusion increases in functionally connected brain regions such as the ventromedial prefrontal cortex and the right inferior parietal lobule. We also observed decreased perfusion in the left parahippocampal gyrus and the right posterior cerebellar lobe after active aiTBS. On the other hand, sham aiTBS resulted in right angular perfusion decreases, an area known to be involved in placebo responses. Overall, our perfusion findings indicate that active aiTBS treatment promptly affects brain regions functionally and structurally connected to the stimulated area and known to be part of deregulated brain circuits when clinically depressed. Placebo responses may be part of the clinical effects of accelerated ITS protocols. Our current results further shed light on how accelerated rTMS treatment protocols may promptly improve depressive symptoms in MRD.
Collapse
Affiliation(s)
- Guo-Rong Wu
- School of Psychology, Jiangxi Normal University, Nanchang, China; Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| | - Romain Duprat
- Center for the Neuromodulation of Depression and Stress, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA
| | - Chris Baeken
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Eindhoven University of Technology, Departement of Electrical Engineering, Eindhoven, the Netherlands
| |
Collapse
|
12
|
Aceves-Serrano L, Neva JL, Doudet DJ. Insight Into the Effects of Clinical Repetitive Transcranial Magnetic Stimulation on the Brain From Positron Emission Tomography and Magnetic Resonance Imaging Studies: A Narrative Review. Front Neurosci 2022; 16:787403. [PMID: 35264923 PMCID: PMC8899094 DOI: 10.3389/fnins.2022.787403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a therapeutic tool to alleviate symptoms for neurological and psychiatric diseases such as chronic pain, stroke, Parkinson’s disease, major depressive disorder, and others. Although the therapeutic potential of rTMS has been widely explored, the neurological basis of its effects is still not fully understood. Fortunately, the continuous development of imaging techniques has advanced our understanding of rTMS neurobiological underpinnings on the healthy and diseased brain. The objective of the current work is to summarize relevant findings from positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques evaluating rTMS effects. We included studies that investigated the modulation of neurotransmission (evaluated with PET and magnetic resonance spectroscopy), brain activity (evaluated with PET), resting-state connectivity (evaluated with resting-state functional MRI), and microstructure (diffusion tensor imaging). Overall, results from imaging studies suggest that the effects of rTMS are complex and involve multiple neurotransmission systems, regions, and networks. The effects of stimulation seem to not only be dependent in the frequency used, but also in the participants characteristics such as disease progression. In patient populations, pre-stimulation evaluation was reported to predict responsiveness to stimulation, while post-stimulation neuroimaging measurements showed to be correlated with symptomatic improvement. These studies demonstrate the complexity of rTMS effects and highlight the relevance of imaging techniques.
Collapse
Affiliation(s)
- Lucero Aceves-Serrano
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Lucero Aceves-Serrano,
| | - Jason L. Neva
- École de Kinésiologie et des Sciences de l’Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Doris J. Doudet
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Chou PH, Lin YF, Lu MK, Chang HA, Chu CS, Chang WH, Kishimoto T, Sack AT, Su KP. Personalization of Repetitive Transcranial Magnetic Stimulation for the Treatment of Major Depressive Disorder According to the Existing Psychiatric Comorbidity. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:190-205. [PMID: 33888649 PMCID: PMC8077054 DOI: 10.9758/cpn.2021.19.2.190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) and intermittent theta-burst stimulation (iTBS) are evidenced-based treatments for patients with major depressive disorder (MDD) who fail to respond to standard first-line therapies. However, although various TMS protocols have been proven to be clinically effective, the response rate varies across clinical applications due to the heterogeneity of real-world psychiatric comorbidities, such as generalized anxiety disorder, posttraumatic stress disorder, panic disorder, or substance use disorder, which are often observed in patients with MDD. Therefore, individualized treatment approaches are important to increase treatment response by assigning a given patient to the most optimal TMS treatment protocol based on his or her individual profile. This literature review summarizes different rTMS or TBS protocols that have been applied in researches investigating MDD patients with certain psychiatric comorbidities and discusses biomarkers that may be used to predict rTMS treatment response. Furthermore, we highlight the need for the validation of neuroimaging and electrophysiological biomarkers associated with rTMS treatment responses. Finally, we discuss on which directions future efforts should focus for developing the personalization of the treatment of depression with rTMS or iTBS.
Collapse
Affiliation(s)
- Po-Han Chou
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan.,Department of Psychiatry, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Taiwan Allied Clinics for Integrative TMS, Taipei, Taiwan
| | - Yen-Feng Lin
- Taiwan Allied Clinics for Integrative TMS, Taipei, Taiwan.,Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan.,Department of Public Health & Medical Humanities, Faculty of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Balance Psychiatric Clinic, Hsinchu, Taiwan
| | - Ming-Kuei Lu
- Ph.D. Program for Translational Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei Hung Chang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
| | - Kuan-Pin Su
- Department of Psychiatry, China Medical University Hospital, China Medical University, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.,An-Nan Hospital, China Medical University, Tainan, Taiwan
| |
Collapse
|
14
|
Baeken C, van Beek V, Vanderhasselt MA, Duprat R, Klooster D. Cortical Thickness in the Right Anterior Cingulate Cortex Relates to Clinical Response to Left Prefrontal Accelerated Intermittent Theta Burst Stimulation: An Exploratory Study. Neuromodulation 2021; 24:938-949. [PMID: 33788975 PMCID: PMC8360012 DOI: 10.1111/ner.13380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/29/2022]
Abstract
Objectives Accelerated intermittent theta burst stimulation (aiTBS) is a promising treatment option for depressed patients. However, there is a large interindividual variability in clinical effectiveness and individual biomarkers to guide treatment outcome are needed. Materials and Methods Here, the relation between cortical thickness and clinical response (17‐item Hamilton Depression Rating Scale) was studied using anatomical MRI data of 50 depressed patients who were included in a randomized, sham‐controlled, double‐blinded, cross‐over aiTBS design (NCT01832805). Results Baseline cortical thickness in the right caudal part of the anterior cingulate cortex (cACC) was significantly correlated with direct clinical responses in the subgroup who received active aiTBS during the first stimulation week. No correlations were found between baseline cortical thickness and delayed clinical effectiveness. In this particular region, longitudinal changes in cortical thickness were significantly correlated with clinical effectiveness. Furthermore, direct changes in cortical thickness in the right cACC showed predictive potential of delayed clinical responses. Conclusion Cortical thickness within the right cACC might be an important biomarker to predict clinical responses to aiTBS. Additional studies are warranted to substantiate the specific biomarker potential of these parts of the ACC.
Collapse
Affiliation(s)
- Chris Baeken
- Ghent Experimental Psychiatry Laboratory, Ghent University, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Psychiatry, University hospital Brussels, Brussels, Belgium
| | - Vince van Beek
- Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | | | - Romain Duprat
- Department of Psychiatry, Center for the Neuromodulation of Depression and Stress, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Debby Klooster
- Ghent Experimental Psychiatry Laboratory, Ghent University, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
15
|
de Wandel L, Pulopulos MM, Labanauskas V, de Witte S, Vanderhasselt MA, Baeken C. Individual resting-state frontocingular functional connectivity predicts the intermittent theta burst stimulation response to stress in healthy female volunteers. Hum Brain Mapp 2020; 41:5301-5312. [PMID: 33010200 PMCID: PMC7670632 DOI: 10.1002/hbm.25193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
Intermittent theta burst stimulation (iTBS) delivered to the dorsolateral prefrontal cortex (DLPFC) has been investigated as a promising treatment for stress and stress‐related mental disorders such as major depression, yet large individual differences in responsiveness demand further exploration and optimization of its effectiveness. Clinical research suggests that resting‐state functional connectivity (rsFC) between the DLPFC and the anterior cingulate cortex (ACC) can predict iTBS treatment response in depression. The present study aimed to investigate whether rsFC between the left DLPFC and ACC subregions could predict the degree to which the stress system is affected by iTBS. After assessment of baseline resting‐state fMRI data, 34 healthy female participants performed the Trier Social Stress Test on two separate days, each followed by active or sham iTBS over the left DLPFC. To evaluate iTBS effects on the stress‐system, salivary cortisol was measured throughout the procedure. Our results showed that a stronger negative correlation between the left DLPFC and the caudal ACC was linked to a larger attenuation of stress‐system sensitivity during active, but not during sham iTBS. In conclusion, based on individual rsFC between left DLPFC and caudal ACC, iTBS could be optimized to more effectively attenuate deregulation of the stress system.
Collapse
Affiliation(s)
- Linde de Wandel
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.,Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Vytautas Labanauskas
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Sara de Witte
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium.,Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Chris Baeken
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium.,Department of Psychiatry, University Hospital UZ Brussel, Brussels, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
16
|
Tremblay S, Tuominen L, Zayed V, Pascual-Leone A, Joutsa J. The study of noninvasive brain stimulation using molecular brain imaging: A systematic review. Neuroimage 2020; 219:117023. [DOI: 10.1016/j.neuroimage.2020.117023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
|
17
|
Klooster DC, Vos IN, Caeyenberghs K, Leemans A, David S, Besseling RM, Aldenkamp AP, Baeken C. Indirect frontocingulate structural connectivity predicts clinical response to accelerated rTMS in major depressive disorder. J Psychiatry Neurosci 2020; 45:243-252. [PMID: 31990490 PMCID: PMC7828925 DOI: 10.1503/jpn.190088] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an established treatment for major depressive disorder (MDD), but its clinical efficacy remains rather modest. One reason for this could be that the propagation of rTMS effects via structural connections from the stimulated area to deeper brain structures (such as the cingulate cortices) is suboptimal. METHODS We investigated whether structural connectivity — derived from diffusion MRI data — could serve as a biomarker to predict treatment response. We hypothesized that stronger structural connections between the patient-specific stimulation position in the left dorsolateral prefrontal cortex (dlPFC) and the cingulate cortices would predict better clinical outcomes. We applied accelerated intermittent theta burst stimulation (aiTBS) to the left dlPFC in 40 patients with MDD. We correlated baseline structural connectivity, quantified using various metrics (fractional anisotropy, mean diffusivity, tract density, tract volume and number of tracts), with changes in depression severity scores after aiTBS. RESULTS Exploratory results (p < 0.05) showed that structural connectivity between the patient-specific stimulation site and the caudal and posterior parts of the cingulate cortex had predictive potential for clinical response to aiTBS. LIMITATIONS We used the diffusion tensor to perform tractography. A main limitation was that multiple fibre directions within voxels could not be resolved, which might have led to missing connections in some patients. CONCLUSION Stronger structural frontocingular connections may be of essence to optimally benefit from left dlPFC rTMS treatment in MDD. Even though the results are promising, further investigation with larger numbers of patients, more advanced tractography algorithms and classic daily rTMS treatment paradigms is warranted. CLINICAL TRIAL REGISTRATION http://clinicaltrials.gov/show/NCT01832805
Collapse
Affiliation(s)
- Deborah C.W. Klooster
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| | - Iris N. Vos
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| | - Karen Caeyenberghs
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| | - Alexander Leemans
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| | - Szabolcs David
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| | - René M.H. Besseling
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| | - Albert P. Aldenkamp
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| | - Chris Baeken
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| |
Collapse
|
18
|
Kang SG, Cho SE. Neuroimaging Biomarkers for Predicting Treatment Response and Recurrence of Major Depressive Disorder. Int J Mol Sci 2020; 21:ijms21062148. [PMID: 32245086 PMCID: PMC7139562 DOI: 10.3390/ijms21062148] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 12/26/2022] Open
Abstract
The acute treatment duration for major depressive disorder (MDD) is 8 weeks or more. Treatment of patients with MDD without predictors of treatment response and future recurrence presents challenges and clinical problems to patients and physicians. Recently, many neuroimaging studies have been published on biomarkers for treatment response and recurrence of MDD using various methods such as brain volumetric magnetic resonance imaging (MRI), functional MRI (resting-state and affective tasks), diffusion tensor imaging, magnetic resonance spectroscopy, near-infrared spectroscopy, and molecular imaging (i.e., positron emission tomography and single photon emission computed tomography). The results have been inconsistent, and we hypothesize that this could be due to small sample size; different study design, including eligibility criteria; and differences in the imaging and analysis techniques. In the future, we suggest a more sophisticated research design, larger sample size, and a more comprehensive integration including genetics to establish biomarkers for the prediction of treatment response and recurrence of MDD.
Collapse
|
19
|
De Raedt R. Contributions from neuroscience to the practice of Cognitive Behaviour Therapy: Translational psychological science in service of good practice. Behav Res Ther 2020; 125:103545. [DOI: 10.1016/j.brat.2019.103545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/25/2019] [Accepted: 12/29/2019] [Indexed: 01/12/2023]
|
20
|
Trifu SC, Trifu AC, Aluaş E, Tătaru MA, Costea RV. Brain changes in depression. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2020; 61:361-370. [PMID: 33544788 PMCID: PMC7864313 DOI: 10.47162/rjme.61.2.06] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present review addresses major depressive disorder (MDD) and the implications of antidepressant treatment in the field of brain neuroplasticity, an effect initially considered adjacent but currently passed as central in the process of remission of MDD. Both in experimental animal studies and in human studies in subjects with mood disorders, neuroplasticity is considered the fundamental mechanism of neural defense against stress. Stress is the mediator between neurofunctional, neuroendocrine, neurobiological and neuroimmune disorders and depressive pathology of various intensities. Neurons have a high potential to adapt to the influences of internal and external factors. We are talking about neuroplasticity at different levels: structural neuroplasticity involving adult neurogenesis (such as plastic changes, dendritic reconstruction, when the morphology of the spine is affected); synaptic functional neuroplasticity and molecular and cellular mechanisms involved. These two major dimensions explain the pathophysiology of depression, as well as the convergence of the mechanisms involved in stress, major depressive decompensations, and the concept of neuroplasticity as the present target for new effective and potent antidepressant treatments.
Collapse
Affiliation(s)
- Simona Corina Trifu
- Department of General Medicine, Medical Military Institute, Bucharest, Romania;
| | | | | | | | | |
Collapse
|
21
|
Garnaat SL, Fukuda AM, Yuan S, Carpenter LL. Identification of Clinical Features and Biomarkers that may inform a Personalized Approach to rTMS for Depression. ACTA ACUST UNITED AC 2019; 17-18:4-16. [PMID: 33954269 DOI: 10.1016/j.pmip.2019.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS), an established treatment for treatment-resistant depression, may hold promise as a personalized medicine approach for the treatment of major depressive disorder (MDD). Clinical research has begun to identify patient-specific factors that could be used to guide rTMS treatment decisions or individualized treatment approaches. This literature review describes a range of patient factors which have been evaluated as potential biomarkers of rTMS treatment response, including patient- and illness-related characteristics, genetic factors, and biomarkers derived from neuroimaging and EEG. We highlight the need for validation data for imaging and electrophysiological biomarkers associated with rTMS as well as prospective evaluation of clinical predictors. Finally, we consider implications for future efforts to move toward a personalized medicine approach in the treatment of depression with rTMS.
Collapse
Affiliation(s)
- Sarah L Garnaat
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, 345 Blackstone Blvd., Providence, RI, 02906, USA.,Butler Hospital, Providence, RI, 345 Blackstone Blvd., Providence, RI, 02906, USA
| | - Andrew M Fukuda
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, 345 Blackstone Blvd., Providence, RI, 02906, USA.,Butler Hospital, Providence, RI, 345 Blackstone Blvd., Providence, RI, 02906, USA
| | - Shiwen Yuan
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, 345 Blackstone Blvd., Providence, RI, 02906, USA.,Butler Hospital, Providence, RI, 345 Blackstone Blvd., Providence, RI, 02906, USA
| | - Linda L Carpenter
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, 345 Blackstone Blvd., Providence, RI, 02906, USA.,Butler Hospital, Providence, RI, 345 Blackstone Blvd., Providence, RI, 02906, USA
| |
Collapse
|
22
|
Kar SK. Predictors of Response to Repetitive Transcranial Magnetic Stimulation in Depression: A Review of Recent Updates. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2019; 17:25-33. [PMID: 30690937 PMCID: PMC6361049 DOI: 10.9758/cpn.2019.17.1.25] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022]
Abstract
Transcranial magnetic stimulation (TMS) has been increasingly used in the treatment of various neuropsychiatric disorders including depression over the past two decades. The responses to treatment with TMS are variable as found in the recent studies. Evidences suggest that various factors influence the outcome of depression treated with TMS. Understanding the predictors of response to TMS treatment in depression will guide the clinician in appropriate selection of patients for TMS treatment as well as needful modification in the TMS technique and protocol to have a better clinical outcome. This article comprehensively reviews the factors that predict the outcome of TMS treatment in depression.
Collapse
Affiliation(s)
- Sujita Kumar Kar
- Department of Psychiatry, King George's Medical University, Lucknow, India
| |
Collapse
|
23
|
Bailey NW, Hoy KE, Rogasch NC, Thomson RH, McQueen S, Elliot D, Sullivan CM, Fulcher BD, Daskalakis ZJ, Fitzgerald PB. Differentiating responders and non-responders to rTMS treatment for depression after one week using resting EEG connectivity measures. J Affect Disord 2019; 242:68-79. [PMID: 30172227 DOI: 10.1016/j.jad.2018.08.058] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/30/2018] [Accepted: 08/12/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Non-response to repetitive transcranial magnetic stimulation (rTMS) treatment for depression is costly for both patients and clinics. Simple and cheap methods to predict response would reduce this burden. Resting EEG measures differentiate responders from non-responders, so may have utility for response prediction. METHODS Fifty patients with treatment resistant depression and 21 controls had resting electroencephalography (EEG) recorded at baseline (BL). Patients underwent 5-8 weeks of rTMS treatment, with EEG recordings repeated at week 1 (W1). Forty-two participants had valid BL and W1 EEG data, and 12 were responders. Responders and non-responders were compared at BL and W1 in measures of theta (4-8 Hz) and alpha (8-13 Hz) power and connectivity, frontal theta cordance and alpha peak frequency. Control group comparisons were made for measures that differed between responders and non-responders. A machine learning algorithm assessed the potential to differentiate responders from non-responders using EEG measures in combination with change in depression scores from BL to W1. RESULTS Responders showed elevated theta connectivity across BL and W1. No other EEG measures differed between groups. Responders could be distinguished from non-responders with a mean sensitivity of 0.84 (p = 0.001) and specificity of 0.89 (p = 0.002) using cross-validated machine learning classification on the combination of all EEG and mood measures. LIMITATIONS The low response rate limited our sample size to only 12 responders. CONCLUSION Resting theta connectivity at BL and W1 differ between responders and non-responders, and show potential for predicting response to rTMS treatment for depression.
Collapse
Affiliation(s)
- N W Bailey
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia..
| | - K E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - N C Rogasch
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton 3168, Victoria, Australia
| | - R H Thomson
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - S McQueen
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - D Elliot
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - C M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - B D Fulcher
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton 3168, Victoria, Australia
| | - Z J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia.; Epworth Healthcare, The Epworth Clinic, Camberwell 3004, Victoria, Australia
| |
Collapse
|
24
|
Namgung E, Kim M, Yoon S. Repetitive transcranial magnetic stimulation in trauma-related conditions. Neuropsychiatr Dis Treat 2019; 15:701-712. [PMID: 30936700 PMCID: PMC6430993 DOI: 10.2147/ndt.s189498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Some of trauma-exposed individuals develop posttraumatic stress disorder (PTSD), an incapacitating psychiatric disorder that is characterized by intrusion, avoidance, negative changes in mood and cognition, and hyperarousal. A number of other trauma-related conditions are very frequently found in individuals with PTSD. Traumatic brain injury (TBI) is one of the most frequently observed trauma-related conditions that trauma-exposed individuals with PTSD may experience. TBI refers to transient or permanent brain dysfunction that results in a wide range of neurological, cognitive, and psychiatric symptoms. These trauma-related conditions significantly affect one's quality of life, leading to substantial disability and socioeconomic burden. As the prevalence of PTSD with comorbid TBI is increasing in the general population along with the rates of crimes and accidents, effective prevention and intervention strategies are necessitated. However, a definitive treatment for PTSD with comorbid TBI is still lacking, resulting in high rates of treatment resistance and chronicity. It is essential to investigate the neurobiological mechanisms and potential therapeutics of PTSD with comorbid TBI. Yet, a few repetitive transcranial magnetic stimulation (rTMS) studies have recently investigated therapeutic efficacy in treatment-resistant patients with PTSD and/or TBI. Thus, this article reviews rTMS studies in trauma-related conditions, mainly focusing on PTSD and PTSD with TBI as one of the comorbidities. The review focuses on the applications of rTMS in reducing PTSD symptoms with and without comorbidities based on differential parameters and effects of rTMS as well as concomitant clinical conditions. The section on PTSD with comorbidities focuses on TBI with neurological, cognitive, and psychiatric symptoms. Although there were some inconsistencies in the clinical outcomes and optimized parameters of rTMS applied in PTSD and TBI, low frequency stimulation over the hyperactive frontal regions and/or high frequency stimulation over the hypoactive frontal regions generally improved the clinical symptoms of PTSD and TBI. Lastly, the limitations of the rTMS studies in PTSD and TBI as well as potential directions for future research are discussed.
Collapse
Affiliation(s)
- Eun Namgung
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea, .,Ewha Brain Institute, Ewha Womans University, Seoul, South Korea,
| | - Myeongju Kim
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea, .,Ewha Brain Institute, Ewha Womans University, Seoul, South Korea,
| | - Sujung Yoon
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea, .,Ewha Brain Institute, Ewha Womans University, Seoul, South Korea,
| |
Collapse
|
25
|
Kreuzer PM, Downar J, Ridder D, Schwarzbach J, Schecklmann M, Langguth B. A Comprehensive Review of Dorsomedial Prefrontal Cortex rTMS Utilizing a Double Cone Coil. Neuromodulation 2018; 22:851-866. [DOI: 10.1111/ner.12874] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 08/19/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Peter M. Kreuzer
- Department of Psychiatry and PsychotherapyUniversity of Regensburg Germany
| | - Jonathan Downar
- Department of PsychiatryUniversity of Toronto Toronto ON Canada
- Institute of Medical Science, University of Toronto Toronto ON Canada
- Krembil Research InstituteUniversity Health Network Toronto ON Canada
- MRI‐Guided rTMS ClinicUniversity Health Network Toronto ON Canada
| | - Dirk Ridder
- Department of Surgical Sciences, Unit of Neurosurgery, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
- Brain Research Center Antwerp for Innovative & Interdisciplinary NeuromodulationSint‐Augustinus Hospital Belgium
| | - Jens Schwarzbach
- Department of Psychiatry and PsychotherapyUniversity of Regensburg Germany
| | - Martin Schecklmann
- Department of Psychiatry and PsychotherapyUniversity of Regensburg Germany
| | - Berthold Langguth
- Department of Psychiatry and PsychotherapyUniversity of Regensburg Germany
| |
Collapse
|
26
|
Fonseka TM, MacQueen GM, Kennedy SH. Neuroimaging biomarkers as predictors of treatment outcome in Major Depressive Disorder. J Affect Disord 2018; 233:21-35. [PMID: 29150145 DOI: 10.1016/j.jad.2017.10.049] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Current practice for selecting pharmacological and non-pharmacological antidepressant treatments has yielded low response and remission rates in Major Depressive Disorder (MDD). Neuroimaging biomarkers of brain structure and function may be useful in guiding treatment selection by predicting response vs. non-response outcomes. METHODS In this review, we summarize data from studies examining predictors of treatment response using structural and functional neuroimaging modalities, as they pertain to pharmacotherapy, psychotherapy, and stimulation treatment strategies. A literature search was conducted in OVID Medline, EMBASE, and PsycINFO databases with coverage from January 1990 to January 2017. RESULTS Several imaging biomarkers of therapeutic response in MDD emerged: frontolimbic regions, including the prefrontal cortex, anterior cingulate cortex, hippocampus, amygdala, and insula were regions of interest. Since these sub-regions are implicated in the etiology of MDD, their association with response outcomes may be the result of treatments having a normalizing effect on structural or activation abnormalities. LIMITATIONS The direction of findings is inconsistent in studies examining these biomarkers, and variation across 'biotypes' within MDD may account for this. Limitations in sample size and differences in methodology likely also contribute. CONCLUSIONS The identification of accurate, reliable neuroimaging biomarkers of treatment response holds promise toward improving treatment outcomes and reducing burden of illness for patients with MDD. However, before these biomarkers can be translated into clinical practice, they will need to be replicated and validated in large, independent samples, and integrated with data from other biological systems.
Collapse
Affiliation(s)
- Trehani M Fonseka
- Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Glenda M MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Müller HHO, Moeller S, Lücke C, Lam AP, Braun N, Philipsen A. Vagus Nerve Stimulation (VNS) and Other Augmentation Strategies for Therapy-Resistant Depression (TRD): Review of the Evidence and Clinical Advice for Use. Front Neurosci 2018; 12:239. [PMID: 29692707 PMCID: PMC5902793 DOI: 10.3389/fnins.2018.00239] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/27/2018] [Indexed: 12/21/2022] Open
Abstract
In addition to electroconvulsive therapy (ECT) and repetitive transcranial magnetic stimulation (rTMS), vagus nerve stimulation (VNS) is one of the approved neurostimulation tools for treatment of major depression. VNS is particularly used in therapy-resistant depression (TRD) and exhibits antidepressive and augmentative effects. In long-term treatment, up to two-thirds of patients respond. This mini-review provides a comprehensive overview of augmentation pharmacotherapy and neurostimulation-based treatment strategies, with a special focus on VNS in TRD, and provides practical clinical advice for how to select TRD patients for add-on neurostimulation treatment strategies.
Collapse
Affiliation(s)
- Helge H O Müller
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Bonn, Bonn, Germany
| | - Sebastian Moeller
- Department of Psychiatry and Psychotherapy, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Caroline Lücke
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Bonn, Bonn, Germany
| | - Alexandra P Lam
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Bonn, Bonn, Germany
| | - Niclas Braun
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Bonn, Bonn, Germany.,Department of Psychiatry and Psychotherapy, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Bonn, Bonn, Germany
| |
Collapse
|
28
|
Philip NS, Barredo J, Aiken E, Carpenter LL. Neuroimaging Mechanisms of Therapeutic Transcranial Magnetic Stimulation for Major Depressive Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:211-222. [PMID: 29486862 PMCID: PMC5856477 DOI: 10.1016/j.bpsc.2017.10.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/06/2017] [Accepted: 10/29/2017] [Indexed: 01/11/2023]
Abstract
Research into therapeutic transcranial magnetic stimulation (TMS) for major depression has dramatically increased in the last decade. Understanding the mechanism of action of TMS is crucial to improve efficacy and develop the next generation of therapeutic stimulation. Early imaging research provided initial data supportive of widely held assumptions about hypothesized inhibitory or excitatory consequences of stimulation. Early work also indicated that while TMS modulated brain activity under the stimulation site, effects at deeper regions, in particular, the subgenual anterior cingulate cortex, were associated with clinical improvement. Concordant with earlier findings, functional connectivity studies also demonstrated that clinical improvements were related to changes distal, rather than proximal, to the site of stimulation. Moreover, recent work suggests that TMS modulates and potentially normalizes functional relationships between neural networks. An important observation that emerged from this review is that similar patterns of connectivity changes are observed across studies regardless of TMS parameters. Though promising, we stress that these imaging findings must be evaluated cautiously given the widespread reliance on modest sample sizes and little implementation of statistical validation. Additional limitations included use of imaging before and after a course of TMS, which provided little insight into changes that might occur during the weeks of stimulation. Furthermore, as studies to date have focused on depression, it is unclear whether our observations were related to mechanisms of action of TMS for depression or represented broader patterns of functional brain changes associated with clinical improvement.
Collapse
Affiliation(s)
- Noah S Philip
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island; Mood Disorders Research Program and Neuromodulation Research Facility, Butler Hospital, Providence, Rhode Island; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island.
| | - Jennifer Barredo
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Emily Aiken
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island
| | - Linda L Carpenter
- Mood Disorders Research Program and Neuromodulation Research Facility, Butler Hospital, Providence, Rhode Island; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
29
|
Dockx R, Baeken C, Duprat R, De Vos F, Saunders JH, Polis I, Audenaert K, Peremans K. Changes in canine cerebral perfusion after accelerated high frequency repetitive transcranial magnetic stimulation (HF-rTMS): A proof of concept study. Vet J 2018; 234:66-71. [PMID: 29680396 DOI: 10.1016/j.tvjl.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a treatment for several neuropsychiatric disorders in human beings, but the neurobiological effects of rTMS in dogs have not been investigated to date. A proof of concept study was designed to evaluate the effect of rTMS on cerebral perfusion, measured with single photon emission computed tomography (SPECT), in dogs. An accelerated high frequency (aHF)-rTMS (20Hz) protocol was applied to the canine left frontal cortex. To accurately target this area, eight dogs underwent a 3 Tesla magnetic resonance imaging (MRI) scan before stimulation. The left frontal cortex was subjected to five consecutive aHF-rTMS sessions with a figure-of-eight coil designed for human beings at an intensity of 110% of the motor threshold. The dogs underwent 99mTc-d,1 hexamethylpropylene amine oxime (HMPAO) SPECT scans 1 week prior to and 1day after the stimulations. Perfusion indices (PIs) were determined semi-quantitatively; aHF-rTMS resulted in significantly increased PIs in the left frontal cortex and the subcortical region, whereas no significant differences were noted for the other regions. Behaviour was not influenced by the stimulation sessions. As has been observed in human beings, aHF-rTMS applied to the left frontal cortex alters regional cerebral perfusion in dogs.
Collapse
Affiliation(s)
- R Dockx
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Laboratory, Faculty of Medicine and Health, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - C Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Laboratory, Faculty of Medicine and Health, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - R Duprat
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Laboratory, Faculty of Medicine and Health, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - F De Vos
- Laboratory of Radiopharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - J H Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - I Polis
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - K Audenaert
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Laboratory, Faculty of Medicine and Health, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - K Peremans
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
30
|
Longer depressive episode duration negatively influences HF-rTMS treatment response: a cerebellar metabolic deficiency? Brain Imaging Behav 2018; 11:8-16. [PMID: 26780241 DOI: 10.1007/s11682-016-9510-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an evidence based neurostimulation modality used to treat patients with Major Depressive Disorder (MDD). In spite that the duration of current a depressive episode has been put forward as a negative predictor for clinical outcome, little is known about the underlying neurobiological mechanisms of this phenomenon. To address this important issue, in a sample of 43 melancholic stage III treatment resistant antidepressant-free refractory MDD patients, we reanalysed regional cerebral glucose metabolism (CMRglc) before high frequency (HF)-rTMS treatment, applied to the left dorsolateral prefrontal cortex (DLPFC). Besides that a lower baseline cerebellar metabolic activity indicated negative clinical response, a longer duration of the depressive episode was a negative indicator for recovery and negatively influenced cerebellar CMRglc. This exploratory 18FDG PET study is the first to demonstrate that the clinical response of HF-rTMS treatment in TRD patients may depend on the metabolic state of the cerebellum. Our observations could imply that for left DLPFC HF-rTMS non-responders other brain localisations for stimulation, more specifically the cerebellum, may be warranted.
Collapse
|
31
|
Canli T, Yu L, Yu X, Zhao H, Fleischman D, Wilson RS, De Jager PL, Bennett DA. Loneliness 5 years ante-mortem is associated with disease-related differential gene expression in postmortem dorsolateral prefrontal cortex. Transl Psychiatry 2018; 8:2. [PMID: 29317593 PMCID: PMC5802527 DOI: 10.1038/s41398-017-0086-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/14/2017] [Indexed: 01/11/2023] Open
Abstract
Subjective social isolation, loneliness, is associated with poor mental and physical health, but the underlying molecular mechanisms are poorly understood. Here we analyzed loneliness data collected on average 5 years ante-mortem and RNA gene expression at death in postmortem dorsolateral prefrontal cortex (DLPFC) from 181 participants in the Rush Memory and Aging Project (MAP), a longitudinal, prospective cohort study of common chronic conditions of aging. Our analytic protocol controlled for biographical variables (age, sex, education), psychological and health variables (depressive symptoms, interval between assessment and autopsy, slope of cognitive decline, AD pathology, presence of infarcts) and RNA integrity. Our results are based on a pre-ranked Gene Set Enrichment Analysis (GSEA) at FDR-corrected q-values <0.05, using these collections from the Molecular Signatures Database (v6.0 MSigDB): (1) Hallmarks, (2) Canonical, (3) Gene Ontology (GO), (4) Chemical and Genetic Perturbations, (5) Immunologic Signatures, (6) Oncogenic Signatures, and (7) Cancer Modules. We now report on 337 up-regulated and 43 down-regulated gene sets, among which the most significant ones were associated with Alzheimer's disease, psychiatric illness, immune dysfunction, and cancer. These gene sets constitute attractive targets for future studies into the molecular mechanisms by which loneliness exacerbates a wide range of neurodegenerative, psychiatric, and somatic illnesses.
Collapse
Affiliation(s)
- Turhan Canli
- Departments of Psychology and Psychiatry, Stony Brook University, Stony Brook, NY, USA.
| | - Lei Yu
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Xiaoqing Yu
- Biostatistics Department, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Hongyu Zhao
- Biostatistics Department, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Debra Fleischman
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Robert S Wilson
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
32
|
Chen MH, Li CT, Lin WC, Hong CJ, Tu PC, Bai YM, Cheng CM, Su TP. Persistent antidepressant effect of low-dose ketamine and activation in the supplementary motor area and anterior cingulate cortex in treatment-resistant depression: A randomized control study. J Affect Disord 2018; 225:709-714. [PMID: 28922734 DOI: 10.1016/j.jad.2017.09.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 12/16/2022]
Abstract
A single low-dose ketamine infusion exhibited a rapid antidepressant effect within 1h. Despite its short biological half-life (approximately 3h), the antidepressant effect of ketamine has been demonstrated to persist for several days. However, changes in brain function responsible for the persistent antidepressant effect of a single low-dose ketamine infusion remain unclear METHODS: Twenty-four patients with treatment-resistant depression (TRD) were randomized into three groups according to the treatment received: 0.5mg/kg ketamine, 0.2mg/kg ketamine, and normal saline infusion. Standardized uptake values (SUVs) of glucose metabolism measured through 18F-FDG positron-emission-tomography before infusion and 1day after a 40-min ketamine or normal saline infusion were used for subsequent whole-brain voxel-wise analysis and were correlated with depressive symptoms, as defined using the Hamilton Depression Rating Scale-17 (HDRS-17) score RESULTS: The voxel-wise analysis revealed that patients with TRD receiving the 0.5mg/kg ketamine infusion had significantly higher SUVs (corrected for family-wise errors, P = 0.014) in the supplementary motor area (SMA) and dorsal anterior cingulate cortex (dACC) than did those receiving the 0.2mg/kg ketamine infusion. The increase in the SUV in the dACC was negatively correlated with depressive symptoms at 1day after ketamine infusion DISCUSSION: The persistent antidepressant effect of a 0.5mg/kg ketamine infusion may be mediated by increased activation in the SMA and dACC. The higher increase in dACC activation was related to the reduction in depressive symptoms after ketamine infusion. A 0.5mg/kg ketamine infusion facilitated the glutamatergic neurotransmission in the SMA and dACC, which may be responsible for the persistent antidepressant effect of ketamine much beyond its half-life.
Collapse
Affiliation(s)
- Mu-Hong Chen
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Ta Li
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Jee Hong
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chi Tu
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ya-Mei Bai
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tung-Ping Su
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan.
| |
Collapse
|
33
|
Bailey NW, Hoy KE, Rogasch NC, Thomson RH, McQueen S, Elliot D, Sullivan CM, Fulcher BD, Daskalakis ZJ, Fitzgerald PB. Responders to rTMS for depression show increased fronto-midline theta and theta connectivity compared to non-responders. Brain Stimul 2018; 11:190-203. [PMID: 29128490 DOI: 10.1016/j.brs.2017.10.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/11/2017] [Accepted: 10/15/2017] [Indexed: 02/01/2023] Open
Affiliation(s)
- N W Bailey
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia.
| | - K E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - N C Rogasch
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, 3168 VIC, Australia
| | - R H Thomson
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - S McQueen
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - D Elliot
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - C M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - B D Fulcher
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, 3168 VIC, Australia
| | - Z J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia; Epworth Healthcare, The Epworth Clinic, Camberwell, 3004, Victoria, Australia
| |
Collapse
|
34
|
Baeken C, Lefaucheur JP, Van Schuerbeek P. The impact of accelerated high frequency rTMS on brain neurochemicals in treatment-resistant depression: Insights from 1 H MR spectroscopy. Clin Neurophysiol 2017; 128:1664-1672. [DOI: 10.1016/j.clinph.2017.06.243] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/21/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022]
|
35
|
El Arfani A, Parthoens J, Demuyser T, Servaes S, De Coninck M, De Deyn PP, Van Dam D, Wyckhuys T, Baeken C, Smolders I, Staelens S. Accelerated high-frequency repetitive transcranial magnetic stimulation enhances motor activity in rats. Neuroscience 2017; 347:103-110. [DOI: 10.1016/j.neuroscience.2017.01.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 01/21/2023]
|
36
|
Wang Q, Jie W, Liu JH, Yang JM, Gao TM. An astroglial basis of major depressive disorder? An overview. Glia 2017; 65:1227-1250. [DOI: 10.1002/glia.23143] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Wei Jie
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Ji-Hong Liu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| |
Collapse
|
37
|
Beuzon G, Timour Q, Saoud M. Predictors of response to repetitive transcranial magnetic stimulation (rTMS) in the treatment of major depressive disorder. Encephale 2016; 43:3-9. [PMID: 28034451 DOI: 10.1016/j.encep.2016.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/28/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS), based on the principle of electromagnetic induction, consists of applying series of magnetic impulses to the cerebral cortex so as to modulate neurone activity in a target zone. This technique, still experimental, could prove promising in the field of psychiatry, in particular for the treatment of major depressive disorder. It is important for the clinician to be able to assess the response potential of a given patient to rTMS, and this among other things requires relevant predictive factors to be available. This review of the literature aims to determine and analyse reported predictive factors for therapeutic response to rTMS treatment in major depressive disorder. Different parameters are studied, in particular age, the severity of the depressive episode, psychological dimensions, genetic factors, cerebral blood flows via cerebral imagery, and neuronavigation. The factors found to be associated with better therapeutic response were young age, low level of severity of the depressive episode, motor threshold intensity over 100%, more than 1000 stimulations per session, more than 10 days treatment, L/L genotype on the 5-HTTLPR transporter gene, C/C homozygosity on the promotor regions of the 5-HT1A receptor gene, Val/Val homozygosity on the BDNF gene, cordance analyses by EEG, and finally the accurate localisation provided by neuronavigation. The authors conclude that investigations in larger patient samples are required in the future, and that the work already achieved should provide lines of approach for the coming experimental studies.
Collapse
Affiliation(s)
- G Beuzon
- Pharmacologie médicale, EA 4312 neurocardiologie, physiopathologie des troubles du rythme cardiaque, hôpital Louis-Pradel, unité 50, 28, avenue du Doyen-Lépine, 69677 Bron, France.
| | - Q Timour
- Pharmacologie médicale, EA 4612 neurocardiologie, physiopathologie des troubles du rythme cardiaque hôpital Louis-Pradel, unité 50, 28, avenue du Doyen-Lépine, 69677 Bron, France.
| | - M Saoud
- Unité de recherche EA4615, PsyR, université Claude-Bernard-Lyon 1, 27-29, boulevard du 11-Novembre-1918, 69622 Lyon, France; Service de psychiatrie adultes liaison consultation, hospices civils de Lyon, 59, boulevard Pinel, 69500 Bron, France.
| |
Collapse
|
38
|
Porcu M, Balestrieri A, Siotto P, Lucatelli P, Anzidei M, Suri JS, Zaccagna F, Argiolas GM, Saba L. Clinical neuroimaging markers of response to treatment in mood disorders. Neurosci Lett 2016; 669:43-54. [PMID: 27737806 DOI: 10.1016/j.neulet.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/01/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022]
Abstract
Mood disorders (MD) are important and frequent psychiatric illness. The management of patients affected by these conditions represents an important factor of disability as well as a significant social and economic burden. The "in-vivo" studies can help researchers to understand the first developmental events of the pathology and to identify the molecular and non-molecular targets of therapies. However, they have strong limitations due to the fact that human brain circuitry can not be reproduced in animal models. In addition, these neural pathways are difficult to be selectively studied with the modern imaging (such as Magnetic Resonance and Positron Emitted Tomography/Computed Tomography) and non-imaging (such as electroencephalography, magnetoencephalography, transcranial magnetic stimulation and evoked potentials) methods. In comparison with other methods, the "in-vivo" imaging investigations have higher temporal and spatial resolution compared to the "in-vivo" non-imaging techniques. All these factors make difficult to fully understand the aetiology and pathophysiology of these disorders, and consequently hinder the analysis of the effects of pharmacological and non-pharmacological therapies, which have been demonstrated effective in clinical settings. In this review, we will focus our attention on the current state of the art of imaging in the assessment of treatment efficacy in MD. We will analyse briefly the actual classification of MD; then we will focus on the "in vivo" imaging methods used in research and clinical activity, the current knowledge about the neural models at the base of MD. Finally the last part of the review will focus on the analysis of the main markers of response to treatment.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU of Cagliari, SS 554 Monserrato, CA, Italy
| | | | - Paolo Siotto
- Department of Radiology, AOB Azienda Ospedaliera Brotzu, CA, Italy
| | - Pierleone Lucatelli
- Vascular and Interventional Radiology Unit, Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Michele Anzidei
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Jasjit S Suri
- Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA; Electrical Engineering Department, Idaho State University (Aff.), Pocatello, ID, USA
| | - Fulvio Zaccagna
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | | | - Luca Saba
- Department of Radiology, AOU of Cagliari, SS 554 Monserrato, CA, Italy.
| |
Collapse
|
39
|
Combined rTMS treatment targeting the Anterior Cingulate and the Temporal Cortex for the Treatment of Chronic Tinnitus. Sci Rep 2015; 5:18028. [PMID: 26667790 PMCID: PMC4678896 DOI: 10.1038/srep18028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a tinnitus treatment option. Promising results have been obtained by consecutive stimulation of lateral frontal and auditory brain regions. We investigated a combined stimulation paradigm targeting the anterior cingulate cortex (ACC) with double cone coil rTMS, followed by stimulation of the temporo-parietal junction area with a figure-of-eight coil. The study was conducted as a randomized, double-blind pilot trial in 40 patients suffering from chronic tinnitus. We compared mediofrontal stimulation with double-cone-coil, (2000 stimuli, 10 Hz) followed by left temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz) to left dorsolateral-prefrontal-cortex stimulation with figure-of-eight-coil (2000 stimuli, 10 Hz) followed by temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz). The stimulation was feasible with comparable dropout rates in both study arms; no severe adverse events were registered. Responder rates did not differ in both study arms. There was a significant main effect of time for the change in the TQ score, but no significant time x group interaction. This pilot study demonstrated the feasibility of combined mediofrontal/temporoparietal-rTMS-stimulation with double cone coil in tinnitus patients but failed to show better outcome compared to an actively rTMS treated control group.
Collapse
|
40
|
Silverstein WK, Noda Y, Barr MS, Vila-Rodriguez F, Rajji TK, Fitzgerald PB, Downar J, Mulsant BH, Vigod S, Daskalakis ZJ, Blumberger DM. NEUROBIOLOGICAL PREDICTORS OF RESPONSE TO DORSOLATERAL PREFRONTAL CORTEX REPETITIVE TRANSCRANIAL MAGNETIC STIMULATION IN DEPRESSION: A SYSTEMATIC REVIEW. Depress Anxiety 2015; 32:871-91. [PMID: 26382227 DOI: 10.1002/da.22424] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A significant proportion of patients with depression fail to respond to psychotherapy and standard pharmacotherapy, leading to treatment-resistant depression (TRD). Due to the significant prevalence of TRD, alternative therapies for depression have emerged as viable treatments in the armamentarium for this disorder. Repetitive transcranial magnetic stimulation (rTMS) is now being offered in clinical practice in broader numbers. Many studies have investigated various different neurobiological predictors of response of rTMS. However, a synthesis of this literature and an understanding of what biological targets predict response is lacking. This review aims to systematically synthesize the literature on the neurobiological predictors of rTMS in patients with depression. METHODS Medline (1996-2014), Embase (1980-2014), and PsycINFO (1806-2014) were searched under set terms. Two authors reviewed each article and came to consensus on the inclusion and exclusion criteria. All eligible studies were reviewed, duplicates were removed, and data were extracted individually. RESULTS The search identified 1,673 articles, 41 of which met both inclusion and exclusion criteria. Various biological factors at baseline appear to predict response to rTMS, including levels of certain molecular factors, blood flow in brain regions implicated in depression, electrophysiological findings, and specific genetic polymorphisms. CONCLUSIONS Significant methodological variability in rTMS treatment protocols limits the ability to generalize conclusions. However, response to treatment may be predicted by baseline frontal lobe blood flow, and presence of polymorphisms of the 5-hydroxytryptamine (5-HT) -1a gene, the LL genotype of the serotonin transporter linked polymorphic region (5-HTTLPR) gene, and Val/Val homozygotes of the brain-derived neurotrophic factor (BDNF) gene.
Collapse
Affiliation(s)
- William K Silverstein
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yoshihiro Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Mera S Barr
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Jonathan Downar
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,MRI-Guided rTMS Clinic, Department of Psychiatry, University Health Network, Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Simone Vigod
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Reproductive Life Stages Program, Women's Mental Health Program, Women's College Hospital, Toronto, Ontario, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Noda Y, Silverstein WK, Barr MS, Vila-Rodriguez F, Downar J, Rajji TK, Fitzgerald PB, Mulsant BH, Vigod SN, Daskalakis ZJ, Blumberger DM. Neurobiological mechanisms of repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex in depression: a systematic review. Psychol Med 2015; 45:3411-3432. [PMID: 26349810 DOI: 10.1017/s0033291715001609] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depression is one of the most prevalent mental illnesses worldwide and a leading cause of disability, especially in the setting of treatment resistance. In recent years, repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising alternative strategy for treatment-resistant depression and its clinical efficacy has been investigated intensively across the world. However, the underlying neurobiological mechanisms of the antidepressant effect of rTMS are still not fully understood. This review aims to systematically synthesize the literature on the neurobiological mechanisms of treatment response to rTMS in patients with depression. Medline (1996-2014), Embase (1980-2014) and PsycINFO (1806-2014) were searched under set terms. Three authors reviewed each article and came to consensus on the inclusion and exclusion criteria. All eligible studies were reviewed, duplicates were removed, and data were extracted individually. Of 1647 articles identified, 66 studies met both inclusion and exclusion criteria. rTMS affects various biological factors that can be measured by current biological techniques. Although a number of studies have explored the neurobiological mechanisms of rTMS, a large variety of rTMS protocols and parameters limits the ability to synthesize these findings into a coherent understanding. However, a convergence of findings suggest that rTMS exerts its therapeutic effects by altering levels of various neurochemicals, electrophysiology as well as blood flow and activity in the brain in a frequency-dependent manner. More research is needed to delineate the neurobiological mechanisms of the antidepressant effect of rTMS. The incorporation of biological assessments into future rTMS clinical trials will help in this regard.
Collapse
Affiliation(s)
- Y Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - W K Silverstein
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - M S Barr
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - F Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory,Department of Psychiatry,Faculty of Medicine,University of British Columbia,Vancouver,British Columbia,Canada
| | - J Downar
- Department of Psychiatry,University of Toronto,Toronto,Ontario,Canada
| | - T K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre,The Alfred and Monash University Central Clinical School,Melbourne,Victoria,Australia
| | - B H Mulsant
- Department of Psychiatry,University of Toronto,Toronto,Ontario,Canada
| | - S N Vigod
- Department of Psychiatry,University of Toronto,Toronto,Ontario,Canada
| | - Z J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - D M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| |
Collapse
|
42
|
Neurostimulation as an intervention for treatment resistant depression: From research on mechanisms towards targeted neurocognitive strategies. Clin Psychol Rev 2015; 41:61-9. [DOI: 10.1016/j.cpr.2014.10.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 08/17/2014] [Accepted: 10/13/2014] [Indexed: 01/12/2023]
|
43
|
Concerto C, Lanza G, Cantone M, Ferri R, Pennisi G, Bella R, Aguglia E. Repetitive transcranial magnetic stimulation in patients with drug-resistant major depression: A six-month clinical follow-up study. Int J Psychiatry Clin Pract 2015; 19:252-258. [PMID: 26398527 DOI: 10.3109/13651501.2015.1084329] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE In this study we aimed to assess the long-term efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) on depressive symptoms and cognitive performance in patients with drug-resistant major depressive disorder (MDD). METHODS Fifteen drug-resistant depressed outpatients completed an acute trial with augmentative high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC) and were compared with 15 drug-resistant MDD patients who underwent sham procedure. Depressive symptoms were evaluated with the Hamilton Depression Rating Scale and Montgomery-Asberg Depression Rating Scale. The Frontal Assessment Battery and the Stroop Color-Word Test Interference (Stroop T) were used to probe executive functions. Outcome measures were obtained at baseline, 4 weeks after the rTMS, as well as 3 months and 6 months after the end of the stimulation protocol. RESULTS After the active rTMS, patients showed a significant decrease in the scores at the depression rating scales that lasted for 6 months. A transient improvement was also observed at the Stroop T, although it did not persist in time. CONCLUSIONS High-frequency rTMS over the left DLPFC may have long-term antidepressant effect in drug-resistant MDD. TMS is a valuable tool for the add-on treatment of mood disorders and for the design of customized stimulation protocols.
Collapse
Affiliation(s)
- Carmen Concerto
- a Department of Clinical and Experimental Medicine , Psychiatry Unit, University of Catania , Via Santa Sofia, Catania , Italy
| | - Giuseppe Lanza
- a Department of Clinical and Experimental Medicine , Psychiatry Unit, University of Catania , Via Santa Sofia, Catania , Italy
| | - Mariagiovanna Cantone
- b Department of Neurology I.C. , "Oasi" Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.) . Via Conte Ruggero, Troina (EN) , Italy
| | - Raffaele Ferri
- b Department of Neurology I.C. , "Oasi" Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.) . Via Conte Ruggero, Troina (EN) , Italy
| | - Giovanni Pennisi
- c Department "Specialità Medico-Chirurgiche" , University of Catania , Via Santa Sofia, Catania , Italy
| | - Rita Bella
- d Department of Medical and Surgical Sciences and Advanced Technologies , Section of Neurosciences , Via Santa Sofia, Catania , Italy
| | - Eugenio Aguglia
- a Department of Clinical and Experimental Medicine , Psychiatry Unit, University of Catania , Via Santa Sofia, Catania , Italy
| |
Collapse
|
44
|
Baeken C, Marinazzo D, Everaert H, Wu GR, Van Hove C, Audenaert K, Goethals I, De Vos F, Peremans K, De Raedt R. The Impact of Accelerated HF-rTMS on the Subgenual Anterior Cingulate Cortex in Refractory Unipolar Major Depression: Insights From 18FDG PET Brain Imaging. Brain Stimul 2015; 8:808-15. [PMID: 25744500 DOI: 10.1016/j.brs.2015.01.415] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/17/2015] [Accepted: 01/31/2015] [Indexed: 01/16/2023] Open
|
45
|
Zheng H, Jia F, Guo G, Quan D, Li G, Wu H, Zhang B, Fan C, He X, Huang H. Abnormal Anterior Cingulate N-Acetylaspartate and Executive Functioning in Treatment-Resistant Depression After rTMS Therapy. Int J Neuropsychopharmacol 2015; 18:pyv059. [PMID: 26025780 PMCID: PMC4756723 DOI: 10.1093/ijnp/pyv059] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/19/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cognitive impairment is a key feature of treatment-resistant depression (TRD) and can be related to the anterior cingulate cortex (ACC) function. Repetitive transcranial magnetic stimulation (rTMS) as an antidepressant intervention has increasingly been investigated in the last two decades. However, no studies to date have investigated the association between neurobiochemical changes within the anterior cingulate and executive dysfunction measured in TRD being treated with rTMS. METHODS Thirty-two young depressed patients with treatment-resistant unipolar depression were enrolled in a double-blind, randomized study [active (n=18) vs. sham (n=14)]. ACC metabolism was investigated before and after high-frequency (15 Hz) rTMS using 3-tesla proton magnetic resonance spectroscopy (1H-MRS). The results were compared with 28 age- and gender-matched healthy controls. Executive functioning was measured with the Wisconsin Card Sorting Test (WCST) among 34 subjects with TRD and 28 healthy subjects. RESULTS Significant reductions in N-acetylaspartate (NAA) and choline-containing Compound levels in the left ACC were found in subjects with TRD pre-rTMS when compared with healthy controls. After successful treatment, NAA levels increased significantly in the left ACC of subjects and were not different from those of age-matched controls. In the WCST, more perseverative errors and fewer correct numbers were observed in TRD subjects at baseline. Improvements in both perseverative errors and correct numbers occurred after active rTMS. In addition, improvement of perseverative errors was positively correlated with enhancement of NAA levels in the left ACC in the active rTMS group. CONCLUSIONS Our results suggest that the NAA concentration in the left ACC is associated with an improvement in cognitive functioning among subjects with TRD response to active rTMS.
Collapse
Affiliation(s)
- Huirong Zheng
- Guangdong Mental Health Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Affiliated School of Medicine of South China University of Technology, Guangzhou, Guangdong, P.R. China (Drs Zheng, Jia, Wu, Zhang, and Fan, and Mr Guo, Quan, Li, and Ms He); Department of Radiology, Guangzhou Hui-Ai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China (Dr Wu); Pharmacy Department of Guangdong General Hospital, Guangdong academy of medical sciences, Guangzhou, Guangdong, P.R. China (Ms Huang).
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
McGirr A, Van den Eynde F, Tovar-Perdomo S, Fleck MPA, Berlim MT. Effectiveness and acceptability of accelerated repetitive transcranial magnetic stimulation (rTMS) for treatment-resistant major depressive disorder: an open label trial. J Affect Disord 2015; 173:216-20. [PMID: 25462419 DOI: 10.1016/j.jad.2014.10.068] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/15/2014] [Accepted: 10/28/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a significant cause of worldwide disability and treatment resistance is common. High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has emerged as a treatment for MDD, and while efficacious, the daily commitment for typical 4-6 weeks of treatment poses a significant challenge. We aimed to determine the effectiveness and acceptability of an accelerated rTMS protocol for MDD. METHODS In this naturalistic trial, 27 patients with moderate to severe chronic and treatment-resistant MDD were treated with twice-daily HF-rTMS (10 Hz) applied over the left dorsolateral prefrontal cortex for 2 consecutive weeks (60,000 pulses). The primary outcomes were rates of clinical remission and response (16-item Quick Inventory of Depressive Symptomatology post-treatment score ≤ 6, and ≥ 50% reduction, respectively). Secondary outcomes were self-reported anxious symptoms, depressive symptoms and quality of life, and dropout rates as a proxy for acceptability. RESULTS Ten (37.0%) patients met criteria for clinical remission and 15 (55.6%) were classified as responders, with comparable outcomes for both moderate and severe MDD. Clinician-rated improvements in depressive symptoms were paralleled in self-reported depressive and anxious symptoms, as well as quality of life. No patient discontinued treatment. LIMITATIONS This study is limited by short treatment duration that might be lengthened with corresponding improvements in effectiveness, limited duration of follow-up, small sample size, and an open-label design requiring randomized controlled replication. CONCLUSION An accelerated protocol involving twice-daily sessions of HF-rTMS over the left DLPFC for 2 weeks was effective in treatment-resistant MDD, and had excellent acceptability. Additional research is required to optimize accelerated rTMS treatment protocols and determine efficacy using sham-controlled trials.
Collapse
Affiliation(s)
- Alexander McGirr
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Frederique Van den Eynde
- Neuromodulation Research Clinic, Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - Santiago Tovar-Perdomo
- Neuromodulation Research Clinic, Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - Marcelo P A Fleck
- Depressive Disorders Program, Douglas Mental Health University Institute and McGill University, Montréal, Québec, Canada; Neuromodulation Research Clinic, Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - Marcelo T Berlim
- Depressive Disorders Program, Douglas Mental Health University Institute and McGill University, Montréal, Québec, Canada; Neuromodulation Research Clinic, Douglas Mental Health University Institute, Montréal, Québec, Canada.
| |
Collapse
|
47
|
Baeken C, Desmyter S, Duprat R, De Raedt R, Van Denabbeele D, Tandt H, Lemmens GMD, Vervaet M, van Heeringen K. Self-directedness: an indicator for clinical response to the HF-rTMS treatment in refractory melancholic depression. Psychiatry Res 2014; 220:269-74. [PMID: 25175912 DOI: 10.1016/j.psychres.2014.07.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/27/2014] [Accepted: 07/31/2014] [Indexed: 12/26/2022]
Abstract
Although well-defined predictors of response are still unclear, clinicians refer a variety of depressed patients for a repetitive Transcranial Magnetic Stimulation (rTMS) treatment. It has been suggested that personality features such as Harm Avoidance (HA) and self-directedness (SD) might provide some guidance for a classical antidepressant treatment outcome. However, to date no such research has been performed in rTMS treatment paradigms. In this open study, we wanted to examine whether these temperament and character scores in particular would predict clinical outcome in refractory unipolar depressed patients when a typical high-frequency (HF)-rTMS treatment protocol is applied. Thirty six unipolar right-handed antidepressant-free treatment resistant depressed (TRD) patients, all of the melancholic subtype, received 10 HF-rTMS sessions applied to the left dorsolateral prefrontal cortex (DLPFC). All patients were classified as at least stage III TRD and were assessed with the Temperament and Character Inventory (TCI) before a HF-rTMS treatment. Only the individual scores on SD predicted clinical outcome. No other personality scales were found to be a predictor of this kind of application. Our results suggest that refractory MDD patients who score higher on the character scale SD may be more responsive to the HF-rTMS treatment.
Collapse
Affiliation(s)
- Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Department of Psychiatry University Hospital (UZBrussel), Brussels, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium.
| | - Stefanie Desmyter
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Romain Duprat
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Dirk Van Denabbeele
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Hannelore Tandt
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Gilbert M D Lemmens
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Myriam Vervaet
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Kees van Heeringen
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|
48
|
Kreuzer PM, Schecklmann M, Lehner A, Wetter TC, Poeppl TB, Rupprecht R, de Ridder D, Landgrebe M, Langguth B. The ACDC pilot trial: targeting the anterior cingulate by double cone coil rTMS for the treatment of depression. Brain Stimul 2014; 8:240-6. [PMID: 25541389 DOI: 10.1016/j.brs.2014.11.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/24/2014] [Accepted: 11/24/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral-prefrontal cortex (DLPFC) with conventional figure-of-8 (=butterfly) coils has been used as an antidepressant therapeutic tool for almost twenty years. Very recently, an innovative rTMS coil, the so-called double cone coil (DC), was introduced allowing the modulation of the anterior cingulate cortex (AC). We investigated safety and therapeutic effectiveness of this stimulation in a naturalistic clinical setting. METHOD Forty-five patients suffering a moderate to severe depressive episode were randomized to receive 15 sessions of either conventional rTMS of the left DLPFC ("butterfly-rTMS"; 10 Hz; 2000 stimuli/day, RMT 110%), mediofrontal double cone coil stimulation of the anterior cingulate cortex ("ACDC-rTMS" with equal parameters), or sham-stimulation. The primary outcome was the change in the 21-items Hamilton Rating Scale for Depression (HAMD) from baseline to the end of treatment. Secondary outcome measures were changes over the course of the trial regarding the HAMD, the Beck Depression Inventory (BDI), the Clinical Global Impression (CGI) and the Global Assessment of Functioning (GAF) scales. RESULTS There was a significant group × time interaction effect regarding the primary outcome (F = 3.269; df = 2,37; P = 0.049). Post-hoc t-testing revealed a significant effect for the comparison ACDC vs. butterfly at week 3/end of treatment (T = 2.646; df = 26; P = 0.014). No severe adverse events occurred during the study. ACDC-stimulation was well tolerated by the majority of patients similar like butterfly-rTMS and sham-stimulation. CONCLUSION This pilot study demonstrated the feasibility of ACDC-rTMS-stimulation as an add-on-treatment for depression. Its clinical effects warrant further investigation in the future.
Collapse
Affiliation(s)
- Peter M Kreuzer
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany.
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Astrid Lehner
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Thomas C Wetter
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Timm B Poeppl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Dirk de Ridder
- Unit of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Brain Research Center Antwerp for Innovative & Interdisciplinary Neuromodulation, Sint-Augustinus Hospital, Belgium
| | - Michael Landgrebe
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, Kbo-Lech-Mangfall-Klinik Agatharied, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| |
Collapse
|
49
|
One left dorsolateral prefrontal cortical HF-rTMS session attenuates HPA-system sensitivity to critical feedback in healthy females. Neuropsychologia 2014; 57:112-21. [DOI: 10.1016/j.neuropsychologia.2014.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 02/12/2014] [Accepted: 02/21/2014] [Indexed: 01/22/2023]
|
50
|
Baeken C, Marinazzo D, Wu GR, Van Schuerbeek P, De Mey J, Marchetti I, Vanderhasselt MA, Remue J, Luypaert R, De Raedt R. Accelerated HF-rTMS in treatment-resistant unipolar depression: Insights from subgenual anterior cingulate functional connectivity. World J Biol Psychiatry 2014; 15:286-97. [PMID: 24447053 DOI: 10.3109/15622975.2013.872295] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Intensified repetitive transcranial magnetic stimulation (rTMS) applied to the left dorsolateral prefrontal cortex (DLPFC) may result in fast clinical responses in treatment resistant depression (TRD). In these kinds of patients, subgenual anterior cingulate cortex (sgACC) functional connectivity (FC) seems to be consistently disturbed. So far, no de novo data on the relationship between sgACC FC changes and clinical efficacy of accelerated rTMS were available. METHODS Twenty unipolar TRD patients, all at least stage III treatment resistant, were recruited in a randomized sham-controlled crossover high-frequency (HF)-rTMS treatment study. Resting-state (rs) functional MRI scans were collected at baseline and at the end of treatment. RESULTS HF-rTMS responders showed significantly stronger resting-state functional connectivity (rsFC) anti-correlation between the sgACC and parts of the left superior medial prefrontal cortex. After successful treatment an inverted relative strength of the anti-correlations was observed in the perigenual prefrontal cortex (pgPFC). No effects on sgACC rsFC were observed in non-responders. CONCLUSIONS Strong rsFC anti-correlation between the sgACC and parts of the left prefrontal cortex could be indicative of a beneficial outcome. Accelerated HF-rTMS treatment designs have the potential to acutely adjust deregulated sgACC neuronal networks in TRD patients.
Collapse
Affiliation(s)
- Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent University , Ghent , Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|