1
|
Vijayakumar J, Goudarzi NM, Eeckhaut G, Schrijnemakers K, Cnudde V, Boone MN. Characterization of Pharmaceutical Tablets by X-ray Tomography. Pharmaceuticals (Basel) 2023; 16:ph16050733. [PMID: 37242516 DOI: 10.3390/ph16050733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Solid dosage forms such as tablets are extensively used in drug administration for their simplicity and large-scale manufacturing capabilities. High-resolution X-ray tomography is one of the most valuable non-destructive techniques to investigate the internal structure of the tablets for drug product development as well as for a cost effective production process. In this work, we review the recent developments in high-resolution X-ray microtomography and its application towards different tablet characterizations. The increased availability of powerful laboratory instrumentation, as well as the advent of high brilliance and coherent 3rd generation synchrotron light sources, combined with advanced data processing techniques, are driving the application of X-ray microtomography forward as an indispensable tool in the pharmaceutical industry.
Collapse
Affiliation(s)
- Jaianth Vijayakumar
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium
- Department of Physics and Astronomy, Radiation Physics, Ghent University, Proeftuinstraat 86/N12, 9000 Gent, Belgium
| | - Niloofar Moazami Goudarzi
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium
- Department of Physics and Astronomy, Radiation Physics, Ghent University, Proeftuinstraat 86/N12, 9000 Gent, Belgium
| | - Guy Eeckhaut
- Janssen Pharmaceutica, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Veerle Cnudde
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium
- Pore-Scale Processes in Geomaterials Research (PProGRess), Department of Geology, Ghent University, Krijgslaan 281/S8, 9000 Gent, Belgium
- Environmental Hydrogeology, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CD Utrecht, The Netherlands
| | - Matthieu N Boone
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium
- Department of Physics and Astronomy, Radiation Physics, Ghent University, Proeftuinstraat 86/N12, 9000 Gent, Belgium
| |
Collapse
|
2
|
Radio-frequency exposure of the yellow fever mosquito (A. aegypti) from 2 to 240 GHz. PLoS Comput Biol 2021; 17:e1009460. [PMID: 34710086 PMCID: PMC8577778 DOI: 10.1371/journal.pcbi.1009460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/09/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Fifth generation networks (5G) will be associated with a partial shift to higher carrier frequencies, including wavelengths comparable in size to insects. This may lead to higher absorption of radio frequency (RF) electromagnetic fields (EMF) by insects and could cause dielectric heating. The yellow fever mosquito (Aedes aegypti), a vector for diseases such as yellow and dengue fever, favors warm climates. Being exposed to higher frequency RF EMFs causing possible dielectric heating, could have an influence on behavior, physiology and morphology, and could be a possible factor for introduction of the species in regions where the yellow fever mosquito normally does not appear. In this study, the influence of far field RF exposure on A. aegypti was examined between 2 and 240 GHz. Using Finite Difference Time Domain (FDTD) simulations, the distribution of the electric field in and around the insect and the absorbed RF power were found for six different mosquito models (three male, three female). The 3D models were created from micro-CT scans of real mosquitoes. The dielectric properties used in the simulation were measured from a mixture of homogenized A. aegypti. For a given incident RF power, the absorption increases with increasing frequency between 2 and 90 GHz with a maximum between 90 and 240 GHz. The absorption was maximal in the region where the wavelength matches the size of the mosquito. For a same incident field strength, the power absorption by the mosquito is 16 times higher at 60 GHz than at 6 GHz. The higher absorption of RF power by future technologies can result in dielectric heating and potentially influence the biology of this mosquito.
Collapse
|
3
|
Clark JN, Garbout A, Ferreira SA, Javaheri B, Pitsillides AA, Rankin SM, Jeffers JRT, Hansen U. Propagation phase-contrast micro-computed tomography allows laboratory-based three-dimensional imaging of articular cartilage down to the cellular level. Osteoarthritis Cartilage 2020; 28:102-111. [PMID: 31678663 DOI: 10.1016/j.joca.2019.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/31/2019] [Accepted: 10/03/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE High-resolution non-invasive three-dimensional (3D) imaging of chondrocytes in articular cartilage remains elusive. The aim of this study was to explore whether laboratory micro-computed tomography (micro-CT) permits imaging cells within articular cartilage. DESIGN Bovine osteochondral plugs were prepared four ways: in phosphate-buffered saline (PBS) or 70% ethanol (EtOH), both with or without phosphotungstic acid (PTA) staining. Specimens were imaged with micro-CT following two protocols: 1) absorption contrast (AC) imaging 2) propagation phase-contrast (PPC) imaging. All samples were scanned in liquid. The contrast to noise ratio (C/N) of cellular features quantified scan quality and were statistically analysed. Cellular features resolved by micro-CT were validated by standard histology. RESULTS The highest quality images were obtained using propagation phase-contrast imaging and PTA-staining in 70% EtOH. Cellular features were also visualised when stained in PBS and unstained in EtOH. Under all conditions PPC resulted in greater contrast than AC (p < 0.0001 to p = 0.038). Simultaneous imaging of cartilage and subchondral bone did not impede image quality. Corresponding features were located in both histology and micro-CT and followed the same distribution with similar density and roundness values. CONCLUSIONS Three-dimensional visualisation and quantification of the chondrocyte population within articular cartilage can be achieved across a field of view of several millimetres using laboratory-based micro-CT. The ability to map chondrocytes in 3D opens possibilities for research in fields from skeletal development through to medical device design and treatment of cartilage degeneration.
Collapse
Affiliation(s)
- J N Clark
- Department of Mechanical Engineering, Imperial College London, London, UK.
| | - A Garbout
- Imaging and Analysis Centre, Natural History Museum London, London, UK.
| | - S A Ferreira
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - B Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, UK.
| | - A A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, UK.
| | - S M Rankin
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - J R T Jeffers
- Department of Mechanical Engineering, Imperial College London, London, UK.
| | - U Hansen
- Department of Mechanical Engineering, Imperial College London, London, UK.
| |
Collapse
|
4
|
Wang Z, Herremans E, Janssen S, Cantre D, Verboven P, Nicolaï B. Visualizing 3D Food Microstructure Using Tomographic Methods: Advantages and Disadvantages. Annu Rev Food Sci Technol 2018; 9:323-343. [DOI: 10.1146/annurev-food-030117-012639] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zi Wang
- Postharvest Group, Division MeBioS, KU Leuven, 3001 Leuven, Belgium
| | - Els Herremans
- Postharvest Group, Division MeBioS, KU Leuven, 3001 Leuven, Belgium
| | - Siem Janssen
- Postharvest Group, Division MeBioS, KU Leuven, 3001 Leuven, Belgium
| | - Dennis Cantre
- Postharvest Group, Division MeBioS, KU Leuven, 3001 Leuven, Belgium
| | - Pieter Verboven
- Postharvest Group, Division MeBioS, KU Leuven, 3001 Leuven, Belgium
| | - Bart Nicolaï
- Postharvest Group, Division MeBioS, KU Leuven, 3001 Leuven, Belgium
- Flanders Centre of Postharvest Technology, VCBT, 3001 Leuven, Belgium
| |
Collapse
|
5
|
3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int J Pharm 2018; 536:318-325. [DOI: 10.1016/j.ijpharm.2017.12.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 11/23/2022]
|
6
|
A comparative study between melt granulation/compression and hot melt extrusion/injection molding for the manufacturing of oral sustained release thermoplastic polyurethane matrices. Int J Pharm 2016; 513:602-611. [DOI: 10.1016/j.ijpharm.2016.09.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 02/01/2023]
|
7
|
Civardi C, Van den Bulcke J, Schubert M, Michel E, Butron MI, Boone MN, Dierick M, Van Acker J, Wick P, Schwarze FWMR. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species. PLoS One 2016; 11:e0163124. [PMID: 27649315 PMCID: PMC5029918 DOI: 10.1371/journal.pone.0163124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/03/2016] [Indexed: 11/28/2022] Open
Abstract
The North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP), which is being impregnated with micronized copper (MC) wood preservatives since 2006. These formulations are composed of copper (Cu) carbonate particles (CuCO3·Cu(OH)2), with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH)2 particles that successively release Cu2+ ions (reservoir effect). The wood species used for the European wood decking market differ from the North American SYP. One of the most common species is Norway spruce wood, which is poorly treatable i.e. refractory due to the anatomical properties, like pore size and structure, and chemical composition, like pit membrane components or presence of wood extractives. Therefore, MC formulations may not suitable for refractory wood species common in the European market, despite their good performance in SYP. We evaluated the penetration effectiveness of MC azole (MCA) in easily treatable Scots pine and in refractory Norway spruce wood. We assessed the effectiveness against the Cu-tolerant wood-destroying fungus Rhodonia placenta. Our findings show that MCA cannot easily penetrate refractory wood species and could not confirm the presence of a reservoir effect.
Collapse
Affiliation(s)
- Chiara Civardi
- ETH, Institute for Building Materials, Zürich, Switzerland
- Empa, Applied Wood Materials, Dübendorf/ St. Gallen, Switzerland
- * E-mail: (CC); (FS)
| | - Jan Van den Bulcke
- UGCT - Woodlab-UGent, Laboratory of Wood Technology, Department of Forest and Water Management, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Mark Schubert
- Empa, Applied Wood Materials, Dübendorf/ St. Gallen, Switzerland
| | | | | | - Matthieu N. Boone
- UGCT - Radiation Physics, Department of Physics and Astronomy, Proeftuinstraat 86/N12, Ghent University, 9000 Ghent, Belgium
| | - Manuel Dierick
- UGCT - Radiation Physics, Department of Physics and Astronomy, Proeftuinstraat 86/N12, Ghent University, 9000 Ghent, Belgium
| | - Joris Van Acker
- UGCT - Woodlab-UGent, Laboratory of Wood Technology, Department of Forest and Water Management, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Wick
- Empa, Particles-Biology Interactions, St. Gallen, Switzerland
| | | |
Collapse
|
8
|
Fatty acids for controlled release applications: A comparison between prilling and solid lipid extrusion as manufacturing techniques. Eur J Pharm Biopharm 2015; 97:173-84. [DOI: 10.1016/j.ejpb.2015.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/30/2015] [Accepted: 09/21/2015] [Indexed: 11/22/2022]
|
9
|
Synchrotron X-ray micro-tomography imaging and analysis of wood degraded by Physisporinus vitreus and Xylaria longipes. J Struct Biol 2014; 187:149-157. [DOI: 10.1016/j.jsb.2014.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 11/17/2022]
|
10
|
Masschaele B, Dierick M, Loo DV, Boone MN, Brabant L, Pauwels E, Cnudde V, Hoorebeke LV. HECTOR: A 240kV micro-CT setup optimized for research. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/463/1/012012] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Wernersson ELG, Boone MN, Van den Bulcke J, Van Hoorebeke L, Luengo Hendriks CL. Postprocessing method for reducing phase effects in reconstructed microcomputed-tomography data. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2013; 30:455-461. [PMID: 23456121 DOI: 10.1364/josaa.30.000455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
With increased resolution in x-ray computed tomography, refraction adds increasingly to the attenuation signal. Though potentially beneficial, the artifacts caused by refraction often need to be removed from the image. In this paper, we propose a postprocessing method, based on deconvolution, that is able to remove these artifacts after conventional reconstruction. This method poses two advantages over existing projection-based (preprocessing) phase-retrieval or phase-removal algorithms. First, evaluation of the parameters can be done very quickly, improving the overall speed of the method. Second, postprocessing methods can be applied when projection data is not available, which occurs in several commercial systems with closed software or when projection data has been deleted. It is shown that the proposed method performs comparably to state-of-the-art methods in terms of image quality.
Collapse
Affiliation(s)
- Erik L G Wernersson
- Centre for Image Analysis, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Boone MN, Devulder W, Dierick M, Brabant L, Pauwels E, Van Hoorebeke L. Comparison of two single-image phase-retrieval algorithms for in-line x-ray phase-contrast imaging. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2012; 29:2667-2672. [PMID: 23455917 DOI: 10.1364/josaa.29.002667] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The attenuation of x-rays in a material forms the basis of x-ray radiography and tomography. By measuring the transmission of the x-rays over a large amount of raypaths, the three-dimensional (3D) distribution of the x-ray linear attenuation coefficient can be reconstructed in a 3D volume. In x-ray microtomography (μCT), however, the x-ray refraction yields a significant signal in the transmission image and the 3D distribution of the refractive index can be reconstructed in a 3D volume. To do so, several methods exist, on both a hardware and software level. In this paper, we compare two similar software methods, the modified Bronnikov algorithm and the simultaneous phase-and-amplitude retrieval. The first method assumes a pure phase object, whereas the latter assumes a homogeneous object. Although these assumptions seem very restrictive, both methods have proven to yield good results on experimental data.
Collapse
Affiliation(s)
- Matthieu N Boone
- Ghent University, Department of Physics and Astronomy Proeftuinstraat 86, Gent B-9000, Belgium.
| | | | | | | | | | | |
Collapse
|