1
|
Gugger JJ, Sinha N, Huang Y, Walter AE, Lynch C, Kalyani P, Smyk N, Sandsmark D, Diaz-Arrastia R, Davis KA. Structural brain network deviations predict recovery after traumatic brain injury. Neuroimage Clin 2023; 38:103392. [PMID: 37018913 PMCID: PMC10122019 DOI: 10.1016/j.nicl.2023.103392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE Traumatic brain injury results in diffuse axonal injury and the ensuing maladaptive alterations in network function are associated with incomplete recovery and persistent disability. Despite the importance of axonal injury as an endophenotype in TBI, there is no biomarker that can measure the aggregate and region-specific burden of axonal injury. Normative modeling is an emerging quantitative case-control technique that can capture region-specific and aggregate deviations in brain networks at the individual patient level. Our objective was to apply normative modeling in TBI to study deviations in brain networks after primarily complicated mild TBI and study its relationship with other validated measures of injury severity, burden of post-TBI symptoms, and functional impairment. METHOD We analyzed 70 T1-weighted and diffusion-weighted MRIs longitudinally collected from 35 individuals with primarily complicated mild TBI during the subacute and chronic post-injury periods. Each individual underwent longitudinal blood sampling to characterize blood protein biomarkers of axonal and glial injury and assessment of post-injury recovery in the subacute and chronic periods. By comparing the MRI data of individual TBI participants with 35 uninjured controls, we estimated the longitudinal change in structural brain network deviations. We compared network deviation with independent measures of acute intracranial injury estimated from head CT and blood protein biomarkers. Using elastic net regression models, we identified brain regions in which deviations present in the subacute period predict chronic post-TBI symptoms and functional status. RESULTS Post-injury structural network deviation was significantly higher than controls in both subacute and chronic periods, associated with an acute CT lesion and subacute blood levels of glial fibrillary acid protein (r = 0.5, p = 0.008) and neurofilament light (r = 0.41, p = 0.02). Longitudinal change in network deviation associated with change in functional outcome status (r = -0.51, p = 0.003) and post-concussive symptoms (BSI: r = 0.46, p = 0.03; RPQ: r = 0.46, p = 0.02). The brain regions where the node deviation index measured in the subacute period predicted chronic TBI symptoms and functional status corresponded to areas known to be susceptible to neurotrauma. CONCLUSION Normative modeling can capture structural network deviations, which may be useful in estimating the aggregate and region-specific burden of network changes induced by TAI. If validated in larger studies, structural network deviation scores could be useful for enrichment of clinical trials of targeted TAI-directed therapies.
Collapse
Affiliation(s)
- James J Gugger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Nishant Sinha
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yiming Huang
- Interdisciplinary Computing and Complex BioSystems, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexa E Walter
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cillian Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyanka Kalyani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan Smyk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle Sandsmark
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Refined Analysis of Chronic White Matter Changes after Traumatic Brain Injury and Repeated Sports-Related Concussions: Of Use in Targeted Rehabilitative Approaches? J Clin Med 2022; 11:jcm11020358. [PMID: 35054052 PMCID: PMC8780504 DOI: 10.3390/jcm11020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) or repeated sport-related concussions (rSRC) may lead to long-term memory impairment. Diffusion tensor imaging (DTI) is helpful to reveal global white matter damage but may underestimate focal abnormalities. We investigated the distribution of post-injury regional white matter changes after TBI and rSRC. Six patients with moderate/severe TBI, and 12 athletes with rSRC were included ≥6 months post-injury, and 10 (age-matched) healthy controls (HC) were analyzed. The Repeatable Battery for the Assessment of Neuropsychological Status was performed at the time of DTI. Major white matter pathways were tracked using q-space diffeomorphic reconstruction and analyzed for global and regional changes with a controlled false discovery rate. TBI patients displayed multiple classic white matter injuries compared with HC (p < 0.01). At the regional white matter analysis, the left frontal aslant tract, anterior thalamic radiation, and the genu of the corpus callosum displayed focal changes in both groups compared with HC but with different trends. Both TBI and rSRC displayed worse memory performance compared with HC (p < 0.05). While global analysis of DTI-based parameters did not reveal common abnormalities in TBI and rSRC, abnormalities to the fronto-thalamic network were observed in both groups using regional analysis of the white matter pathways. These results may be valuable to tailor individualized rehabilitative approaches for post-injury cognitive impairment in both TBI and rSRC patients.
Collapse
|
3
|
Enciso-Olivera CO, Ordóñez-Rubiano EG, Casanova-Libreros R, Rivera D, Zarate-Ardila CJ, Rudas J, Pulido C, Gómez F, Martínez D, Guerrero N, Hurtado MA, Aguilera-Bustos N, Hernández-Torres CP, Hernandez J, Marín-Muñoz JH. Structural and functional connectivity of the ascending arousal network for prediction of outcome in patients with acute disorders of consciousness. Sci Rep 2021; 11:22952. [PMID: 34824383 PMCID: PMC8617304 DOI: 10.1038/s41598-021-98506-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
To determine the role of early acquisition of blood oxygen level-dependent (BOLD) signals and diffusion tensor imaging (DTI) for analysis of the connectivity of the ascending arousal network (AAN) in predicting neurological outcomes after acute traumatic brain injury (TBI), cardiopulmonary arrest (CPA), or stroke. A prospective analysis of 50 comatose patients was performed during their ICU stay. Image processing was conducted to assess structural and functional connectivity of the AAN. Outcomes were evaluated after 3 and 6 months. Nineteen patients (38%) had stroke, 18 (36%) CPA, and 13 (26%) TBI. Twenty-three patients were comatose (44%), 11 were in a minimally conscious state (20%), and 16 had unresponsive wakefulness syndrome (32%). Univariate analysis demonstrated that measurements of diffusivity, functional connectivity, and numbers of fibers in the gray matter, white matter, whole brain, midbrain reticular formation, and pontis oralis nucleus may serve as predictive biomarkers of outcome depending on the diagnosis. Multivariate analysis demonstrated a correlation of the predicted value and the real outcome for each separate diagnosis and for all the etiologies together. Findings suggest that the above imaging biomarkers may have a predictive role for the outcome of comatose patients after acute TBI, CPA, or stroke.
Collapse
Affiliation(s)
- Cesar O Enciso-Olivera
- Department of Critical Care and Intensive Care Unit, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Edgar G Ordóñez-Rubiano
- Department of Neurological Surgery, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital de San José, Bogotá, Colombia
| | - Rosángela Casanova-Libreros
- Division of Clinical Research, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital de San José, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Diana Rivera
- Division of Clinical Research, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital de San José, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Carol J Zarate-Ardila
- Division of Clinical Research, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital de San José, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Jorge Rudas
- Department of Biotechnology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Cristian Pulido
- Department of Mathematics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Francisco Gómez
- Department of Computer Science, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Darwin Martínez
- Department of Computer Science, Universidad Central, Bogotá, Colombia
| | - Natalia Guerrero
- Department of Radiology, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Mayra A Hurtado
- Department of Critical Care and Intensive Care Unit, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Natalia Aguilera-Bustos
- Division of Clinical Research, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital de San José, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Clara P Hernández-Torres
- Department of Psychology, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - José Hernandez
- Department of Neurology, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Jorge H Marín-Muñoz
- Department of Radiology, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia. .,Innovation and Research Division, Imaging Experts and Healthcare Services (ImexHS), Street 92 # 11-51, Of 202, Bogotá, Colombia.
| |
Collapse
|
4
|
Shokri-Kojori E, Bennett IJ, Tomeldan ZA, Krawczyk DC, Rypma B. Estimates of brain age for gray matter and white matter in younger and older adults: Insights into human intelligence. Brain Res 2021; 1763:147431. [PMID: 33737067 PMCID: PMC8428193 DOI: 10.1016/j.brainres.2021.147431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Aging entails a multifaceted complex of changes in macro- and micro-structural properties of human brain gray matter (GM) and white matter (WM) tissues, as well as in intellectual abilities. To better capture tissue-specific brain aging, we combined volume and distribution properties of diffusivity indices to derive subject-specific age scores for each tissue. We compared age-related variance between younger and older adults for GM and WM age scores, and tested whether tissue-specific age scores could explain different effects of aging on fluid (Gf) and crystalized (Gc) intelligence in younger and older adults. Chronological age was strongly associated with GM (R2 = 0.73) and WM (R2 = 0.57) age scores. The GM age score accounted for significantly more variance in chronological age in younger relative to older adults (p < 0.001), whereas the WM age score accounted for significantly more variance in chronological age in older compared to younger adults (p < 0.025). Consistent with existing literature, younger adults outperformed older adults in Gf while older adults outperformed younger adults in Gc. The GM age score was negatively associated with Gf in younger adults (p < 0.02), whereas the WM age score was negatively associated with Gc in older adults (p < 0.02). Our results provide evidence for differences in the effects of age on GM and WM in younger versus older adults that may contribute to age-related differences in Gf and Gc.
Collapse
Affiliation(s)
- Ehsan Shokri-Kojori
- Center for BrainHealth®, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA.
| | - Ilana J Bennett
- Center for BrainHealth®, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA; Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Zuri A Tomeldan
- Center for BrainHealth®, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Daniel C Krawczyk
- Center for BrainHealth®, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA; Department of Psychiatry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Bart Rypma
- Center for BrainHealth®, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA; Department of Psychiatry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
5
|
Gicas KM, Cheng A, Rawtaer I, Willi TS, Panenka WJ, Lang DJ, Smith GN, Vila-Rodriguez F, Leonova O, Giesbrecht CJ, Jones AA, Barr AM, Procyshyn RM, Buchanan T, MacEwan GW, Su W, Vertinsky AT, Rauscher A, O'Rourke N, Loken Thornton W, Thornton AE, Honer WG. Diffusion tensor imaging of neurocognitive profiles in a community cohort living in marginal housing. Brain Behav 2019; 9:e01233. [PMID: 30724486 PMCID: PMC6422717 DOI: 10.1002/brb3.1233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/13/2018] [Accepted: 01/09/2019] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE We investigated white matter differences associated with distinct neurocognitive profiles derived from a large cohort of marginally housed persons with comorbid physical and mental illnesses. Our prior work identified three profile cluster groups: a high functioning group (Cluster 1), a low functioning group with relative strength in decision-making (Cluster 3), and an intermediary group with a relative decision-making weakness (Cluster 2). This study extends previous findings of cortical gray matter differences between these groups with evidence for putative neurodevelopmental abnormalities in the low cognitive functioning group (i.e., Cluster 3). We hypothesized that altered white matter diffusion would be associated with the lowest functioning neurocognitive profile and would be associated with previously observed gray matter differences. METHOD Participants from a socially impoverished neighborhood in Vancouver, Canada underwent neurocognitive evaluation and neuroimaging. We performed Tract-Based Spatial Statistics using diffusion tensor imaging data from 184 participants to examine whole-brain differences in white matter microstructure between cluster analytically derived neurocognitive profiles, as well as unitary neurocognitive measures. Correlations between frontal gray and white matter were also examined. RESULTS Cluster 3 showed increased diffusion in predominately bilateral frontal and interhemisphere tracts (vs. Clusters 1 and 2), with relatively greater diffusion in the left hemisphere (vs. Cluster 1). Differences in radial diffusivity were more prominent compared with axial diffusivity. A weak association between regional frontal fractional anisotropy and previously defined abnormalities in gyrification was observed. CONCLUSIONS In a socially marginalized sample, we established several patterns in the covariation of white matter diffusion and neurocognitive functioning. These patterns elucidate the neurobiological substrates and vulnerabilities that are apt to underlie functional impairments inherent to this complex and heterogeneous population.
Collapse
Affiliation(s)
- Kristina M Gicas
- Department of Psychology, Simon Fraser University, Burnaby, Canada.,Department of Psychiatry, University of British Columbia, Vancover, Canada
| | - Alex Cheng
- Department of Psychiatry, University of British Columbia, Vancover, Canada
| | - Iris Rawtaer
- Department of Psychiatry, University of British Columbia, Vancover, Canada
| | - Taylor S Willi
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | - William J Panenka
- Department of Psychiatry, University of British Columbia, Vancover, Canada
| | - Donna J Lang
- Department of Radiology, University of British Columbia, Vancover, Canada
| | - Geoff N Smith
- Department of Psychiatry, University of British Columbia, Vancover, Canada
| | | | - Olga Leonova
- Department of Psychiatry, University of British Columbia, Vancover, Canada
| | | | - Andrea A Jones
- Department of Psychiatry, University of British Columbia, Vancover, Canada
| | - Alasdair M Barr
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancover, Canada
| | - Ric M Procyshyn
- Department of Psychiatry, University of British Columbia, Vancover, Canada
| | - Tari Buchanan
- Department of Psychiatry, University of British Columbia, Vancover, Canada
| | - G William MacEwan
- Department of Psychiatry, University of British Columbia, Vancover, Canada
| | - Wayne Su
- Department of Psychiatry, University of British Columbia, Vancover, Canada
| | | | - Alexander Rauscher
- Department of Paediatrics, University of British Columbia, Vancover, Canada
| | - Norm O'Rourke
- Department of Public Health and Centre for Multidisciplinary Research in Aging, University of the Negev, Be'er Sheva, Israel
| | | | - Allen E Thornton
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancover, Canada
| |
Collapse
|
6
|
Coping style as a protective factor for emotional consequences of structural neuropathology in multiple sclerosis. J Clin Exp Neuropsychol 2019; 41:390-398. [DOI: 10.1080/13803395.2019.1566443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Imaging biomarkers of epileptogenecity after traumatic brain injury - Preclinical frontiers. Neurobiol Dis 2018; 123:75-85. [PMID: 30321600 DOI: 10.1016/j.nbd.2018.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Posttraumatic epilepsy (PTE) is a major neurodegenerative disease accounting for 20% of symptomatic epilepsy cases. A long latent phase offers a potential window for prophylactic treatment strategies to prevent epilepsy onset, provided that the patients at risk can be identified. Some promising imaging biomarker candidates for posttraumatic epileptogenesis have been identified, but more are required to provide the specificity and sensitivity for accurate prediction. Experimental models and preclinical longitudinal, multimodal imaging studies allow follow-up of complex cascade of events initiated by traumatic brain injury, as well as monitoring of treatment effects. Preclinical imaging data from the posttraumatic brain are rich in information, yet examination of their specific relevance to epilepsy is lacking. Accumulating evidence from ongoing preclinical studies in TBI support insight into processes involved in epileptogenesis, e.g. inflammation and changes in functional and structural brain-wide connectivity. These efforts are likely to produce both new biomarkers and treatment targets for PTE.
Collapse
|
8
|
Song M, Zhang Y, Cui Y, Yang Y, Jiang T. Brain Network Studies in Chronic Disorders of Consciousness: Advances and Perspectives. Neurosci Bull 2018; 34:592-604. [PMID: 29916113 PMCID: PMC6060221 DOI: 10.1007/s12264-018-0243-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/07/2018] [Indexed: 02/06/2023] Open
Abstract
Neuroimaging has opened new opportunities to study the neural correlates of consciousness, and provided additional information concerning diagnosis, prognosis, and therapeutic interventions in patients with disorders of consciousness. Here, we aim to review neuroimaging studies in chronic disorders of consciousness from the viewpoint of the brain network, focusing on positron emission tomography, functional MRI, functional near-infrared spectroscopy, electrophysiology, and diffusion MRI. To accelerate basic research on disorders of consciousness and provide a panoramic view of unconsciousness, we propose that it is urgent to integrate different techniques at various spatiotemporal scales, and to merge fragmented findings into a uniform "Brainnetome" (Brain-net-ome) research framework.
Collapse
Affiliation(s)
- Ming Song
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Yujin Zhang
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Cui
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi Yang
- Department of Neurosurgery, PLA Army General Hospital, Beijing, 100700, China
| | - Tianzi Jiang
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China.
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory for Neuroinformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China.
- The Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
9
|
Ivleva EI, Clementz BA, Dutcher AM, Arnold SJ, Jeon-Slaughter H, Aslan S, Witte B, Poudyal G, Lu H, Meda SA, Pearlson GD, Sweeney JA, Keshavan MS, Tamminga CA. Brain Structure Biomarkers in the Psychosis Biotypes: Findings From the Bipolar-Schizophrenia Network for Intermediate Phenotypes. Biol Psychiatry 2017; 82:26-39. [PMID: 27817844 PMCID: PMC6501573 DOI: 10.1016/j.biopsych.2016.08.030] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND The current definitions of psychotic illness lack biological validity, motivating alternative biomarker-driven disease entities. Building on experimental constructs-Biotypes-that were previously developed from cognitive and neurophysiologic measures, we contrast brain anatomy characteristics across Biotypes alongside conventional diagnoses, examining gray matter density (GMD) as an independent validator for the Biotypes. METHODS Whole brain GMD measures were examined in probands, their relatives, and healthy subjects organized by Biotype and then by DSM-IV-TR diagnosis (n = 1409) using voxel-based morphometry with subsequent subject-level regional characterization and distribution analyses. RESULTS Probands grouped by Biotype versus healthy controls showed a stepwise pattern of GMD reductions as follows: Biotype1, extensive and diffusely distributed GMD loss, with the largest effects in frontal, anterior/middle cingulate cortex, and temporal regions; Biotype2, intermediate and more localized reductions, with the largest effects in insula and frontotemporal regions; and Biotype3, small reductions localized to anterior limbic regions. Relatives showed regionally distinct GMD reductions versus healthy controls, with primarily anterior (frontotemporal) effects in Biotype1; posterior (temporo-parieto-cerebellar) in Biotype2; and normal GMD in Biotype3. Schizophrenia and schizoaffective probands versus healthy controls showed overlapping GMD reductions, with the largest effects in frontotemporal and parietal regions; psychotic bipolar probands had small reductions, primarily in frontal regions. GMD changes in relatives followed regional patterns observed in probands, albeit less extensive. Biotypes showed stronger between-group separation based on GMD than the conventional diagnoses and were the strongest predictor of GMD change. CONCLUSIONS GMD biomarkers depicted unique brain structure characteristics within Biotypes, consistent with their cognitive and sensorimotor profiles, and provided stronger discrimination for biologically driven biotypes than symptom-based diagnoses.
Collapse
Affiliation(s)
| | | | | | | | | | - Sina Aslan
- Advance MRI, LLC, Frisco,University of Texas at Dallas, Richardson, Texas
| | - Bradley Witte
- University of Texas Southwestern Medical Center, Dallas
| | | | - Hanzhang Lu
- University of Texas Southwestern Medical Center, Dallas,Johns Hopkins University, Baltimore, Maryland
| | | | - Godfrey D. Pearlson
- Institute of Living/Hartford Hospital, Hartford,Yale School of Medicine, New Haven, Connecticut
| | | | | | | |
Collapse
|
10
|
Main KL, Soman S, Pestilli F, Furst A, Noda A, Hernandez B, Kong J, Cheng J, Fairchild JK, Taylor J, Yesavage J, Wesson Ashford J, Kraemer H, Adamson MM. DTI measures identify mild and moderate TBI cases among patients with complex health problems: A receiver operating characteristic analysis of U.S. veterans. Neuroimage Clin 2017; 16:1-16. [PMID: 28725550 PMCID: PMC5503837 DOI: 10.1016/j.nicl.2017.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 06/10/2017] [Accepted: 06/23/2017] [Indexed: 01/10/2023]
Abstract
Standard MRI methods are often inadequate for identifying mild traumatic brain injury (TBI). Advances in diffusion tensor imaging now provide potential biomarkers of TBI among white matter fascicles (tracts). However, it is still unclear which tracts are most pertinent to TBI diagnosis. This study ranked fiber tracts on their ability to discriminate patients with and without TBI. We acquired diffusion tensor imaging data from military veterans admitted to a polytrauma clinic (Overall n = 109; Age: M = 47.2, SD = 11.3; Male: 88%; TBI: 67%). TBI diagnosis was based on self-report and neurological examination. Fiber tractography analysis produced 20 fiber tracts per patient. Each tract yielded four clinically relevant measures (fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity). We applied receiver operating characteristic (ROC) analyses to identify the most diagnostic tract for each measure. The analyses produced an optimal cutpoint for each tract. We then used kappa coefficients to rate the agreement of each cutpoint with the neurologist's diagnosis. The tract with the highest kappa was most diagnostic. As a check on the ROC results, we performed a stepwise logistic regression on each measure using all 20 tracts as predictors. We also bootstrapped the ROC analyses to compute the 95% confidence intervals for sensitivity, specificity, and the highest kappa coefficients. The ROC analyses identified two fiber tracts as most diagnostic of TBI: the left cingulum (LCG) and the left inferior fronto-occipital fasciculus (LIF). Like ROC, logistic regression identified LCG as most predictive for the FA measure but identified the right anterior thalamic tract (RAT) for the MD, RD, and AD measures. These findings are potentially relevant to the development of TBI biomarkers. Our methods also demonstrate how ROC analysis may be used to identify clinically relevant variables in the TBI population.
Collapse
Key Words
- AD, axial diffusivity
- Axon degeneration
- CC, corpus callosum
- Concussion
- DAI, diffuse axonal injury
- DTI, diffusion tensor imaging
- FA, fractional anisotropy
- GN, genu
- Imaging
- LAT, left anterior thalamic tract
- LCG, left cingulum
- LCH, left cingulum – hippocampus
- LCS, left cortico-spinal tract
- LIF, left inferior fronto-occipital fasciculus
- LIL, left inferior longitudinal fasciculus
- LSL, left superior longitudinal fasciculus
- LST, left superior longitudinal fasciculus – temporal
- LUN, left uncinate
- MD, mean diffusivity
- Neurodegeneration
- PTSD, post-traumatic stress disorder
- RAT, right anterior thalamic tract
- RCG, right cingulum
- RCH, right cingulum – Hippocampus
- RCS, right cortico-spinal tract
- RD, radial diffusivity
- RIF, right inferior fronto-occipital fasciculus
- RIL, right inferior longitudinal fasciculus
- ROC, receiver operating characteristic
- RSL, right superior longitudinal fasciculus
- RST, right superior longitudinal fasciculus – temporal
- RUN, right uncinate
- SP, splenium
- TBI, traumatic brain injury
- Traumatic brain injury
Collapse
Affiliation(s)
- Keith L. Main
- War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
- Defense and Veterans Brain Injury Center (DVBIC), Silver Spring, MD, United States
- General Dynamics Health Solutions (GDHS), Fairfax, VA, United States
| | - Salil Soman
- War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Ansgar Furst
- War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Art Noda
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Beatriz Hernandez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Jennifer Kong
- War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
| | - Jauhtai Cheng
- War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
| | - Jennifer K. Fairchild
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Joy Taylor
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Jerome Yesavage
- War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - J. Wesson Ashford
- War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Helena Kraemer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Maheen M. Adamson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford School of Medicine, Stanford, CA, United States
- Defense and Veterans Brain Injury Center (DVBIC), Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
| |
Collapse
|
11
|
Zhang J, Wei RL, Peng GP, Zhou JJ, Wu M, He FP, Pan G, Gao J, Luo BY. Correlations between diffusion tensor imaging and levels of consciousness in patients with traumatic brain injury: a systematic review and meta-analysis. Sci Rep 2017; 7:2793. [PMID: 28584256 PMCID: PMC5459858 DOI: 10.1038/s41598-017-02950-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) often leads to impaired consciousness. Recent diffusion tensor imaging studies associated consciousness with imaging metrics including fractional anisotropy (FA) and apparent diffusion coefficient (ADC). We evaluated their correlations and determined the best index in candidate regions. Six databases were searched, including PubMed and Embase, and 16 studies with 701 participants were included. Data from region-of-interest and whole-brain analysis methods were meta-analysed separately. The FA-consciousness correlation was marginal in the whole-brain white matter (r = 0.63, 95% CI [0.47, 0.79], p = 0.000) and the corpus callosum (CC) (r = 0.60, 95% CI [0.48, 0.71], p = 0.000), and moderate in the internal capsule (r = 0.48, 95% CI [0.24, 0.72], p = 0.000). Correlations with ADC trended negative and lacked significance. Further subgroup analysis revealed that consciousness levels correlated strongly with FA in the CC body (r = 0.66, 95% CI [0.43, 0.89]), moderately in the splenium (r = 0.58, 95% CI [0.38, 0.78]), but insignificantly in the genu. In conclusion, FA correlates better with consciousness levels than ADC in TBI. The degree of correlation varies among brain regions. The CC (especially its splenium and body) is a reliable candidate region to quantitatively reflect consciousness levels.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurology & Brain Medical Centre, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Rui-Li Wei
- Department of Neurology & Brain Medical Centre, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Guo-Ping Peng
- Department of Neurology & Brain Medical Centre, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jia-Jia Zhou
- Department of Neurology & Brain Medical Centre, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Min Wu
- Department of Neurology & Brain Medical Centre, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fang-Ping He
- Department of Neurology & Brain Medical Centre, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Gang Pan
- Department of Computer Science, Zhejiang University, Hangzhou, China
| | - Jian Gao
- Department of Rehabilitation, Hangzhou Hospital of Zhejiang CAPR, Hangzhou, China
| | - Ben-Yan Luo
- Department of Neurology & Brain Medical Centre, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Hashim E, Caverzasi E, Papinutto N, Lewis CE, Jing R, Charles O, Zhang S, Lin A, Graham SJ, Schweizer TA, Bharatha A, Cusimano MD. Investigating Microstructural Abnormalities and Neurocognition in Sub-Acute and Chronic Traumatic Brain Injury Patients with Normal-Appearing White Matter: A Preliminary Diffusion Tensor Imaging Study. Front Neurol 2017; 8:97. [PMID: 28373856 PMCID: PMC5357974 DOI: 10.3389/fneur.2017.00097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/28/2017] [Indexed: 11/23/2022] Open
Abstract
For a significant percentage of subjects, with chronic traumatic brain injury (TBI), who report persisting cognitive impairment and functional loss, the diagnosis is often impeded by the fact that routine neuroimaging often does not reveal any abnormalities. In this paper, we used diffusion tensor imaging (DTI) to investigate the apparently normal white matter (as assessed by routine magnetic resonance imaging) in the brains of 19 subjects with sub-acute (9) and chronic (10) TBI. We also assessed memory, executive function, and visual-motor coordination in these subjects. Using a voxel-wise approach, we investigated if parameters of diffusion were significantly different between TBI subjects and 17 healthy controls (HC), who were demographically matched to the TBI group. We also investigated if changes in DTI parameters were associated with neuropsychological performance in either group. Our results indicate significantly increased mean and axial diffusivity (MD and AD, respectively) values in widespread brain locations in TBI subjects, while controlling for age, sex, and time since injury. HC performed significantly better than the TBI subjects on tests of memory and executive function, indicating the persisting functional loss in chronic TBI. We found no correlation between diffusion parameters and performance on test of executive function in either group. We found negative correlation between FA and composite memory scores, and positive correlation between RD and visuomotor coordination test scores, in various tracts in both groups. Our study suggests that changes in MD and AD can indicate persisting micro-structure abnormalities in normal-appearing white matter in the brains of subjects with chronic TBI. Our results also suggest that FA in major white matter tracts is correlated with memory in health and in disease, alike; larger and longitudinal studies are needed to discern potential differences in these correlations in the two groups.
Collapse
Affiliation(s)
- Eyesha Hashim
- Department of Neurosurgery, St. Michael's Hospital , Toronto, ON , Canada
| | - Eduardo Caverzasi
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA; Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Nico Papinutto
- Department of Neurology, University of California at San Francisco , San Francisco, CA , USA
| | - Caroline E Lewis
- Department of Neurosurgery, St. Michael's Hospital , Toronto, ON , Canada
| | - Ruiwei Jing
- Department of Neurosurgery, St. Michael's Hospital , Toronto, ON , Canada
| | - Onella Charles
- Department of Neurosurgery, St. Michael's Hospital , Toronto, ON , Canada
| | - Shudong Zhang
- Department of Neurosurgery, St. Michael's Hospital , Toronto, ON , Canada
| | - Amy Lin
- Department of Radiology, St. Michael's Hospital , Toronto, ON , Canada
| | - Simon J Graham
- Sunnybrook Research Institute, University of Toronto , Toronto, ON , Canada
| | - Tom A Schweizer
- Department of Neurosurgery, St. Michael's Hospital , Toronto, ON , Canada
| | - Aditya Bharatha
- Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada; Department of Medical Imaging and Neurosurgery at the University of Toronto, Toronto, ON, Canada
| | - Michael D Cusimano
- Department of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada; Faculty of Medicine, Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Strauss S, Hulkower M, Gulko E, Zampolin RL, Gutman D, Chitkara M, Zughaft M, Lipton ML. Current Clinical Applications and Future Potential of Diffusion Tensor Imaging in Traumatic Brain Injury. Top Magn Reson Imaging 2016; 24:353-62. [PMID: 26636640 DOI: 10.1097/rmr.0000000000000071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the setting of acute central nervous system (CNS) emergencies, computed tomography (CT) and conventional magnetic resonance imaging (MRI) play an important role in the identification of life-threatening intracranial injury. However, the full extent or even presence of brain damage frequently escapes detection by conventional CT and MRI. Advanced MRI techniques such as diffusion tensor imaging (DTI) are emerging as important adjuncts in the diagnosis of microstructural white matter injury in the acute and postacute brain-injured patient. Although DTI aids in detection of brain injury pathology, which has been repeatedly associated with typical adverse clinical outcomes, the evolution of acute changes and their long-term prognostic implications are less clear and the subject of much active research. A major aim of current research is to identify imaging-based biomarkers that can identify the subset of TBI patients who are at risk for adverse outcome and can therefore most benefit from ongoing care and rehabilitation as well as future therapeutic interventions.The aim of this study is to introduce the current methods used to obtain DTI in the clinical setting, describe a set of common interpretation strategies with their associated advantages and pitfalls, as well as illustrate the clinical utility of DTI through a set of specific patient scenarios. We conclude with a discussion of future potential for the management of TBI.
Collapse
Affiliation(s)
- Sara Strauss
- *Department of Radiology of Montefiore Medical Center, Bronx, NY †Radiology Ltd., Tuscon, AZ ‡The Gruss Magnetic Resonance Research Center of Albert Einstein College of Medicine, Bronx, NY §Department of Radiology of Albert Einstein College of Medicine, Bronx, NY
- Department of Psychiatry and Behavioral Sciences of Albert Einstein College of Medicine, Bronx, NY ¶Dominick P. Purpura Department of Neuroscience of Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ware JB, Biester RC, Whipple E, Robinson KM, Ross RJ, Nucifora PG. Combat-related Mild Traumatic Brain Injury: Association between Baseline Diffusion-Tensor Imaging Findings and Long-term Outcomes. Radiology 2016; 280:212-9. [PMID: 27022770 DOI: 10.1148/radiol.2016151013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To determine whether functional outcomes of veterans who sustained combat-related mild traumatic brain injury (TBI) are associated with scalar metrics derived from diffusion-tensor (DT) imaging at their initial postdeployment evaluation. Materials and Methods This HIPAA-compliant retrospective study was approved by the institutional review board, and the requirement to obtain informed consent was waived. From 2010 to 2013, initial postdeployment evaluation, including clinical assessment and brain magnetic resonance (MR) examination with DT imaging, was performed in combat veterans who sustained mild TBI while deployed. Outcomes from chart review encompassed initial postdeployment clinical assessment as well as later functional status, including evaluation of occupational status and health care utilization. Scalar diffusion metrics from the initial postdeployment evaluation were compared with outcomes by using multivariate analysis. Veterans who did and did not return to work were also compared for differences in clinical variables by using t and χ(2) tests. Results Postdeployment evaluation was performed a mean of 3.8 years after injury (range, 0.5-9 years; standard deviation, 2.5 years). After a mean follow-up of 1.4 years (range, 0.5-2.5 years; standard deviation, 0.8 year), 34 of 57 veterans (60%) had returned to work. Return to work was associated with diffusion metrics in multiple regions of white matter, particularly in the left internal capsule and the left frontal lobe (P = .02-.05). Overall, veterans had a mean of 46 health care visits per year during the follow-up period (range, 3-196 visits per year; standard deviation, 41 visits per year). Cumulative health care visits over time were inversely correlated with diffusion anisotropy of the splenium of the corpus callosum and adjacent parietal white matter (P < .05). Clinical measures obtained during initial postdeployment evaluation were not predictive of later functional status (P = .12-.8). Conclusion Differences in white matter microstructure may partially account for the variance in functional outcomes among veterans who sustained combat-related mild TBI. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Jeffrey B Ware
- From the Department of Radiology (J.B.W., P.G.N.), Department of Rehabilitation Medicine (R.C.B., E.W., K.M.R.), and Behavioral Health Service (R.J.R.), Philadelphia VA Medical Center, Philadelphia, Pa; and Departments of Radiology (J.B.W., P.G.N.) and Psychiatry (R.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Rosette C Biester
- From the Department of Radiology (J.B.W., P.G.N.), Department of Rehabilitation Medicine (R.C.B., E.W., K.M.R.), and Behavioral Health Service (R.J.R.), Philadelphia VA Medical Center, Philadelphia, Pa; and Departments of Radiology (J.B.W., P.G.N.) and Psychiatry (R.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Elizabeth Whipple
- From the Department of Radiology (J.B.W., P.G.N.), Department of Rehabilitation Medicine (R.C.B., E.W., K.M.R.), and Behavioral Health Service (R.J.R.), Philadelphia VA Medical Center, Philadelphia, Pa; and Departments of Radiology (J.B.W., P.G.N.) and Psychiatry (R.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Keith M Robinson
- From the Department of Radiology (J.B.W., P.G.N.), Department of Rehabilitation Medicine (R.C.B., E.W., K.M.R.), and Behavioral Health Service (R.J.R.), Philadelphia VA Medical Center, Philadelphia, Pa; and Departments of Radiology (J.B.W., P.G.N.) and Psychiatry (R.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Richard J Ross
- From the Department of Radiology (J.B.W., P.G.N.), Department of Rehabilitation Medicine (R.C.B., E.W., K.M.R.), and Behavioral Health Service (R.J.R.), Philadelphia VA Medical Center, Philadelphia, Pa; and Departments of Radiology (J.B.W., P.G.N.) and Psychiatry (R.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Paolo G Nucifora
- From the Department of Radiology (J.B.W., P.G.N.), Department of Rehabilitation Medicine (R.C.B., E.W., K.M.R.), and Behavioral Health Service (R.J.R.), Philadelphia VA Medical Center, Philadelphia, Pa; and Departments of Radiology (J.B.W., P.G.N.) and Psychiatry (R.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| |
Collapse
|
15
|
D'souza MM, Trivedi R, Singh K, Grover H, Choudhury A, Kaur P, Kumar P, Tripathi RP. Traumatic brain injury and the post-concussion syndrome: A diffusion tensor tractography study. Indian J Radiol Imaging 2016; 25:404-14. [PMID: 26751097 PMCID: PMC4693390 DOI: 10.4103/0971-3026.169445] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim: The aim of the present study is to evaluate diffusion tensor tractography (DTT) as a tool for detecting diffuse axonal injury in patients of acute, mild, and moderate traumatic brain injury (TBI), using two diffusion variables: Fractional anisotropy (FA) and mean diffusivity (MD). The correlation of these indices with the severity of post-concussive symptoms was also assessed. Materials and Methods: Nineteen patients with acute, mild, or moderate TBI and twelve age- and sex-matched healthy controls were recruited. Following Magnetic Resonance Imaging (MRI) on a 3.0-T scanner, DTT was performed using the ‘fiber assignment by continuous tracking’ (FACT) algorithm for fiber reconstruction. Appropriate statistical tools were used to see the difference in FA and MD values between the control and patient groups. In the latter group, the severity of post-concussive symptoms was assessed six months following trauma, using the Rivermead Postconcussion Symptoms Questionnaire (RPSQ). Results: The patients displayed significant reduction in FA compared to the controls (P < 0.05) in several tracts, notably the corpus callosum, fornix, bilateral uncinate fasciculus, and bilateral superior thalamic radiations. Changes in MD were statistically significant in the left uncinate, inferior longitudinal fasciculus, and left posterior thalamic radiation. A strong correlation between these indices and the RPSQ scores was observed in several white matter tracts. Conclusion: Diffusion tensor imaging (DTI)-based quantitative analysis in acute, mild, and moderate TBI can identify axonal injury neuropathology, over and above that visualized on conventional MRI scans. Furthermore, the significant correlation observed between FA and MD indices and the severity of post-concussive symptoms could make it a useful predictor of the long-term outcome.
Collapse
Affiliation(s)
- Maria M D'souza
- Department of NMR and Radiological Imaging, Institute of Nuclear Medicine and Allied Sciences (INMAS), New Delhi, India
| | - Richa Trivedi
- Department of NMR and Radiological Imaging, Institute of Nuclear Medicine and Allied Sciences (INMAS), New Delhi, India
| | - Kavita Singh
- Department of NMR and Radiological Imaging, Institute of Nuclear Medicine and Allied Sciences (INMAS), New Delhi, India
| | - Hemal Grover
- Department of Radiodiagnosis, Government Medical College, Patiala, Punjab, India
| | - Ajay Choudhury
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Ram Manohar Lohia Hospital, New Delhi, India
| | - Prabhjot Kaur
- Department of NMR and Radiological Imaging, Institute of Nuclear Medicine and Allied Sciences (INMAS), New Delhi, India
| | - Pawan Kumar
- Department of NMR and Radiological Imaging, Institute of Nuclear Medicine and Allied Sciences (INMAS), New Delhi, India
| | - Rajendra Prashad Tripathi
- Department of NMR and Radiological Imaging, Institute of Nuclear Medicine and Allied Sciences (INMAS), New Delhi, India
| |
Collapse
|
16
|
Diffusion tensor imaging study on radiation-induced brain injury in nasopharyngeal carcinoma during and after radiotherapy. TUMORI JOURNAL 2015; 101:487-90. [PMID: 25983086 DOI: 10.5301/tj.5000348] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 11/20/2022]
Abstract
AIMS AND BACKGROUND The aim of this study was to monitor the mircostructure change of temporal lobe during the acute and subacute stage of radiation-induced brain injury using magnetic resonance diffusion tensor imaging (DTI) in nasopharyngeal carcinoma patients. METHODS AND STUDY DESIGN Eighty patients diagnosed with nasopharyngeal carcinoma and treated with the first radiotherapy from July 2010 to May 2012 were enrolled. Routine brain magnetic resonance imaging (MRI) and DTI were conducted in all patients before and during radiotherapy (radiation dose was 20, 40, and 60 Gy, respectively). The MRI and DTI were also performed in the 1st, 2nd, and 3rd month after radiotherapy in 47 cases of 80 patients. The apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of DTI during different stages were dynamically observed and analyzed. RESULTS The ADC values were increased and the FA values were decreased with the increase of radiation dose (20, 40, and 60 Gy) during the radiotherapy, but there was no significant difference in ADC value or FA value between before and during radiotherapy (p>0.05). Compared with before radiotherapy, the ADC values were significantly increased and the FA values were significantly decreased at the 1st month, 2nd month, and 3rd month after radiotherapy (all p<0.05). CONCLUSIONS Diffusion tensor imaging reflects the microstructure change of radiation-induced brain injury in the acute and subacute stage, which provides an objective basis for early intervention of potential irreversible brain injury in the late delayed stage, and has important significance for improving the overall efficacy of radiotherapy.
Collapse
|
17
|
Wen MC, Ng A, Chander RJ, Au WL, Tan LCS, Kandiah N. Longitudinal brain volumetric changes and their predictive effects on cognition among cognitively asymptomatic patients with Parkinson's disease. Parkinsonism Relat Disord 2015; 21:483-8. [PMID: 25753847 DOI: 10.1016/j.parkreldis.2015.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/30/2014] [Accepted: 02/17/2015] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Existing literature on brain volumetric alterations in patients with Parkinson's disease (PD) have mainly focused on gray matter (GM) and are largely cross-sectional. Little is known about white matter (WM) volumetric features and their impact on cognitive symptoms in PD. Therefore, the present study aims to examine both GM and WM volumes of cognitively asymptomatic PD patients with a longitudinal design. METHODS A total of 42 cognitively asymptomatic patients with early stage PD were recruited and followed up for 1.5 years. At follow-up, 12 patients progressed to mild cognitive impairment (MCI) and were classified as "converters" while the remaining 30 patients remained cognitively asymptomatic and were classified as "non-converters". All patients underwent clinical and neuropsychological assessments as well as MRI scans at baseline and at follow-up. RESULTS At baseline, non-converters and converters had comparable cognitive scores. At follow-up, converters showed more deficits in frontal-related cognitive function than non-converters. Volumetric analyses revealed that converters had more longitudinal reduction in WM, but not GM, volume compared to non-converters. The decreased volumes among converters were mainly localized in the frontal areas. Moreover, baseline global WM volume significantly predicted conversion to PD-MCI, while baseline GM and WM volumes of the frontal and parietal regions were associated with frontal cognitive changes across time. CONCLUSION PD patients who develop MCI demonstrate longitudinal reduction in WM volume, especially in the frontal areas. While both regional GM and WM volumes associate with frontal cognitive decline, baseline global WM volume may be a neuroimaging marker of conversion to PD-MCI.
Collapse
Affiliation(s)
- Ming-Ching Wen
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Aloysius Ng
- Department of Neurology, National Neuroscience Institute, Singapore
| | | | - Wing Lok Au
- Department of Neurology, National Neuroscience Institute, Singapore; Duke-NUS Graduate Medical School, Singapore
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Singapore; Duke-NUS Graduate Medical School, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Singapore; Duke-NUS Graduate Medical School, Singapore.
| |
Collapse
|
18
|
White matter disruption in moderate/severe pediatric traumatic brain injury: advanced tract-based analyses. NEUROIMAGE-CLINICAL 2015; 7:493-505. [PMID: 25737958 PMCID: PMC4338205 DOI: 10.1016/j.nicl.2015.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 12/01/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in children and can lead to a wide range of impairments. Brain imaging methods such as DTI (diffusion tensor imaging) are uniquely sensitive to the white matter (WM) damage that is common in TBI. However, higher-level analyses using tractography are complicated by the damage and decreased FA (fractional anisotropy) characteristic of TBI, which can result in premature tract endings. We used the newly developed autoMATE (automated multi-atlas tract extraction) method to identify differences in WM integrity. 63 pediatric patients aged 8–19 years with moderate/severe TBI were examined with cross sectional scanning at one or two time points after injury: a post-acute assessment 1–5 months post-injury and a chronic assessment 13–19 months post-injury. A battery of cognitive function tests was performed in the same time periods. 56 children were examined in the first phase, 28 TBI patients and 28 healthy controls. In the second phase 34 children were studied, 17 TBI patients and 17 controls (27 participants completed both post-acute and chronic phases). We did not find any significant group differences in the post-acute phase. Chronically, we found extensive group differences, mainly for mean and radial diffusivity (MD and RD). In the chronic phase, we found higher MD and RD across a wide range of WM. Additionally, we found correlations between these WM integrity measures and cognitive deficits. This suggests a distributed pattern of WM disruption that continues over the first year following a TBI in children. We examined pediatric traumatic brain injury patients at 2 time points post injury. Cross sectional analyses were completed at the post-acute and chronic stages. We used novel tract-based methods to reveal widespread white matter disruption. White matter disruption chronically was related to cognitive deficits.
Collapse
|
19
|
Perez AM, Adler J, Kulkarni N, Strain JF, Womack KB, Diaz-Arrastia R, Marquez de la Plata CD. Longitudinal white matter changes after traumatic axonal injury. J Neurotrauma 2014; 31:1478-85. [PMID: 24738754 DOI: 10.1089/neu.2013.3216] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diffusion tensor imaging (DTI) has been useful in showing compromise after traumatic axonal injury (TAI) at the chronic stage; however, white matter (WM) compromise from acute stage of TAI to chronic stage is not yet well understood. This study aims to examine changes in WM integrity following TAI by obtaining DTI, on average, 1 d post injury and again approximately seven months post-injury. Sixteen patients with complicated mild to severe brain injuries consistent with TAI were recruited in the intensive care unit of a Level I trauma center. Thirteen of these patients were studied longitudinally over the course of the first seven months post-injury. The first scan occurred, on average, 1 d after injury and the second an average of seven months post-injury. Ten healthy individuals, similar to the cohort of patients, were recruited as controls. Whole brain WM and voxel-based analyses of DTI data were conducted. DTI metrics of interest included: fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), and radial diffusivity (RD). tract-based spatial statistics were used to examine DTI metrics spatially. Acutely, AD and RD increased and RD positively correlated with injury severity. Longitudinal analysis showed reduction in FA and AD (p<0.01), but no change in RD. Possible explanations for the microstructural changes observed over time are discussed.
Collapse
Affiliation(s)
- Alison M Perez
- 1 Center for BrainHealth at the University of Texas at Dallas , Dallas, Texas
| | | | | | | | | | | | | |
Collapse
|
20
|
Liégeois FJ, Mahony K, Connelly A, Pigdon L, Tournier JD, Morgan AT. Pediatric traumatic brain injury: language outcomes and their relationship to the arcuate fasciculus. BRAIN AND LANGUAGE 2013; 127:388-98. [PMID: 23756046 PMCID: PMC3988975 DOI: 10.1016/j.bandl.2013.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 04/15/2013] [Accepted: 05/07/2013] [Indexed: 05/12/2023]
Abstract
Pediatric traumatic brain injury (TBI) may result in long-lasting language impairments alongside dysarthria, a motor-speech disorder. Whether this co-morbidity is due to the functional links between speech and language networks, or to widespread damage affecting both motor and language tracts, remains unknown. Here we investigated language function and diffusion metrics (using diffusion-weighted tractography) within the arcuate fasciculus, the uncinate fasciculus, and the corpus callosum in 32 young people after TBI (approximately half with dysarthria) and age-matched healthy controls (n=17). Only participants with dysarthria showed impairments in language, affecting sentence formulation and semantic association. In the whole TBI group, sentence formulation was best predicted by combined corpus callosum and left arcuate volumes, suggesting this "dual blow" seriously reduces the potential for functional reorganisation. Word comprehension was predicted by fractional anisotropy in the right arcuate. The co-morbidity between dysarthria and language deficits therefore seems to be the consequence of multiple tract damage.
Collapse
Affiliation(s)
- Frédérique J Liégeois
- Developmental Cognitive Neuroscience Unit, University College London, Institute of Child Health, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
21
|
Treble A, Hasan KM, Iftikhar A, Stuebing KK, Kramer LA, Cox CS, Swank PR, Ewing-Cobbs L. Working memory and corpus callosum microstructural integrity after pediatric traumatic brain injury: a diffusion tensor tractography study. J Neurotrauma 2013; 30:1609-19. [PMID: 23627735 DOI: 10.1089/neu.2013.2934] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Deficits in working memory (WM) are a common consequence of pediatric traumatic brain injury (TBI) and are believed to contribute to difficulties in a range of cognitive and academic domains. Reduced integrity of the corpus callosum (CC) after TBI may disrupt the connectivity between bilateral frontoparietal neural networks underlying WM. In the present investigation, diffusion tensor imaging (DTI) tractography of eight callosal subregions (CC1-CC8) was examined in relation to measures of verbal and visuospatial WM in 74 children sustaining TBI and 49 typically developing comparison children. Relative to the comparison group, children with TBI demonstrated poorer visuospatial WM, but comparable verbal WM. Microstructure of the CC was significantly compromised in brain-injured children, with lower fractional anisotropy (FA) and higher axial and radial diffusivity metrics in all callosal subregions. In both groups of children, lower FA and/or higher radial diffusivity in callosal subregions connecting anterior and posterior parietal cortical regions predicted poorer verbal WM, whereas higher radial diffusivity in callosal subregions connecting anterior and posterior parietal, as well as temporal, cortical regions predicted poorer visuospatial WM. DTI metrics, especially radial diffusivity, in predictive callosal subregions accounted for significant variance in WM over and above remaining callosal subregions. Reduced microstructural integrity of the CC, particularly in subregions connecting parietal and temporal cortices, may act as a neuropathological mechanism contributing to long-term WM deficits. The future clinical use of neuroanatomical biomarkers may allow for the early identification of children at highest risk for WM deficits and earlier provision of interventions for these children.
Collapse
Affiliation(s)
- Amery Treble
- 1 Department of Psychology, University of Houston , Houston, Texas
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tha KK, Terae S, Nakagawa S, Inoue T, Kitagawa N, Kako Y, Nakato Y, Akter Popy K, Fujima N, Zaitsu Y, Yoshida D, Ito YM, Miyamoto T, Koyama T, Shirato H. Impaired integrity of the brain parenchyma in non-geriatric patients with major depressive disorder revealed by diffusion tensor imaging. Psychiatry Res 2013; 212:208-15. [PMID: 23149032 DOI: 10.1016/j.pscychresns.2012.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 06/16/2012] [Accepted: 07/11/2012] [Indexed: 10/27/2022]
Abstract
Diffusion tensor imaging (DTI) is considered to be able to non-invasively quantify white matter integrity. This study aimed to use DTI to evaluate white matter integrity in non-geriatric patients with major depressive disorder (MDD) who were free of antidepressant medication. DTI was performed on 19 non-geriatric patients with MDD, free of antidepressant medication, and 19 age-matched healthy subjects. Voxel-based and histogram analyses were used to compare fractional anisotropy (FA) and mean diffusivity (MD) values between the two groups, using two-sample t tests. The abnormal DTI indices, if any, were tested for correlation with disease duration and severity, using Pearson product-moment correlation analysis. Voxel-based analysis showed clusters with FA decrease at the bilateral frontal white matter, anterior limbs of internal capsule, cerebellum, left putamen and right thalamus of the patients. Histogram analysis revealed lower peak position of FA histograms in the patients. FA values of the abnormal clusters and peak positions of FA histograms of the patients exhibited moderate correlation with disease duration and severity. These results suggest the implication of frontal-subcortical circuits and cerebellum in MDD, and the potential utility of FA in evaluation of brain parenchymal integrity.
Collapse
Affiliation(s)
- Khin K Tha
- Hokkaido University Graduate School of Medicine, Department of Radiobiology and Medical Engineering, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim N, Branch CA, Kim M, Lipton ML. Whole brain approaches for identification of microstructural abnormalities in individual patients: comparison of techniques applied to mild traumatic brain injury. PLoS One 2013; 8:e59382. [PMID: 23555665 PMCID: PMC3608654 DOI: 10.1371/journal.pone.0059382] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/14/2013] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Group-wise analyses of DTI in mTBI have demonstrated evidence of traumatic axonal injury (TAI), associated with adverse clinical outcomes. Although mTBI is likely to have a unique spatial pattern in each patient, group analyses implicitly assume that location of injury will be the same across patients. The purpose of this study was to optimize and validate a procedure for analysis of DTI images acquired in individual patients, which could detect inter-individual differences and be applied in the clinical setting, where patients must be assessed as individuals. MATERIALS AND METHODS After informed consent and in compliance with HIPAA, 34 mTBI patients and 42 normal subjects underwent 3.0 Tesla DTI. Four voxelwise assessment methods (standard Z-score, "one vs. many" t-test, Family-Wise Error Rate control using pseudo t-distribution, EZ-MAP) for use in individual patients, were applied to each patient's fractional anisotropy (FA) maps and tested for its ability to discriminate patients from controls. Receiver Operating Characteristic (ROC) analyses were used to define optimal thresholds (voxel-level significance and spatial extent) for reliable and robust detection of mTBI pathology. RESULTS ROC analyses showed EZ-MAP (specificity 71%, sensitivity 71%), "one vs. many" t-test and standard Z-score (sensitivity 65%, specificity 76% for both methods) resulted in a significant area under the curve (AUC) score for discriminating mTBI patients from controls in terms of the total number of abnormal white matter voxels detected while the FWER test was not significant. EZ-MAP is demonstrated to be robust to assumptions of Gaussian behavior and may serve as an alternative to methods that require strict Gaussian assumptions. CONCLUSION EZ-MAP provides a robust approach for delineation of regional abnormal anisotropy in individual mTBI patients.
Collapse
Affiliation(s)
- Namhee Kim
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- Department of Radiology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Craig A. Branch
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- Department of Radiology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Mimi Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Michael L. Lipton
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- Department of Radiology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- Department of Radiology, Montefiore Medical Center, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Adolescents with D-transposition of the great arteries repaired in early infancy demonstrate reduced white matter microstructure associated with clinical risk factors. J Thorac Cardiovasc Surg 2013; 146:543-9.e1. [PMID: 23375991 DOI: 10.1016/j.jtcvs.2012.12.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/06/2012] [Accepted: 12/05/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Our objective was to use diffusion tensor imaging (DTI) to compare white matter microstructure in adolescents with D-transposition of the great arteries (D-TGA) who underwent the arterial switch operation in early infancy with typically developing control adolescents. We also examined correlates between patient demographic and medical risk factors and white matter as assessed by regional fractional anisotropy (FA) values. METHODS We used with magnetic resonance imaging (MRI) to study 49 adolescents with D-TGA and 29 control adolescents. MRI data, including whole brain DTI and conventional anatomic MRI, were acquired from each subject. Each subject's data were analyzed using random effects analysis to evaluate regional white matter differences in FA between D-TGA and control adolescents. RESULTS While multifocal punctate MRI hypointensities on T1-weighted (T1W) imaging suggestive of mineralization were found, other evidence of gross white matter injury was absent. Eighteen discrete regions of significantly reduced FA in D-TGA adolescents compared with controls were observed in deep white matter of cerebral hemispheres, cerebellum, and midbrain. Among D-TGA adolescents, lower FA correlated with younger gestational age, shorter duration of intraoperative cooling, higher intraoperative minimum tympanic temperature, longer intensive care unit stay after repair, and greater total number of open cardiac operations. CONCLUSIONS Despite scant white matter injury evident on conventional brain MRI, adolescents with D-TGA repaired in infancy demonstrate significant white matter FA reduction that may relate to their reported neurocognitive deficits. Among adolescents with D-TGA, FA values are associated with patient and perioperative factors, some of which are modifiable.
Collapse
|
25
|
Wilde EA, Ayoub KW, Bigler ED, Chu ZD, Hunter JV, Wu TC, McCauley SR, Levin HS. Diffusion tensor imaging in moderate-to-severe pediatric traumatic brain injury: changes within an 18 month post-injury interval. Brain Imaging Behav 2013; 6:404-16. [PMID: 22399284 DOI: 10.1007/s11682-012-9150-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in children, yet little is known regarding the pattern of TBI-related microstructural change and its impact on subsequent development. Diffusion tensor imaging (DTI) was used to examine between-group differences at two time points (planned intervals of 3 months and 18 months post-injury) and within-group longitudinal change in a group of children and adolescents aged 7-17 years with moderate-to-severe TBI (n = 20) and a comparison group of children with orthopedic injury (OI) (n = 21). In the 3- and 18-month cross-sectional analyses, tract-based spatial statistics (TBSS) generally revealed decreased fractional anisotropy (FA) and increased apparent diffusion coefficient (ADC) in the TBI group in regions of frontal, temporal, parietal, and occipital white matter as well as several deep subcortical structures, though areas of FA decrease were more prominent at the 3-month assessment, and areas of ADC increase were more prominent at the 18 month assessment, particularly in the frontal regions. In terms of the within-group changes over time, the OI group demonstrated primarily diffuse increases in FA over time, consistent with previous findings of DTI-measured white matter developmental change. The TBI group demonstrated primarily regions of FA decrease and ADC increase over time, consistent with presumed continued degenerative change, though regions of ADC decrease were also appreciated. These results suggest that TBI-related microstructural changes are dynamic in children and continue until at least 18 months post-injury. Understanding the course of these changes in DTI metrics may be important in TBI for facilitating advances in management and intervention.
Collapse
Affiliation(s)
- Elisabeth A Wilde
- Physical Medicine and Rehabilitation Alliance, Baylor College of Medicine and the University of Texas-Houston Medical School, Houston, TX, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hulkower MB, Poliak DB, Rosenbaum SB, Zimmerman ME, Lipton ML. A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR Am J Neuroradiol 2013; 34:2064-74. [PMID: 23306011 DOI: 10.3174/ajnr.a3395] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARY The past decade has seen an increase in the number of articles reporting the use of DTI to detect brain abnormalities in patients with traumatic brain injury. DTI is well-suited to the interrogation of white matter microstructure, the most important location of pathology in TBI. Additionally, studies in animal models have demonstrated the correlation of DTI findings and TBI pathology. One hundred articles met the inclusion criteria for this quantitative literature review. Despite significant variability in sample characteristics, technical aspects of imaging, and analysis approaches, the consensus is that DTI effectively differentiates patients with TBI and controls, regardless of the severity and timeframe following injury. Furthermore, many have established a relationship between DTI measures and TBI outcomes. However, the heterogeneity of specific outcome measures used limits interpretation of the literature. Similarly, few longitudinal studies have been performed, limiting inferences regarding the long-term predictive utility of DTI. Larger longitudinal studies, using standardized imaging, analysis approaches, and outcome measures will help realize the promise of DTI as a prognostic tool in the care of patients with TBI.
Collapse
|
27
|
Computational analysis reveals increased blood deposition following repeated mild traumatic brain injury. NEUROIMAGE-CLINICAL 2012; 1:18-28. [PMID: 24179733 PMCID: PMC3757717 DOI: 10.1016/j.nicl.2012.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/12/2012] [Accepted: 08/04/2012] [Indexed: 11/22/2022]
Abstract
Mild traumatic brain injury (mTBI) has become an increasing public health concern as subsequent injuries can exacerbate existing neuropathology and result in neurological deficits. This study investigated the temporal development of cortical lesions using magnetic resonance imaging (MRI) to assess two mTBIs delivered to opposite cortical hemispheres. The controlled cortical impact model was used to produce an initial mTBI on the right cortex followed by a second injury induced on the left cortex at 3 (rmTBI 3d) or 7 (rmTBI 7d) days later. Histogram analysis was combined with a novel semi-automated computational approach to perform a voxel-wise examination of extravascular blood and edema volumes within the lesion. Examination of lesion volume 1d post last injury revealed increased tissue abnormalities within rmTBI 7d animals compared to other groups, particularly at the site of the second impact. Histogram analysis of lesion T2 values suggested increased edematous tissue within the rmTBI 3d group and elevated blood deposition in the rm TBI 7d animals. Further quantification of lesion composition for blood and edema containing voxels supported our histogram findings, with increased edema at the site of second impact in rmTBI 3d animals and elevated blood deposition in the rmTBI 7d group at the site of the first injury. Histological measurements revealed spatial overlap of regions containing blood deposition and microglial activation within the cortices of all animals. In conclusion, our findings suggest that there is a window of tissue vulnerability where a second distant mTBI, induced 7d after an initial injury, exacerbates tissue abnormalities consistent with hemorrhagic progression.
Collapse
|
28
|
Temporal profiles of axonal injury following impact acceleration traumatic brain injury in rats--a comparative study with diffusion tensor imaging and morphological analysis. Int J Legal Med 2012; 127:159-67. [PMID: 22573358 DOI: 10.1007/s00414-012-0712-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/27/2012] [Indexed: 12/19/2022]
Abstract
Traumatic axonal injury (TAI) plays a major role in the development of neurological impairments after traumatic brain injury (TBI), but it is commonly difficult to evaluate it precisely and early with conventional histological biomarkers, especially when the patients experience short-term survival after TBI. Diffusion tensor imaging (DTI) has shown some promise in detecting TAI, but longitudinal studies on the compromised white matter with DTI at early time points (≤72 h) following impact acceleration TBI are still absent. In the present study, rats were subjected to the Marmarou model and imaged with DTI at 3, 12, 24, and 72 h (n = 5 each) post-injury. Using a region-of-interest-based approach, the regions of interest including the corpus callosum, bilateral external capsule, internal capsule, and pyramidal tract were studied. Two DTI parameters, fraction anisotropy and axial diffusivity, were significantly reduced from 3 to 72 h in each region after trauma, corresponding to the gradient of axonal damage demonstrated by immunohistochemical staining of β-amyloid precursor protein and neurofilament light chain. Remarkably, DTI changes predicted the approximate time in the acute phase following TBI. These results indicate that the temporal profiles of diffusion parameters in DTI may be able to provide a tool for early diagnosis of TAI following impact acceleration TBI.
Collapse
|
29
|
Clinical relevance of blast-related traumatic brain injury. Acta Neurochir (Wien) 2012; 154:131-4; discussion 134. [PMID: 22037982 DOI: 10.1007/s00701-011-1210-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/12/2011] [Indexed: 10/15/2022]
|
30
|
Magnoni S, Esparza TJ, Conte V, Carbonara M, Carrabba G, Holtzman DM, Zipfel GJ, Stocchetti N, Brody DL. Tau elevations in the brain extracellular space correlate with reduced amyloid-β levels and predict adverse clinical outcomes after severe traumatic brain injury. ACTA ACUST UNITED AC 2011; 135:1268-80. [PMID: 22116192 DOI: 10.1093/brain/awr286] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Axonal injury is believed to be a major determinant of adverse outcomes following traumatic brain injury. However, it has been difficult to assess acutely the severity of axonal injury in human traumatic brain injury patients. We hypothesized that microdialysis-based measurements of the brain extracellular fluid levels of tau and neurofilament light chain, two low molecular weight axonal proteins, could be helpful in this regard. To test this hypothesis, 100 kDa cut-off microdialysis catheters were placed in 16 patients with severe traumatic brain injury at two neurological/neurosurgical intensive care units. Tau levels in the microdialysis samples were highest early and fell over time in all patients. Initial tau levels were >3-fold higher in patients with microdialysis catheters placed in pericontusional regions than in patients in whom catheters were placed in normal-appearing right frontal lobe tissue (P = 0.005). Tau levels and neurofilament light-chain levels were positively correlated (r = 0.6, P = 0.013). Neurofilament light-chain levels were also higher in patients with pericontusional catheters (P = 0.04). Interestingly, initial tau levels were inversely correlated with initial amyloid-β levels measured in the same samples (r = -0.87, P = 0.000023). This could be due to reduced synaptic activity in areas with substantial axonal injury, as amyloid-β release is closely coupled with synaptic activity. Importantly, high initial tau levels correlated with worse clinical outcomes, as assessed using the Glasgow Outcome Scale 6 months after injury (r = -0.6, P = 0.018). Taken together, our data add support for the hypothesis that axonal injury may be related to long-term impairments following traumatic brain injury. Microdialysis-based measurement of tau levels in the brain extracellular space may be a useful way to assess the severity of axonal injury acutely in the intensive care unit. Further studies with larger numbers of patients will be required to assess the reproducibility of these findings and to determine whether this approach provides added value when combined with clinical and radiological information.
Collapse
Affiliation(s)
- Sandra Magnoni
- Department of Anaesthesia and Intensive Care, Fondazione IRCCS Ca Granda-Ospedale Maggiore Policlinico, Milan University, Milano 20100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang JY, Bakhadirov K, Abdi H, Devous MD, Marquez de la Plata CD, Moore C, Madden CJ, Diaz-Arrastia R. Longitudinal changes of structural connectivity in traumatic axonal injury. Neurology 2011; 77:818-26. [PMID: 21813787 DOI: 10.1212/wnl.0b013e31822c61d7] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To identify structural connectivity change occurring during the first 6 months after traumatic brain injury and to evaluate the utility of diffusion tensor tractography for predicting long-term outcome. METHODS The participants were 28 patients with mild to severe traumatic axonal injury and 20 age- and sex-matched healthy control subjects. Neuroimaging was obtained 0-9 days postinjury for acute scans and 6-14 months postinjury for chronic scans. Long-term outcome was evaluated on the day of the chronic scan. Twenty-eight fiber regions of 9 major white matter structures were reconstructed, and reliable tractography measurements were determined and used. RESULTS Although most (23 of 28) patients had severe brain injury, their long-term outcome ranged from good recovery (16 patients) to moderately (5 patients) and severely disabled (7 patients). In concordance with the diverse outcome, the white matter change in patients was heterogeneous, ranging from improved structural connectivity, through no change, to deteriorated connectivity. At the group level, all 9 fiber tracts deteriorated significantly with 7 (corpus callosum, cingulum, angular bundle, cerebral peduncular fibers, uncinate fasciculus, and inferior longitudinal and fronto-occipital fasciculi) showing structural damage acutely and 2 (fornix body and left arcuate fasciculus) chronically. Importantly, the amount of change in tractography measurements correlated with patients' long-term outcome. Acute tractography measurements were able to predict patients' learning and memory performance; chronic measurements also determined performance on processing speed and executive function. CONCLUSIONS Diffusion tensor tractography is a valuable tool for identifying structural connectivity changes occurring between the acute and chronic stages of traumatic brain injury and for predicting patients' long-term outcome.
Collapse
Affiliation(s)
- J Y Wang
- Department of Cognition and Neuroscience, University of Texas, Dallas, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|