1
|
Chang X, Qu F, Li C, Zhang J, Zhang Y, Xie Y, Fan Z, Bian J, Wang J, Li Z, Xu X. Development and therapeutic potential of GSPT1 molecular glue degraders: A medicinal chemistry perspective. Med Res Rev 2024; 44:1727-1767. [PMID: 38314926 DOI: 10.1002/med.22024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Unprecedented therapeutic targeting of previously undruggable proteins has now been achieved by molecular-glue-mediated proximity-induced degradation. As a small GTPase, G1 to S phase transition 1 (GSPT1) interacts with eRF1, the translation termination factor, to facilitate the process of translation termination. Studied demonstrated that GSPT1 plays a vital role in the acute myeloid leukemia (AML) and MYC-driven lung cancer. Thus, molecular glue (MG) degraders targeting GSPT1 is a novel and promising approach for treating AML and MYC-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of GSPT1, highlighting the latest advances and challenges in MG degraders, as well as some representative patents. The structure-activity relationships, mechanism of action and pharmacokinetic features of MG degraders are emphasized to provide a comprehensive compendium on the rational design of GSPT1 MG degraders. We hope to provide an updated overview, and design guide for strategies targeting GSPT1 for the treatment of cancer.
Collapse
Affiliation(s)
- Xiujin Chang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangui Qu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunxiao Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingtian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanqing Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhongpeng Fan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Zhouravleva GA, Bondarev SA, Zemlyanko OM, Moskalenko SE. Role of Proteins Interacting with the eRF1 and eRF3 Release Factors in the Regulation of Translation and Prionization. Mol Biol 2022. [DOI: 10.1134/s0026893322010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Karki P, Carney TD, Maracci C, Yatsenko AS, Shcherbata HR, Rodnina MV. Tissue-specific regulation of translational readthrough tunes functions of the traffic jam transcription factor. Nucleic Acids Res 2021; 50:6001-6019. [PMID: 34897510 PMCID: PMC9226519 DOI: 10.1093/nar/gkab1189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Translational readthrough (TR) occurs when the ribosome decodes a stop codon as a sense codon, resulting in two protein isoforms synthesized from the same mRNA. TR has been identified in several eukaryotic organisms; however, its biological significance and mechanism remain unclear. Here, we quantify TR of several candidate genes in Drosophila melanogaster and characterize the regulation of TR in the large Maf transcription factor Traffic jam (Tj). Using CRISPR/Cas9-generated mutant flies, we show that the TR-generated Tj isoform is expressed in a subset of neural cells of the central nervous system and is excluded from the somatic cells of gonads. Control of TR in Tj is critical for preservation of neuronal integrity and maintenance of reproductive health. The tissue-specific distribution of a release factor splice variant, eRF1H, plays a critical role in modulating differential TR of leaky stop codon contexts. Fine-tuning of gene regulatory functions of transcription factors by TR provides a potential mechanism for cell-specific regulation of gene expression.
Collapse
Affiliation(s)
- Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Travis D Carney
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Andriy S Yatsenko
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Halyna R Shcherbata
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| |
Collapse
|
4
|
Choi HY, Park N, Lee B, Choe YI, Woo DK, Park JY, Yoo JC. CPNE1-mediated neuronal differentiation can be inhibited by HAX1 expression in HiB5 cells. Biochem Biophys Res Commun 2020; 533:319-324. [PMID: 32958249 DOI: 10.1016/j.bbrc.2020.09.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022]
Abstract
We previously demonstrated that CPNE1 induces neuronal differentiation and identified two binding proteins of CPNE1 (14-3-3γ and Jab1) as potential regulators of CPNE1-mediated neuronal differentiation in hippocampal progenitor cells. To better understand the cellular processes in which CPNE1 participates in neuronal differentiation, we here carried out a yeast two-hybrid screening to find another CPNE1 binding protein. Among the identified proteins, HCLS1-related protein X-1 (HAX1) directly interacts with CPNE1. Immunostaining experiments showed that a fraction of CPNE1 and HAX1 co-localized in the cytosol, particularly in the plasma membrane. In addition, the physical interaction as well as the specific binding regions between CPNE1 and HAX1 were confirmed in vitro and in vivo. Moreover, AKT phosphorylation, Tuj1 (neuronal marker protein) expression, and neurite outgrowth are all reduced in CPNE1/HAX1 overexpressing cells compared to CPNE1 only overexpressing HiB5 cells. Conversely, the HAX1 mutant that does not bind to CPNE1 was unable to inhibit the CPNE1-mediated neuronal differentiation. Together these results indicate that HAX1 is a binding partner of CPNE1 and CPNE1-mediated neuronal differentiation is negatively affected through the binding of HAX1, especially its N-terminal region, with CPNE1.
Collapse
Affiliation(s)
- Hye Young Choi
- Department of Radiology, Gyeongsang National University Hospital and College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Nammi Park
- Cardiovascular and Metabolic Disease Center, Paik Hospital, Inje University, Busan, 47392, Republic of Korea
| | - Boah Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 305-701, Republic of Korea
| | - Yeong In Choe
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Dong Kyun Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Jae Cheal Yoo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
5
|
Gupta P, Li YR. Upf proteins: highly conserved factors involved in nonsense mRNA mediated decay. Mol Biol Rep 2017; 45:39-55. [PMID: 29282598 DOI: 10.1007/s11033-017-4139-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022]
Abstract
Over 10% of genetic diseases are caused by mutations that introduce a premature termination codon in protein-coding mRNA. Nonsense-mediated mRNA decay (NMD) is an essential cellular pathway that degrades these mRNAs to prevent the accumulation of harmful partial protein products. NMD machinery is also increasingly appreciated to play a role in other essential cellular functions, including telomere homeostasis and the regulation of normal mRNA turnover, and is misregulated in numerous cancers. Hence, understanding and designing therapeutics targeting NMD is an important goal in biomedical science. The central regulator of NMD, the Upf1 protein, interacts with translation termination factors and contextual factors to initiate NMD specifically on mRNAs containing PTCs. The molecular details of how these contextual factors affect Upf1 function remain poorly understood. Here, we review plausible models for the NMD pathway and the evidence for the variety of roles NMD machinery may play in different cellular processes.
Collapse
Affiliation(s)
- Puneet Gupta
- Harvard College, Harvard University, Cambridge, MA, 02138, USA.,School of Arts and Sciences, St. Bonaventure University, St. Bonaventure, NY, 14778, USA
| | - Yan-Ruide Li
- Harvard Medical School, Harvard University, Boston, MA, 02115, USA. .,College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
6
|
A thiol probe for measuring unfolded protein load and proteostasis in cells. Nat Commun 2017; 8:474. [PMID: 28883394 PMCID: PMC5589734 DOI: 10.1038/s41467-017-00203-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
When proteostasis becomes unbalanced, unfolded proteins can accumulate and aggregate. Here we report that the dye, tetraphenylethene maleimide (TPE-MI) can be used to measure cellular unfolded protein load. TPE-MI fluorescence is activated upon labelling free cysteine thiols, normally buried in the core of globular proteins that are exposed upon unfolding. Crucially TPE-MI does not become fluorescent when conjugated to soluble glutathione. We find that TPE-MI fluorescence is enhanced upon reaction with cellular proteomes under conditions promoting accumulation of unfolded proteins. TPE-MI reactivity can be used to track which proteins expose more cysteine residues under stress through proteomic analysis. We show that TPE-MI can report imbalances in proteostasis in induced pluripotent stem cell models of Huntington disease, as well as cells transfected with mutant Huntington exon 1 before the formation of visible aggregates. TPE-MI also detects protein damage following dihydroartemisinin treatment of the malaria parasites Plasmodium falciparum. TPE-MI therefore holds promise as a tool to probe proteostasis mechanisms in disease. Proteostasis is maintained through a number of molecular mechanisms, some of which function to protect the folded state of proteins. Here the authors demonstrate the use of TPE-MI in a fluorigenic dye assay for the quantitation of unfolded proteins that can be used to assess proteostasis on a cellular or proteome scale.
Collapse
|
7
|
Urakov VN, Mitkevich OV, Safenkova IV, Ter‐Avanesyan MD. Ribosome‐bound Pub1 modulates stop codon decoding during translation termination in yeast. FEBS J 2017; 284:1914-1930. [DOI: 10.1111/febs.14099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Valery N. Urakov
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| | - Olga V. Mitkevich
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| | - Irina V. Safenkova
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| | - Michael D. Ter‐Avanesyan
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| |
Collapse
|
8
|
The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q Rev Biophys 2016; 49:e11. [PMID: 27658712 DOI: 10.1017/s0033583516000056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.
Collapse
|
9
|
Wada M, Ito K. A genetic approach for analyzing the co-operative function of the tRNA mimicry complex, eRF1/eRF3, in translation termination on the ribosome. Nucleic Acids Res 2014; 42:7851-66. [PMID: 24914055 PMCID: PMC4081094 DOI: 10.1093/nar/gku493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During termination of translation in eukaryotes, a GTP-binding protein, eRF3, functions within a complex with the tRNA-mimicking protein, eRF1, to decode stop codons. It remains unclear how the tRNA-mimicking protein co-operates with the GTPase and with the functional sites on the ribosome. In order to elucidate the molecular characteristics of tRNA-mimicking proteins involved in stop codon decoding, we have devised a heterologous genetic system in Saccharomyces cerevisiae. We found that eRF3 from Pneumocystis carinii (Pc-eRF3) did not complement depletion of S. cerevisiae eRF3. The strength of Pc-eRF3 binding to Sc-eRF1 depends on the GTP-binding domain, suggesting that defects of the GTPase switch in the heterologous complex causes the observed lethality. We isolated mutants of Pc-eRF3 and Sc-eRF1 that restore cell growth in the presence of Pc-eRF3 as the sole source of eRF3. Mapping of these mutations onto the latest 3D-complex structure revealed that they were located in the binding-interface region between eRF1 and eRF3, as well as in the ribosomal functional sites. Intriguingly, a novel functional site was revealed adjacent to the decoding site of eRF1, on the tip domain that mimics the tRNA anticodon loop. This novel domain likely participates in codon recognition, coupled with the GTPase function.
Collapse
Affiliation(s)
- Miki Wada
- Technical office, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, 277-8562, Japan
| | - Koichi Ito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, 277-8562, Japan
| |
Collapse
|
10
|
Holmes WM, Klaips CL, Serio TR. Defining the limits: Protein aggregation and toxicity in vivo. Crit Rev Biochem Mol Biol 2014; 49:294-303. [PMID: 24766537 DOI: 10.3109/10409238.2014.914151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract others complementary, to resolve mis-folded proteins when they arise, ranging from refolding through the action of molecular chaperones to elimination through regulated proteolytic mechanisms. These protein quality control pathways are sufficient, under normal conditions, to maintain a functioning proteome, but in response to diverse environmental, genetic and/or stochastic events, protein mis-folding exceeds the corrective capacity of these pathways, leading to the accumulation of aggregates and ultimately toxicity. Particularly devastating examples of these effects include certain neurodegenerative diseases, such as Huntington's Disease, which are associated with the expansion of polyglutamine tracks in proteins. In these cases, protein mis-folding and aggregation are clear contributors to pathogenesis, but uncovering the precise mechanistic links between the two events remains an area of active research. Studies in the yeast Saccharomyces cerevisiae and other model systems have uncovered previously unanticipated complexity in aggregation pathways, the contributions of protein quality control processes to them and the cellular perturbations that result from them. Together these studies suggest that aggregate interactions and localization, rather than their size, are the crucial considerations in understanding the molecular basis of toxicity.
Collapse
Affiliation(s)
- William M Holmes
- Biology Department, College of the Holy Cross , Worcester, MA , USA and
| | | | | |
Collapse
|
11
|
Liu W, Mellado L, Espeso EA, Sealy-Lewis HM. In Aspergillus nidulans the suppressors suaA and suaC code for release factors eRF1 and eRF3 and suaD codes for a glutamine tRNA. G3 (BETHESDA, MD.) 2014; 4:1047-57. [PMID: 24727290 PMCID: PMC4065248 DOI: 10.1534/g3.114.010702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/25/2014] [Indexed: 11/24/2022]
Abstract
In Aspergillus nidulans, after extensive mutagenesis, a collection of mutants was obtained and four suppressor loci were identified genetically that could suppress mutations in putative chain termination mutations in different genes. Suppressor mutations in suaB and suaD have a similar restricted spectrum of suppression and suaB111 was previously shown to be an alteration in the anticodon of a gln tRNA. We have shown that like suaB, a suaD suppressor has a mutation in the anticodon of another gln tRNA allowing suppression of UAG mutations. Mutations in suaA and suaC had a broad spectrum of suppression. Four suaA mutations result in alterations in the coding region of the eukaryotic release factor, eRF1, and another suaA mutation has a mutation in the upstream region of eRF1 that prevents splicing of the first intron within the 5'UTR. Epitope tagging of eRF1 in this mutant results in 20% of the level of eRF1 compared to the wild-type. Two mutations in suaC result in alterations in the eukaryotic release factor, eRF3. This is the first description in Aspergillus nidulans of an alteration in eRF3 leading to suppression of chain termination mutations.
Collapse
Affiliation(s)
- Wen Liu
- Department of Biological, Biomedical and Environmental Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Laura Mellado
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Heather M Sealy-Lewis
- Department of Biological, Biomedical and Environmental Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
12
|
Kryuchkova P, Grishin A, Eliseev B, Karyagina A, Frolova L, Alkalaeva E. Two-step model of stop codon recognition by eukaryotic release factor eRF1. Nucleic Acids Res 2013; 41:4573-86. [PMID: 23435318 PMCID: PMC3632111 DOI: 10.1093/nar/gkt113] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Release factor eRF1 plays a key role in the termination of protein synthesis in eukaryotes. The eRF1 consists of three domains (N, M and C) that perform unique roles in termination. Previous studies of eRF1 point mutants and standard/variant code eRF1 chimeras unequivocally demonstrated a direct involvement of the highly conserved N-domain motifs (NIKS, YxCxxxF and GTx) in stop codon recognition. In the current study, we extend this work by investigating the role of the 41 invariant and conserved N-domain residues in stop codon decoding by human eRF1. Using a combination of the conservative and non-conservative amino acid substitutions, we measured the functional activity of >80 mutant eRF1s in an in vitro reconstituted eukaryotic translation system and selected 15 amino acid residues essential for recognition of different stop codon nucleotides. Furthermore, toe-print analyses provide evidence of a conformational rearrangement of ribosomal complexes that occurs during binding of eRF1 to messenger RNA and reflects stop codon decoding activity of eRF1. Based on our experimental data and molecular modelling of the N-domain at the ribosomal A site, we propose a two-step model of stop codon decoding in the eukaryotic ribosome.
Collapse
Affiliation(s)
- Polina Kryuchkova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
13
|
Cryo-EM structure of the mammalian eukaryotic release factor eRF1-eRF3-associated termination complex. Proc Natl Acad Sci U S A 2012; 109:18413-8. [PMID: 23091004 DOI: 10.1073/pnas.1216730109] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic translation termination results from the complex functional interplay between two eukaryotic release factors, eRF1 and eRF3, and the ribosome, in which GTP hydrolysis by eRF3 couples codon recognition with peptidyl-tRNA hydrolysis by eRF1. Here, using cryo-electron microscopy (cryo-EM) and flexible fitting, we determined the structure of eRF1-eRF3-guanosine 5'-[β,γ-imido]triphosphate (GMPPNP)-bound ribosomal pretermination complex (pre-TC), which corresponds to the initial, pre-GTP hydrolysis stage of factor attachment. Our results show that eukaryotic translation termination involves a network of interactions between the two release factors and the ribosome. Our structure provides mechanistic insight into the coordination between GTP hydrolysis by eRF3 and subsequent peptide release by eRF1.
Collapse
|
14
|
Abstract
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
15
|
Chen J, Yang BS, Liang AH. Domain motions of class I release factor induced by binding with class II release factor from Euplotes octocarinatus. BIOCHEMISTRY. BIOKHIMIIA 2012; 77:896-900. [PMID: 22860911 DOI: 10.1134/s000629791208010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The binding of both factors (eRF1 and eRF3) is essential for fast kinetics of the termination of protein translation. The C-terminal domain of eRF1 is known to interact with the C domain of eRF3. Eo-eRF1b contains two highly conserved tryptophan residues (W-11 and W-373), W-11 located in the Eo-eRF1b N domain and W-373 located in the Eo-eRF1b C domain. Fluorimetry was used to study the interactions of the proteins. When binding with Eo-eRF3Cm6, the emission peak of Eo-eRF1b is blue shifted, while the emission peak of Eo-eRF1bC has no notable change. Our results suggest that the eRF1-eRF3 interaction induces the N and C domain of eRF1b to become closer to each other.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Biotechnology and Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | | | | |
Collapse
|
16
|
Kobayashi K, Saito K, Ishitani R, Ito K, Nureki O. Structural basis for translation termination by archaeal RF1 and GTP-bound EF1α complex. Nucleic Acids Res 2012; 40:9319-28. [PMID: 22772989 PMCID: PMC3467058 DOI: 10.1093/nar/gks660] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
When a stop codon appears at the ribosomal A site, the class I and II release factors (RFs) terminate translation. In eukaryotes and archaea, the class I and II RFs form a heterodimeric complex, and complete the overall translation termination process in a GTP-dependent manner. However, the structural mechanism of the translation termination by the class I and II RF complex remains unresolved. In archaea, archaeal elongation factor 1 alpha (aEF1α), a carrier GTPase for tRNA, acts as a class II RF by forming a heterodimeric complex with archaeal RF1 (aRF1). We report the crystal structure of the aRF1·aEF1α complex, the first active class I and II RF complex. This structure remarkably resembles the tRNA·EF–Tu complex, suggesting that aRF1 is efficiently delivered to the ribosomal A site, by mimicking tRNA. It provides insights into the mechanism that couples GTP hydrolysis by the class II RF to stop codon recognition and peptidyl-tRNA hydrolysis by the class I RF. We discuss the different mechanisms by which aEF1α recognizes aRF1 and aPelota, another aRF1-related protein and molecular evolution of the three functions of aEF1α.
Collapse
Affiliation(s)
- Kan Kobayashi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
17
|
Jackson RJ, Hellen CUT, Pestova TV. Termination and post-termination events in eukaryotic translation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:45-93. [PMID: 22243581 DOI: 10.1016/b978-0-12-386497-0.00002-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translation termination in eukaryotes occurs in response to a stop codon in the ribosomal A-site and requires two release factors (RFs), eRF1 and eRF3, which bind to the A-site as an eRF1/eRF3/GTP complex with eRF1 responsible for codon recognition. After GTP hydrolysis by eRF3, eRF1 triggers hydrolysis of the polypeptidyl-tRNA, releasing the completed protein product. This leaves an 80S ribosome still bound to the mRNA, with deacylated tRNA in its P-site and at least eRF1 in its A-site, which needs to be disassembled and released from the mRNA to allow further rounds of translation. The first step in recycling is dissociation of the 60S ribosomal subunit, leaving a 40S/deacylated tRNA complex bound to the mRNA. This is mediated by ABCE1, which is a somewhat unusual member of the ATP-binding cassette family of proteins with no membrane-spanning domain but two essential iron-sulfur clusters. Two distinct pathways have been identified for subsequent ejection of the deacylated tRNA followed by dissociation of the 40S subunit from the mRNA, one executed by a subset of the canonical initiation factors (which therefore starts the process of preparing the 40S subunit for the next round of translation) and the other by Ligatin or homologous proteins. However, although this is the normal sequence of events, there are exceptions where the termination reaction is followed by reinitiation on the same mRNA (usually) at a site downstream of the stop codon. The overwhelming majority of such reinitiation events occur when the 5'-proximal open reading frame (ORF) is short and can result in significant regulation of translation of the protein-coding ORF, but there are also rare examples, mainly bicistronic viral RNAs, of reinitiation after a long ORF. Here, we review our current understanding of the mechanisms of termination, ribosome recycling, and reinitiation after translation of short and long ORFs.
Collapse
Affiliation(s)
- Richard J Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
18
|
Conard SE, Buckley J, Dang M, Bedwell GJ, Carter RL, Khass M, Bedwell DM. Identification of eRF1 residues that play critical and complementary roles in stop codon recognition. RNA (NEW YORK, N.Y.) 2012; 18:1210-21. [PMID: 22543865 PMCID: PMC3358643 DOI: 10.1261/rna.031997.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/15/2012] [Indexed: 05/31/2023]
Abstract
The initiation and elongation stages of translation are directed by codon-anticodon interactions. In contrast, a release factor protein mediates stop codon recognition prior to polypeptide chain release. Previous studies have identified specific regions of eukaryotic release factor one (eRF1) that are important for decoding each stop codon. The cavity model for eukaryotic stop codon recognition suggests that three binding pockets/cavities located on the surface of eRF1's domain one are key elements in stop codon recognition. Thus, the model predicts that amino acid changes in or near these cavities should influence termination in a stop codon-dependent manner. Previous studies have suggested that the TASNIKS and YCF motifs within eRF1 domain one play important roles in stop codon recognition. These motifs are highly conserved in standard code organisms that use UAA, UAG, and UGA as stop codons, but are more divergent in variant code organisms that have reassigned a subset of stop codons to sense codons. In the current study, we separately introduced TASNIKS and YCF motifs from six variant code organisms into eRF1 of Saccharomyces cerevisiae to determine their effect on stop codon recognition in vivo. We also examined the consequences of additional changes at residues located between the TASNIKS and YCF motifs. Overall, our results indicate that changes near cavities two and three frequently mediated significant effects on stop codon selectivity. In particular, changes in the YCF motif, rather than the TASNIKS motif, correlated most consistently with variant code stop codon selectivity.
Collapse
Affiliation(s)
- Sara E. Conard
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jessica Buckley
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Mai Dang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Gregory J. Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Richard L. Carter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Mohamed Khass
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - David M. Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
19
|
|
20
|
Wong LE, Li Y, Pillay S, Frolova L, Pervushin K. Selectivity of stop codon recognition in translation termination is modulated by multiple conformations of GTS loop in eRF1. Nucleic Acids Res 2012; 40:5751-65. [PMID: 22383581 PMCID: PMC3384315 DOI: 10.1093/nar/gks192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translation termination in eukaryotes is catalyzed by two release factors eRF1 and eRF3 in a cooperative manner. The precise mechanism of stop codon discrimination by eRF1 remains obscure, hindering drug development targeting aberrations at translation termination. By solving the solution structures of the wild-type N-domain of human eRF1 exhibited omnipotent specificity, i.e. recognition of all three stop codons, and its unipotent mutant with UGA-only specificity, we found the conserved GTS loop adopting alternate conformations. We propose that structural variability in the GTS loop may underline the switching between omnipotency and unipotency of eRF1, implying the direct access of the GTS loop to the stop codon. To explore such feasibility, we positioned N-domain in a pre-termination ribosomal complex using the binding interface between N-domain and model RNA oligonucleotides mimicking Helix 44 of 18S rRNA. NMR analysis revealed that those duplex RNA containing 2-nt internal loops interact specifically with helix α1 of N-domain, and displace C-domain from a non-covalent complex of N-domain and C-domain, suggesting domain rearrangement in eRF1 that accompanies N-domain accommodation into the ribosomal A site.
Collapse
Affiliation(s)
- Leo E Wong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
21
|
Klaholz BP. Molecular recognition and catalysis in translation termination complexes. Trends Biochem Sci 2011; 36:282-92. [DOI: 10.1016/j.tibs.2011.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/16/2022]
|
22
|
Omnipotent role of archaeal elongation factor 1 alpha (EF1α in translational elongation and termination, and quality control of protein synthesis. Proc Natl Acad Sci U S A 2010; 107:19242-7. [PMID: 20974926 DOI: 10.1073/pnas.1009599107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms of translation termination and mRNA surveillance in archaea remain unclear. In eukaryotes, eRF3 and HBS1, which are homologous to the tRNA carrier GTPase EF1α, respectively bind eRF1 and Pelota to decipher stop codons or to facilitate mRNA surveillance. However, genome-wide searches of archaea have failed to detect any orthologs to both GTPases. Here, we report the crystal structure of aRF1 from an archaeon, Aeropyrum pernix, and present strong evidence that the authentic archaeal EF1α acts as a carrier GTPase for aRF1 and for aPelota. The binding interface residues between aRF1 and aEF1α predicted from aRF1·aEF1α·GTP ternary structure model were confirmed by in vivo functional assays. The aRF1/eRF1 structural domain with GGQ motif, which corresponds to the CCA arm of tRNA, contacts with all three structural domains of aEF1α showing striking tRNA mimicry of aRF1/eRF1 and its GTPase-mediated catalysis for stop codon decoding. The multiple binding capacity of archaeal EF1α explains the absence of GTPase orthologs for eRF3 and HBS1 in archaea species and suggests that universal molecular mechanisms underlie translational elongation and termination, and mRNA surveillance pathways.
Collapse
|
23
|
Eliseev B, Kryuchkova P, Alkalaeva E, Frolova L. A single amino acid change of translation termination factor eRF1 switches between bipotent and omnipotent stop-codon specificity. Nucleic Acids Res 2010; 39:599-608. [PMID: 20860996 PMCID: PMC3025575 DOI: 10.1093/nar/gkq759] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In eukaryotes a single class-1 translation termination factor eRF1 decodes the three stop codons: UAA, UAG and UGA. Some ciliates, like Euplotes, have a variant code, and here eRF1s exhibit UAR-only specificity, whereas UGA is reassigned as a sense codon. Since eukaryote eRF1 stop-codon recognition is associated with its N-terminal domain, structural features should exist in the N domain of ciliate eRF1s that restrict their stop-codon specificity. Using an in vitro reconstituted eukaryotic translation system we demonstrate here that a chimeric eRF1 composed of the N domain of Euplotes aediculatus eRF1 fused to the MC domains of human eRF1 exhibits UAR-only specificity. Functional analysis of eRF1 chimeras constructed by swapping Euplotes N domain sequences with the cognate regions from human eRF1 as well as site-directed mutagenesis of human eRF1 highlighted the crucial role of the alanine residue in position 70 of E. aediculatus eRF1 in restricting UGA decoding. Switching the UAR-only specificity of E. aediculatus eRF1 to omnipotent mode is due to a single point mutation. Furthermore, we examined the influence of eRF3 on the ability of chimeric and mutant eRF1s to induce peptide release in response to different stop codons.
Collapse
Affiliation(s)
- Boris Eliseev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
24
|
Mantsyzov AB, Ivanova EV, Birdsall B, Alkalaeva EZ, Kryuchkova PN, Kelly G, Frolova LY, Polshakov VI. NMR solution structure and function of the C-terminal domain of eukaryotic class 1 polypeptide chain release factor. FEBS J 2010. [PMID: 20553496 PMCID: PMC2909394 DOI: 10.1111/j.1742-4658.2010.07672.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Termination of translation in eukaryotes is triggered by two polypeptide chain release factors, eukaryotic class 1 polypeptide chain release factor (eRF1) and eukaryotic class 2 polypeptide chain release factor 3. eRF1 is a three-domain protein that interacts with eukaryotic class 2 polypeptide chain release factor 3 via its C-terminal domain (C-domain). The high-resolution NMR structure of the human C-domain (residues 277–437) has been determined in solution. The overall fold and the structure of the β-strand core of the protein in solution are similar to those found in the crystal structure. The structure of the minidomain (residues 329–372), which was ill-defined in the crystal structure, has been determined in solution. The protein backbone dynamics, studied using 15N-relaxation experiments, showed that the C-terminal tail 414–437 and the minidomain are the most flexible parts of the human C-domain. The minidomain exists in solution in two conformational states, slowly interconverting on the NMR timescale. Superposition of this NMR solution structure of the human C-domain onto the available crystal structure of full-length human eRF1 shows that the minidomain is close to the stop codon-recognizing N-terminal domain. Mutations in the tip of the minidomain were found to affect the stop codon specificity of the factor. The results provide new insights into the possible role of the C-domain in the process of translation termination.
Collapse
Affiliation(s)
- Alexey B Mantsyzov
- Center for Magnetic Tomography and Spectroscopy, M. V. Lomonosov Moscow State University, Russia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mantsyzov AB, Ivanova EV, Birdsall B, Alkalaeva EZ, Kryuchkova PN, Kelly G, Frolova LY, Polshakov VI. NMR solution structure and function of the C-terminal domain of eukaryotic class 1 polypeptide chain release factor. FEBS J 2010; 277:2611-27. [PMID: 20553496 PMCID: PMC2909394 DOI: 10.1111/j.1742-464x.2010.07672.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/01/2010] [Accepted: 04/08/2010] [Indexed: 11/27/2022]
Abstract
Termination of translation in eukaryotes is triggered by two polypeptide chain release factors, eukaryotic class 1 polypeptide chain release factor (eRF1) and eukaryotic class 2 polypeptide chain release factor 3. eRF1 is a three-domain protein that interacts with eukaryotic class 2 polypeptide chain release factor 3 via its C-terminal domain (C-domain). The high-resolution NMR structure of the human C-domain (residues 277-437) has been determined in solution. The overall fold and the structure of the beta-strand core of the protein in solution are similar to those found in the crystal structure. The structure of the minidomain (residues 329-372), which was ill-defined in the crystal structure, has been determined in solution. The protein backbone dynamics, studied using (15)N-relaxation experiments, showed that the C-terminal tail 414-437 and the minidomain are the most flexible parts of the human C-domain. The minidomain exists in solution in two conformational states, slowly interconverting on the NMR timescale. Superposition of this NMR solution structure of the human C-domain onto the available crystal structure of full-length human eRF1 shows that the minidomain is close to the stop codon-recognizing N-terminal domain. Mutations in the tip of the minidomain were found to affect the stop codon specificity of the factor. The results provide new insights into the possible role of the C-domain in the process of translation termination.
Collapse
Affiliation(s)
- Alexey B Mantsyzov
- Center for Magnetic Tomography and Spectroscopy, M. V. Lomonosov Moscow State University, Russia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cheng Z, Saito K, Pisarev AV, Wada M, Pisareva VP, Pestova TV, Gajda M, Round A, Kong C, Lim M, Nakamura Y, Svergun DI, Ito K, Song H. Structural insights into eRF3 and stop codon recognition by eRF1. Genes Dev 2009; 23:1106-18. [PMID: 19417105 DOI: 10.1101/gad.1770109] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic translation termination is mediated by two interacting release factors, eRF1 and eRF3, which act cooperatively to ensure efficient stop codon recognition and fast polypeptide release. The crystal structures of human and Schizosaccharomyces pombe full-length eRF1 in complex with eRF3 lacking the GTPase domain revealed details of the interaction between these two factors and marked conformational changes in eRF1 that occur upon binding to eRF3, leading eRF1 to resemble a tRNA molecule. Small-angle X-ray scattering analysis of the eRF1/eRF3/GTP complex suggested that eRF1's M domain contacts eRF3's GTPase domain. Consistently, mutation of Arg192, which is predicted to come in close contact with the switch regions of eRF3, revealed its important role for eRF1's stimulatory effect on eRF3's GTPase activity. An ATP molecule used as a crystallization additive was bound in eRF1's putative decoding area. Mutational analysis of the ATP-binding site shed light on the mechanism of stop codon recognition by eRF1.
Collapse
Affiliation(s)
- Zhihong Cheng
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vallabhaneni H, Fan-Minogue H, Bedwell DM, Farabaugh PJ. Connection between stop codon reassignment and frequent use of shifty stop frameshifting. RNA (NEW YORK, N.Y.) 2009; 15:889-897. [PMID: 19329535 PMCID: PMC2673066 DOI: 10.1261/rna.1508109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 02/05/2009] [Indexed: 05/27/2023]
Abstract
Ciliated protozoa of the genus Euplotes have undergone genetic code reassignment, redefining the termination codon UGA to encode cysteine. In addition, Euplotes spp. genes very frequently employ shifty stop frameshifting. Both of these phenomena involve noncanonical events at a termination codon, suggesting they might have a common cause. We recently demonstrated that Euplotes octocarinatus peptide release factor eRF1 ignores UGA termination codons while continuing to recognize UAA and UAG. Here we show that both the Tetrahymena thermophila and E. octocarinatus eRF1 factors allow efficient frameshifting at all three termination codons, suggesting that UGA redefinition also impaired UAA/UAG recognition. Mutations of the Euplotes factor restoring a phylogenetically conserved motif in eRF1 (TASNIKS) reduced programmed frameshifting at all three termination codons. Mutation of another conserved residue, Cys124, strongly reduces frameshifting at UGA while actually increasing frameshifting at UAA/UAG. We will discuss these results in light of recent biochemical characterization of these mutations.
Collapse
Affiliation(s)
- Haritha Vallabhaneni
- Program in Molecular and Cell Biology, Department of Biological Sciences, University of Maryland Baltimore County, Baltimore,Maryland 21250, USA
| | | | | | | |
Collapse
|
28
|
The paradox of viable sup45 STOP mutations: a necessary equilibrium between translational readthrough, activity and stability of the protein. Mol Genet Genomics 2009; 282:83-96. [PMID: 19370360 DOI: 10.1007/s00438-009-0447-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
The mechanisms leading to non-lethality of nonsense mutations in essential genes are poorly understood. Here, we focus on the factors influencing viability of yeast cells bearing premature termination codons (PTCs) in the essential gene SUP45 encoding translation termination factor eRF1. Using a dual reporter system we compared readthrough efficiency of the natural termination codon of SUP45 gene, spontaneous sup45-n (nonsense) mutations, nonsense mutations obtained by site-directed mutagenesis (76Q --> TAA, 242R --> TGA, 317L --> TAG). The nonsense mutations in SUP45 gene were shown to be situated in moderate contexts for readthrough efficiency. We showed that readthrough efficiency of some of the mutations present in the sup45 mutants is not correlated with full-length Sup45 protein amount. This resulted from modification of both sup45 mRNA stability which varies 3-fold among sup45-n mutants and degradation rate of mutant Sup45 proteins. Our results demonstrate that some substitutions in the place of PTCs decrease Sup45 stability. The viability of sup45 nonsense mutants is therefore supported by diverse mechanisms that control the final amount of functional Sup45 in cells.
Collapse
|
29
|
Hatin I, Fabret C, Rousset JP, Namy O. Molecular dissection of translation termination mechanism identifies two new critical regions in eRF1. Nucleic Acids Res 2009; 37:1789-98. [PMID: 19174561 PMCID: PMC2665212 DOI: 10.1093/nar/gkp012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Translation termination in eukaryotes is completed by two interacting factors eRF1 and eRF3. In Saccharomyces cerevisiae, these proteins are encoded by the genes SUP45 and SUP35, respectively. The eRF1 protein interacts directly with the stop codon at the ribosomal A-site, whereas eRF3—a GTPase protein—probably acts as a proofreading factor, coupling stop codon recognition to polypeptide chain release. We performed random PCR mutagenesis of SUP45 and screened the library for mutations resulting in increased eRF1 activity. These mutations led to the identification of two new pockets in domain 1 (P1 and P2) involved in the regulation of eRF1 activity. Furthermore, we identified novel mutations located in domains 2 and 3, which confer stop codon specificity to eRF1. Our findings are consistent with the model of a closed-active conformation of eRF1 and shed light on two new functional regions of the protein.
Collapse
Affiliation(s)
- Isabelle Hatin
- Université Paris-Sud and IGM, CNRS, UMR 8621, Orsay, F 91405, France
| | | | | | | |
Collapse
|
30
|
Ivanova EV, Alkalaeva EZ, Birdsall B, Kolosov PM, Polshakov VI, Kisselev LL. Interface of the interaction of the middle domain of human translation termination factor eRF1 with eukaryotic ribosomes. Mol Biol 2008. [DOI: 10.1134/s0026893308060162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Youngman EM, McDonald ME, Green R. Peptide release on the ribosome: mechanism and implications for translational control. Annu Rev Microbiol 2008; 62:353-73. [PMID: 18544041 DOI: 10.1146/annurev.micro.61.080706.093323] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide release, the reaction that hydrolyzes a completed protein from the peptidyl-tRNA upon completion of translation, is catalyzed in the active site of the large subunit of the ribosome and requires a class I release factor protein. The ribosome and release factor protein cooperate to accomplish two tasks: recognition of the stop codon and catalysis of peptidyl-tRNA hydrolysis. Although many fundamental questions remain, substantial progress has been made in the past several years. This review summarizes those advances and presents current models for the mechanisms of stop codon specificity and catalysis of peptide release. Finally, we discuss how these views fit into a larger emerging theme in the translation field: the importance of induced fit and conformational changes for progression through the translation cycle.
Collapse
Affiliation(s)
- Elaine M Youngman
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
32
|
Atkinson GC, Baldauf SL, Hauryliuk V. Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. BMC Evol Biol 2008; 8:290. [PMID: 18947425 PMCID: PMC2613156 DOI: 10.1186/1471-2148-8-290] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 10/23/2008] [Indexed: 11/20/2022] Open
Abstract
Background Members of the eukaryote/archaea specific eRF1 and eRF3 protein families have central roles in translation termination. They are also central to various mRNA surveillance mechanisms, together with the eRF1 paralogue Dom34p and the eRF3 paralogues Hbs1p and Ski7p. We have examined the evolution of eRF1 and eRF3 families using sequence similarity searching, multiple sequence alignment and phylogenetic analysis. Results Extensive BLAST searches confirm that Hbs1p and eRF3 are limited to eukaryotes, while Dom34p and eRF1 (a/eRF1) are universal in eukaryotes and archaea. Ski7p appears to be restricted to a subset of Saccharomyces species. Alignments show that Dom34p does not possess the characteristic class-1 RF minidomains GGQ, NIKS and YXCXXXF, in line with recent crystallographic analysis of Dom34p. Phylogenetic trees of the protein families allow us to reconstruct the evolution of mRNA surveillance mechanisms mediated by these proteins in eukaryotes and archaea. Conclusion We propose that the last common ancestor of eukaryotes and archaea possessed Dom34p-mediated no-go decay (NGD). This ancestral Dom34p may or may not have required a trGTPase, mostly like a/eEF1A, for its delivery to the ribosome. At an early stage in eukaryotic evolution, eEF1A was duplicated, giving rise to eRF3, which was recruited for translation termination, interacting with eRF1. eRF3 evolved nonsense-mediated decay (NMD) activity either before or after it was again duplicated, giving rise to Hbs1p, which we propose was recruited to assist eDom34p in eukaryotic NGD. Finally, a third duplication within ascomycete yeast gave rise to Ski7p, which may have become specialised for a subset of existing Hbs1p functions in non-stop decay (NSD). We suggest Ski7p-mediated NSD may be a specialised mechanism for counteracting the effects of increased stop codon read-through caused by prion-domain [PSI+] mediated eRF3 precipitation.
Collapse
Affiliation(s)
- Gemma C Atkinson
- Department of Biology, University of York, Heslington, York, YO10 5DD, United Kingdom.
| | | | | |
Collapse
|
33
|
Kim OTP, Sakurai A, Saito K, Ito K, Ikehara K, Harumoto T. Ciliates use both variant and universal genetic codes: Evidence of omnipotent eRF1s in the class Litostomatea. Gene 2008; 417:51-8. [DOI: 10.1016/j.gene.2008.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/21/2008] [Accepted: 03/25/2008] [Indexed: 11/30/2022]
|
34
|
Fan-Minogue H, Du M, Pisarev AV, Kallmeyer AK, Salas-Marco J, Keeling KM, Thompson SR, Pestova TV, Bedwell DM. Distinct eRF3 requirements suggest alternate eRF1 conformations mediate peptide release during eukaryotic translation termination. Mol Cell 2008; 30:599-609. [PMID: 18538658 DOI: 10.1016/j.molcel.2008.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/25/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
Organisms that use the standard genetic code recognize UAA, UAG, and UGA as stop codons, whereas variant code species frequently alter this pattern of stop codon recognition. We previously demonstrated that a hybrid eRF1 carrying the Euplotes octocarinatus domain 1 fused to Saccharomyces cerevisiae domains 2 and 3 (Eo/Sc eRF1) recognized UAA and UAG, but not UGA, as stop codons. In the current study, we identified mutations in Eo/Sc eRF1 that restore UGA recognition and define distinct roles for the TASNIKS and YxCxxxF motifs in eRF1 function. Mutations in or near the YxCxxxF motif support the cavity model for stop codon recognition by eRF1. Mutations in the TASNIKS motif eliminated the eRF3 requirement for peptide release at UAA and UAG codons, but not UGA codons. These results suggest that the TASNIKS motif and eRF3 function together to trigger eRF1 conformational changes that couple stop codon recognition and peptide release during eukaryotic translation termination.
Collapse
Affiliation(s)
- Hua Fan-Minogue
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fabret C, Cosnier B, Lekomtsev S, Gillet S, Hatin I, Le Maréchal P, Rousset JP. A novel mutant of the Sup35 protein of Saccharomyces cerevisiae defective in translation termination and in GTPase activity still supports cell viability. BMC Mol Biol 2008; 9:22. [PMID: 18267004 PMCID: PMC2259375 DOI: 10.1186/1471-2199-9-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 02/11/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND When a stop codon is located in the ribosomal A-site, the termination complex promotes release of the polypeptide and dissociation of the 80S ribosome. In eukaryotes two proteins eRF1 and eRF3 play a crucial function in the termination process. The essential GTPase Sup35p, the eRF3 release factor of Saccharomyces cerevisiae is highly conserved. In particular, we observed that all eRF3 homologs share a potential phosphorylation site at threonine 341, suggesting a functional role for this residue. The goal of this study was to determine whether this residue is actually phosphorylated in yeast and if it is involved in the termination activity of the protein. RESULTS We detected no phosphorylation of the Sup35 protein in vivo. However, we show that it is phosphorylated by the cAMP-dependent protein kinase A on T341 in vitro. T341 was mutated to either alanine or to aspartic acid to assess the role of this residue in the activity of the protein. Both mutant proteins showed a large decrease of GTPase activity and a reduced interaction with eRF1/Sup45p. This was correlated with an increase of translational readthrough in cells carrying the mutant alleles. We also show that this residue is involved in functional interaction between the N- and C-domains of the protein. CONCLUSION Our results point to a new critical residue involved in the translation termination activity of Sup35 and in functional interaction between the N- and C-domains of the protein. They also raise interesting questions about the relation between GTPase activity of Sup35 and its essential function in yeast.
Collapse
Affiliation(s)
- Céline Fabret
- IGM, Univ Paris-Sud, UMR 8621, Orsay, F 91405, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Chauvin C, Jean-Jean O. Proteasomal degradation of human release factor eRF3a regulates translation termination complex formation. RNA (NEW YORK, N.Y.) 2008; 14:240-245. [PMID: 18083835 PMCID: PMC2212242 DOI: 10.1261/rna.728608] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 11/05/2007] [Indexed: 05/25/2023]
Abstract
In eukaryotes, eRF1 and eRF3 are associated in a complex that mediates translation termination. The regulation of the formation of this complex in vivo is far from being understood. In mammalian cells, depletion of eRF3a causes a reduction of eRF1 level by decreasing its stability. Here, we investigate the status of eRF3a when not associated with eRF1. We show that eRF3a forms altered in their eRF1-binding site have a decreased stability, which increases upon cell treatment with the proteasome inhibitor MG132. We also show that eRF3a forms altered in eRF1 binding as well as wild-type eRF3a are polyubiquitinated. These results indicate that eRF3a is degraded by the proteasome when not associated with eRF1 and suggest that proteasomal degradation of eRF3a controls translation termination complex formation by adjusting the eRF3a level to that of eRF1.
Collapse
Affiliation(s)
- Céline Chauvin
- Unité de Biochimie Cellulaire, UMR 7098 CNRS, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France
| | | |
Collapse
|
37
|
Mantsyzov AB, Ivanova EV, Birdsall B, Kolosov PM, Kisselev LL, Polshakov VI. NMR assignments of the C-terminal domain of human polypeptide release factor eRF1. BIOMOLECULAR NMR ASSIGNMENTS 2007; 1:183-185. [PMID: 19636860 DOI: 10.1007/s12104-007-9050-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Accepted: 09/07/2007] [Indexed: 05/28/2023]
Abstract
We report NMR assignments of the protein backbone of the C-terminal domain (163 a.a.) of human class 1 translation termination factor eRF1. It was found that several protein loop residues exist in two slowly interconverting conformational states.
Collapse
Affiliation(s)
- Alexey B Mantsyzov
- Center for Magnetic Tomography and Spectroscopy, M.V. Lomonosov Moscow State University, Russia
| | | | | | | | | | | |
Collapse
|
38
|
Lekomtsev SA, Kolosov PM, Frolova LY, Bidou L, Rousset JP, Kisselev LL. How does Euplotes translation termination factor eRF1 fail to recognize the UGA stop codon? Mol Biol 2007. [DOI: 10.1134/s002689330706009x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Ivanova EV, Kolosov PM, Birdsall B, Kelly G, Pastore A, Kisselev LL, Polshakov VI. Eukaryotic class 1 translation termination factor eRF1 − the NMR structure and dynamics of the middle domain involved in triggering ribosome-dependent peptidyl-tRNA hydrolysis. FEBS J 2007; 274:4223-37. [PMID: 17651434 DOI: 10.1111/j.1742-4658.2007.05949.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The eukaryotic class 1 polypeptide chain release factor is a three-domain protein involved in the termination of translation, the final stage of polypeptide biosynthesis. In attempts to understand the roles of the middle domain of the eukaryotic class 1 polypeptide chain release factor in the transduction of the termination signal from the small to the large ribosomal subunit and in peptidyl-tRNA hydrolysis, its high-resolution NMR structure has been obtained. The overall fold and the structure of the beta-strand core of the protein in solution are similar to those found in the crystal. However, the orientation of the functionally critical GGQ loop and neighboring alpha-helices has genuine and noticeable differences in solution and in the crystal. Backbone amide protons of most of the residues in the GGQ loop undergo fast exchange with water. However, in the AGQ mutant, where functional activity is abolished, a significant reduction in the exchange rate of the amide protons has been observed without a noticeable change in the loop conformation, providing evidence for the GGQ loop interaction with water molecule(s) that may serve as a substrate for the hydrolytic cleavage of the peptidyl-tRNA in the ribosome. The protein backbone dynamics, studied using 15N relaxation experiments, showed that the GGQ loop is the most flexible part of the middle domain. The conformational flexibility of the GGQ and 215-223 loops, which are situated at opposite ends of the longest alpha-helix, could be a determinant of the functional activity of the eukaryotic class 1 polypeptide chain release factor, with that helix acting as the trigger to transmit the signals from one loop to the other.
Collapse
Affiliation(s)
- Elena V Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
40
|
Kiktev D, Vechtomov SI, Zhouravleva G. Prion-dependent lethality of sup45 mutants in Saccharomyces cerevisiae. Prion 2007; 1:136-43. [PMID: 19164896 DOI: 10.4161/pri.1.2.4533] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In yeast Saccharomyces cerevisiae translation termination factors eRF1 (Sup45) and eRF3 (Sup35) are encoded by the essential genes SUP45 and SUP35 respectively. Heritable aggregation of Sup35 results in formation of the yeast prion [PSI(+)]. It is known that combination of [PSI(+)] with some mutant alleles of the SUP35 or SUP45 genes in one and the same haploid yeast cell causes synthetic lethality. In this study, we perform detailed analysis of synthetic lethality between various sup45 nonsense and missense mutations on one hand, and different variants of [PSI(+)] on the other hand. Synthetic lethality with sup45 mutations was detected for [PSI(+)] variants of different stringencies. Moreover, we demonstrate for the first time that in some combinations, synthetic lethality is dominant and occurs at the postzygotic stage after only a few cell divisions. The tRNA suppressor SUQ5 counteracts the prion-dependent lethality of the nonsense alleles but not of the missense alleles of SUP45, indicating that the lethal effect is due to the depletion of Sup45. Synthetic lethality is also suppressed in the presence of the C-proximal fragment of Sup35 (Sup35C) that lacks the prion domain and cannot be included into the prion aggregates. Remarkably, the production of Sup35C in a sup45 mutant strain is also accompanied by an increase in the Sup45 levels, suggesting that translationally active Sup35 up-regulates Sup45 or protects it from degradation.
Collapse
Affiliation(s)
- Denis Kiktev
- Department of Genetics and Breeding, St Petersburg State University, St. Petersburg, Russia
| | | | | |
Collapse
|
41
|
Krzewska J, Tanaka M, Burston SG, Melki R. Biochemical and functional analysis of the assembly of full-length Sup35p and its prion-forming domain. J Biol Chem 2006; 282:1679-86. [PMID: 17121860 DOI: 10.1074/jbc.m608110200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein Sup35 has prion properties. Its aggregation is at the origin of the [PSI(+)] trait in Saccharomyces cerevisiae. In vitro, the N-terminal domain of Sup35p alone or with the middle domain assembles into fibrils that exhibit the characteristics of amyloids. The vast majority of in vitro studies on the assembly of Sup35p have been performed using Sup35pNM, as fibrils made of Sup35pNM assembled in vitro propagate [PSI(+)] when reintroduced into yeast cells. Little is known about the assembly of full-length Sup35p and the role of the functional C-terminal domain of the protein. Here we report a systematic comparison of the biochemical and assembly properties of full-length Sup35p and Sup35pNM. We show that the native structure of the C-terminal domain is retained within the fibrils. We determined the size of Sup35p nuclei and the critical concentration for assembly that both differ from that of Sup35pNM. We demonstrate that Sup35pNM co-assembles with the full-length protein and that fibrils made of Sup35p or Sup35pNM seed the assembly of soluble Sup35pNM and Sup35p with different efficiencies. Finally, we show that fibrils made of full-length Sup35p induce with higher efficiency [PSI(+)] appearance as compared with those made of Sup35pNM. Our findings reveal differences and similarities in the assembly of Sup35p and its NM fragment and validate the use of Sup35pNM in studying some aspects of Sup35p aggregation but also underline the importance of using full-length Sup35p in studying prion propagation both in vivo and in vitro.
Collapse
Affiliation(s)
- Joanna Krzewska
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
42
|
Galkin AP, Mironova LN, Zhuravleva GA, Inge-Vechtomov SG. Yeast prions, mammalian amyloidoses, and the problem of proteomic networks. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406110135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Pisareva VP, Pisarev AV, Hellen CUT, Rodnina MV, Pestova TV. Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides. J Biol Chem 2006; 281:40224-35. [PMID: 17062564 DOI: 10.1074/jbc.m607461200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation termination is mediated by two release factors: eRF1 recognizes stop codons and triggers peptidyl-tRNA hydrolysis, whereas eRF3 accelerates this process in a GTP-dependent manner. Here we report kinetic analysis of guanine nucleotide binding to eRF3 performed by fluorescence stopped-flow technique using GTP/GDP derivatives carrying the fluorescent methylanthraniloyl (mant-) group, as well as thermodynamic analysis of eRF3 binding to unlabeled guanine nucleotides. Whereas the kinetics of eRF3 binding to mant-GDP is consistent with a one-step binding model, the double-exponential transients of eRF3 binding to mant-GTP indicate a two-step binding mechanism, in which the initial eRF3.mant-GTP complex undergoes subsequent conformational change. The affinity of eRF3 for GTP (K(d), approximately 70 microM) is about 70-fold lower than for GDP (K(d), approximately 1 microM) and both nucleotides dissociate rapidly from eRF3 (k(-1)(mant-GDP) approximately 2.4 s(-1); k(-2)(mant-GTP) approximately 3.3 s(-1)). Whereas not influencing eRF3 binding to GDP, association of eRF3 with eRF1 at physiological Mg(2+) concentrations specifically changes the kinetics of eRF3/mant-GTP interaction and stabilizes eRF3.GTP binding by two orders of magnitude (K(d) approximately 0.7 microM) due to lowering of the dissociation rate constant approximately 24-fold (k(-1)(mant-GTP) approximately 0.14s(-1) approximately 0.14 s(-1)). Thus, eRF1 acts as a GTP dissociation inhibitor (TDI) for eRF3, promoting efficient ribosomal recruitment of its GTP-bound form. 80 S ribosomes did not influence guanine nucleotide binding/exchange on the eRF1 x eRF3 complex. Guanine nucleotide binding and exchange on eRF3, which therefore depends on stimulation by eRF1, is entirely different from that on prokaryotic RF3 and unusual among GTPases.
Collapse
Affiliation(s)
- Vera P Pisareva
- Department of Microbiology and Immunology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | |
Collapse
|
44
|
Aksenova AY, Volkov KV, Rovinsky NS, Svitin AV, Mironova LN. Phenotypic expression of epigenetic determinant [ISP +] in Saccharomyces cerevisiae depends on the combination of sup35 and sup45 mutations. Mol Biol 2006. [DOI: 10.1134/s0026893306050104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Song L, Chai BF, Wang W, Liang AH. Identification of translational release factor eRF1a binding sites on eRF3 in Euplotes octocarinatus. Res Microbiol 2006; 157:842-50. [PMID: 16963230 DOI: 10.1016/j.resmic.2006.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 11/19/2022]
Abstract
Translation termination in eukaryotes is mediated by two polypeptide chain-release factors, eRF1 and eRF3. eRF1 recognizes stop signals, while eRF3 is a ribosome-dependent and eRF1-dependent GTPase. eRF1 forms a stable complex with eRF3 in vivo and in vitro. In the present study, a variety of truncated forms of Euplotes octocarinatus eRF3 were created, and systematic analysis of the interaction between E. octocarinatus eRF1a and these eRF3 mutants was performed by employing both in vivo a yeast two-hybrid assay and in vitro a pull-down assay. The results demonstrated that a short portion of the C-terminal domain of eRF3 is sufficient for eRF1a binding in E. octocarinatus. Specifically, the eRF1a-binding sites on eRF3 are located at a region containing amino acid residues 640-723 in E. octocarinatus eRF3. Amino acid sequence analysis of eRF3 from E. octocarinatus, humans and yeast showed that the eRF1a binding domain on E. octocarinatus eRF3 was similar to that of yeast eRF3 but different from that of human eRF3.
Collapse
Affiliation(s)
- Li Song
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | | | | | | |
Collapse
|
46
|
Mitkevich VA, Kononenko AV, Petrushanko IY, Yanvarev DV, Makarov AA, Kisselev LL. Termination of translation in eukaryotes is mediated by the quaternary eRF1*eRF3*GTP*Mg2+ complex. The biological roles of eRF3 and prokaryotic RF3 are profoundly distinct. Nucleic Acids Res 2006; 34:3947-54. [PMID: 16914449 PMCID: PMC1557817 DOI: 10.1093/nar/gkl549] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
GTP hydrolysis catalyzed in the ribosome by a complex of two polypeptide release factors, eRF1 and eRF3, is required for fast and efficient termination of translation in eukaryotes. Here, isothermal titration calorimetry is used for the quantitative thermodynamic characterization of eRF3 interactions with guanine nucleotides, eRF1 and Mg2+. We show that (i) eRF3 binds GDP (K(d) = 1.9 microM) and this interaction depends only minimally on the Mg(2+) concentration; (ii) GTP binds to eRF3 (K(d) = 0.5 microM) only in the presence of eRF1 and this interaction depends on the Mg2+ concentration; (iii) GTP displaces GDP from the eRF1*eRF3*GDP complex, and vice versa; (iv) eRF3 in the GDP-bound form improves its ability to bind eRF1; (v) the eRF1*eRF3 complex binds GDP as efficiently as free eRF3; (vi) the eRF1*eRF3 complex is efficiently formed in the absence of GDP/GTP but requires the presence of the C-terminus of eRF1 for complex formation. Our results show that eRF1 mediates GDP/GTP displacement on eRF3. We suggest that after formation of eRF1*eRF3*GTP*Mg2+, this quaternary complex binds to the ribosomal pretermination complex containing P-site-bound peptidyl-tRNA and the A-site-bound stop codon. The guanine nucleotide binding properties of eRF3 and of the eRF3*eRF1 complex profoundly differ from those of prokaryotic RF3.
Collapse
Affiliation(s)
- Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, the Russian Academy of SciencesMoscow 119991, Russia
- University of Oslo, Center for Medical Studies at Moscow119991, Russia
| | - Artem V. Kononenko
- Engelhardt Institute of Molecular Biology, the Russian Academy of SciencesMoscow 119991, Russia
| | - Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, the Russian Academy of SciencesMoscow 119991, Russia
| | - Dmitry V. Yanvarev
- Engelhardt Institute of Molecular Biology, the Russian Academy of SciencesMoscow 119991, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, the Russian Academy of SciencesMoscow 119991, Russia
| | - Lev L. Kisselev
- Engelhardt Institute of Molecular Biology, the Russian Academy of SciencesMoscow 119991, Russia
- To whom correspondence should be addressed. Tel: +7495 135 60 09; Fax: +7495 135 14 05; Email
| |
Collapse
|
47
|
Alkalaeva EZ, Pisarev AV, Frolova LY, Kisselev LL, Pestova TV. In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell 2006; 125:1125-36. [PMID: 16777602 DOI: 10.1016/j.cell.2006.04.035] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/21/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
Eukaryotic translation termination is triggered by peptide release factors eRF1 and eRF3. Whereas eRF1 recognizes all three termination codons and induces hydrolysis of peptidyl tRNA, eRF3's function remains obscure. Here, we reconstituted all steps of eukaryotic translation in vitro using purified ribosomal subunits; initiation, elongation, and termination factors; and aminoacyl tRNAs. This allowed us to investigate termination using pretermination complexes assembled on mRNA encoding a tetrapeptide and to propose a model for translation termination that accounts for the cooperative action of eRF1 and eRF3 in ensuring fast release of nascent polypeptide. In this model, binding of eRF1, eRF3, and GTP to pretermination complexes first induces a structural rearrangement that is manifested as a 2 nucleotide forward shift of the toeprint attributed to pretermination complexes that leads to GTP hydrolysis followed by rapid hydrolysis of peptidyl tRNA. Cooperativity between eRF1 and eRF3 required the eRF3 binding C-terminal domain of eRF1.
Collapse
Affiliation(s)
- Elena Z Alkalaeva
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | |
Collapse
|
48
|
Hauryliuk V, Zavialov A, Kisselev L, Ehrenberg M. Class-1 release factor eRF1 promotes GTP binding by class-2 release factor eRF3. Biochimie 2006; 88:747-57. [PMID: 16797113 DOI: 10.1016/j.biochi.2006.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 06/05/2006] [Indexed: 11/21/2022]
Abstract
In eukaryotes, termination of mRNA translation is triggered by the essential polypeptide chain release factors eRF1, recognizing all three stop codons, and eRF3, a member of the GTPase superfamily with a role that has remained opaque. We have studied the kinetic and thermodynamic parameters of the interactions between eRF3 and GTP, GDP and the non-hydrolysable GTP analogue GDPNP in the presence (K(D)(GDP)=1.3+/-0.2 muM, K(D)(GTP) approximately 200 muM and K(D)(GDPNP)>160 muM) as well as absence (K(D)(GDP)=1.9+/-0.3 muM, K(D)(GTP) 0.7+/-0.2 muM and K(D)(GDPNP) approximately 200 muM) of eRF1. From the present data we propose that (i) free eRF3 has a strong preference to bind GDP compared to GTP (ii) eRF3 in complex with eRF1 has much stronger affinity to GTP than free eRF3 (iii) eRF3 in complex with PABP has weak affinity to GTP (iv) eRF3 in complex with eRF1 does not have strong affinity to GDPNP, implying that GDPNP is a poor analogue of GTP for eRF3 binding.
Collapse
Affiliation(s)
- Vasili Hauryliuk
- Department of Cell and Molecular Biology, Molecular Biology Program, BMC, Box 596, Uppsala University, 75124, Sweden
| | | | | | | |
Collapse
|
49
|
Rospert S, Rakwalska M, Dubaquié Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 155:1-30. [PMID: 15928926 DOI: 10.1007/3-540-28217-3_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During protein translation, a variety of quality control checks ensure that the resulting polypeptides deviate minimally from their genetic encoding template. Translational fidelity is central in order to preserve the function and integrity of each cell. Correct termination is an important aspect of translational fidelity, and a multitude of mechanisms and players participate in this exquisitely regulated process. This review explores our current understanding of eukaryotic termination by highlighting the roles of the different ribosomal components as well as termination factors and ribosome-associated proteins, such as chaperones.
Collapse
Affiliation(s)
- S Rospert
- Universität Freiburg, Institut für Biochemie und Molekularbiologie, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
50
|
Dubovaya VI, Kolosov PM, Alkalaeva EZ, Frolova LY, Kisselev LL. Influence of individual domains of the translation termination factor eRF1 on induction of the GTPase activity of the translation termination factor eRF3. Mol Biol 2006. [DOI: 10.1134/s0026893306020130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|