1
|
Wellington NJ, Boųcas AP, Lagopoulos J, Quigley BL, Kuballa AV. Molecular pathways of ketamine: A systematic review of immediate and sustained effects on PTSD. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06756-4. [PMID: 40097854 DOI: 10.1007/s00213-025-06756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
RATIONALE Existing studies predominantly focus on the molecular and neurobiological mechanisms underlying Ketamine's acute treatment effects on post-traumatic stress disorder (PTSD). This emphasis has largely overlooked its sustained therapeutic effects, which hold significant potential for the development of targeted interventions. OBJECTIVES This systematic review examines the pharmacokinetic and pharmacodynamic effects of ketamine on PTSD, differentiating between immediate and sustained molecular effects. METHOD A comprehensive search across databases (Web of Science, Scopus, Global Health, PubMed) and grey literature yielded 317 articles, where 29 studies met the inclusion criteria. These studies included preclinical models and clinical trials, through neurotransmitter regulation, gene expression, synaptic plasticity, and neural pathways (PROSPERO ID: CRD42024582874). RESULTS We found accumulating evidence that the immediate effects of ketamine, which involve changes in GABA, glutamate, and glutamine levels, trigger the re-regulation of BDNF, enhancing synaptic plasticity via pathways such as TrkB and PSD-95. Other molecular influences also include c-Fos, GSK-3, HDAC, HCN1, and the modulation of hormones like CHR and ACTH, alongside immune responses (IL-6, IL-1β, TNF-α). Sustained effects arise from neurotransmitter remodulations and involve prolonged changes in gene expression. These include mTOR-mediated BDNF expression, alterations in GSK-3β, FkBP5, GFAP, ERK phosphorylation, and epigenetic modifications (DNMT3, MeCP2, H3K27me3, mir-132, mir-206, HDAC). CONCLUSION These molecular changes promote long-term synaptic stability and re-regulation in key brain regions, contributing to prolonged therapeutic benefits. Understanding the sustained molecular and epigenetic mechanisms behind ketamine's effects is critical for developing safe and effective personalised treatments, potentially leading to more effective recovery.
Collapse
Affiliation(s)
- Nathan J Wellington
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia.
- School of Health, UniSC, Sippy Downs, QLD, Australia.
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia.
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia.
| | - Ana P Boųcas
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Maroochydore, QLD, Australia
| | - Bonnie L Quigley
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Anna V Kuballa
- School of Health, UniSC, Sippy Downs, QLD, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia
| |
Collapse
|
2
|
Cao J, Gorwood P, Ramoz N, Viltart O. The Role of Central and Peripheral Brain-Derived Neurotrophic Factor (BDNF) as a Biomarker of Anorexia Nervosa Reconceptualized as a Metabo-Psychiatric Disorder. Nutrients 2024; 16:2617. [PMID: 39203753 PMCID: PMC11357464 DOI: 10.3390/nu16162617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
Neurotrophic factors play pivotal roles in shaping brain development and function, with brain-derived neurotrophic factor (BDNF) emerging as a key regulator in various physiological processes. This review explores the intricate relationship between BDNF and anorexia nervosa (AN), a complex psychiatric disorder characterized by disordered eating behaviors and severe medical consequences. Beginning with an overview of BDNF's fundamental functions in neurodevelopment and synaptic plasticity, the review delves into recent clinical and preclinical evidence implicating BDNF in the pathophysiology of AN. Specifically, it examines the impact of BDNF polymorphisms, such as the Val66Met variant, on AN susceptibility, prognosis, and treatment response. Furthermore, the review discusses the interplay between BDNF and stress-related mood disorders, shedding light on the mechanisms underlying AN vulnerability to stress events. Additionally, it explores the involvement of BDNF in metabolic regulation, highlighting its potential implications for understanding the metabolic disturbances observed in AN. Through a comprehensive analysis of clinical data and animal studies, the review elucidates the nuanced role of BDNF in AN etiology and prognosis, emphasizing its potential as a diagnostic and prognostic biomarker. Finally, the review discusses limitations and future directions in BDNF research, underscoring the need for further investigations to elucidate the complex interplay between BDNF signaling and AN pathology.
Collapse
Affiliation(s)
- Jingxian Cao
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
| | - Philip Gorwood
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Nicolas Ramoz
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Odile Viltart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- SCALab Laboratory, PsySEF Faculty, Université de Lille, UMR CNRS 9193, F-59650 Villeneuve d’Ascq, France
| |
Collapse
|
3
|
Poitras M, Doiron A, Plamondon H. Selective estrogen receptor activation prior to global cerebral ischemia in female rats impacts microglial activation and anxiety-like behaviors without effects on CA1 neuronal injury. Behav Brain Res 2024; 470:115094. [PMID: 38844057 DOI: 10.1016/j.bbr.2024.115094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Estrogen receptor (ER) activation by 17-ß estradiol (E2) can attenuate neuronal injury and behavioral impairments following global cerebral ischemia (GCI) in rodents. This study sought to further examine the discrete roles of ERs through characterization of the effects of selective ER activation on post-ischemic pro-inflammatory microglial activation, hippocampal neuronal injury, and anxiety-like behaviors. Forty-six ovariectomized (OVX) adult female Wistar rats received daily s.c injections (100 μg/kg/day) of propylpyrazole triol (PPT; ERα agonist), diarylpropionitrile (DPN; ERβ agonist), G-1 (G-protein coupled ER agonist; GPER), E2 (activating all receptors), or vehicle solution (VEH) for 21 days. After final injection, rats underwent GCI via 4-vessel occlusion (n=8 per group) or sham surgery (n=6, vehicle injections). The Open Field Test (OFT), Elevated Plus Maze (EPM), and Hole Board Test (HBT) assessed anxiety-like behaviors. Microglial activation (Iba1, CD68, CD86) in the basolateral amygdala (BLA), CA1 of the hippocampus, and paraventricular nucleus of the hypothalamus (PVN) was determined 8 days post-ischemia. Compared to sham rats, Iba1 activation and CA1 neuronal injury were increased in all ischemic groups except DPN-treated rats, with PPT-treated ischemic rats also showing increased PVN Iba1-ir expression. Behaviorally, VEH ischemic rats showed slightly elevated anxiety in the EPM compared to sham counterparts, with no significant effects of agonists. While no changes were observed in the OFT, emotion regulation via grooming in the HBT was increased in G-1 rats compared to E2 rats. Our findings support selective ER activation to regulate post-ischemic microglial activation and coping strategies in the HBT, despite minimal impact on hippocampal injury.
Collapse
Affiliation(s)
- Marilou Poitras
- Cerebro Vascular Accidents and Behavioral Recovery Laboratory, School of Psychology, University of Ottawa, Ottawa, Canada
| | - Alexandra Doiron
- Cerebro Vascular Accidents and Behavioral Recovery Laboratory, School of Psychology, University of Ottawa, Ottawa, Canada
| | - Hélène Plamondon
- Cerebro Vascular Accidents and Behavioral Recovery Laboratory, School of Psychology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
4
|
Finn DA, Clark CD, Ryabinin AE. Traumatic stress-enhanced alcohol drinking: Sex differences and animal model perspectives. CURRENT ADDICTION REPORTS 2024; 11:327-341. [PMID: 38915732 PMCID: PMC11196023 DOI: 10.1007/s40429-023-00540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2023] [Indexed: 06/26/2024]
Abstract
Purpose of review Stress is associated with alcohol drinking, and epidemiological studies document the comorbidity of alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD), with higher comorbid prevalence in females than in males. The aim of this paper is to highlight information related to sex differences in stress-enhanced alcohol drinking from clinical studies and from preclinical studies utilizing an animal model of traumatic stress. Recent findings Stress is associated with alcohol drinking and relapse in males and females, but there are sex differences in the alcohol-related adaptation of stress pathways and in the association of different prefrontal regions with stress-induced anxiety. The predator stress model of traumatic stress produced enhanced alcohol drinking in a subgroup of stress-sensitive male and female animals, which could be associated with sex and subgroup differences in stress axis responsivity, behavioral responses to predator odors, and epigenetic mechanisms engaged by traumatic experiences. Summary While additional studies in females are necessary, existing clinical and preclinical evidence suggests that biological mechanisms underlying stress-enhanced drinking likely differ between males and females. Thus, effective treatment strategies may differ between the sexes.
Collapse
Affiliation(s)
- Deborah A. Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Department of Research, VA Portland Health Care System, Portland, OR, United States
| | - Crystal D. Clark
- Department of Research, VA Portland Health Care System, Portland, OR, United States
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
5
|
Dell’Oste V, Palego L, Betti L, Fantasia S, Gravina D, Bordacchini A, Pedrinelli V, Giannaccini G, Carmassi C. Plasma and Platelet Brain-Derived Neurotrophic Factor (BDNF) Levels in Bipolar Disorder Patients with Post-Traumatic Stress Disorder (PTSD) or in a Major Depressive Episode Compared to Healthy Controls. Int J Mol Sci 2024; 25:3529. [PMID: 38542503 PMCID: PMC10970837 DOI: 10.3390/ijms25063529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a highly disabling mental disorder arising after traumatism exposure, often revealing critical and complex courses when comorbidity with bipolar disorder (BD) occurs. To search for PTSD or depression biomarkers that would help clinicians define BD presentations, this study aimed at preliminarily evaluating circulating brain-derived-neurotrophic factor (BDNF) levels in BD subjects with PTSD or experiencing a major depressive episode versus controls. Two bloodstream BDNF components were specifically investigated, the storage (intraplatelet) and the released (plasma) ones, both as adaptogenic/repair signals during neuroendocrine stress response dynamics. Bipolar patients with PTSD (n = 20) or in a major depressive episode (n = 20) were rigorously recruited together with unrelated healthy controls (n = 24) and subsequently examined by psychiatric questionnaires and blood samplings. Platelet-poor plasma (PPP) and intraplatelet (PLT) BDNF were measured by ELISA assays. The results showed markedly higher intraplatelet vs. plasma BDNF, confirming platelets' role in neurotrophin transport/storage. No between-group PPP-BDNF difference was reported, whereas PLT-BDNF was significantly reduced in depressed BD patients. PLT-BDNF negatively correlated with mood scores but not with PTSD items like PPP-BDNF, which instead displayed opposite correlation trends with depression and manic severity. Present findings highlight PLT-BDNF as more reliable at detecting depression than PTSD in BD, encouraging further study into BDNF variability contextually with immune-inflammatory parameters in wider cohorts of differentially symptomatic bipolar patients.
Collapse
Affiliation(s)
- Valerio Dell’Oste
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- UFCSMA Zona Valdinievole, Azienda USL Toscana Centro, 51016 Montecatini Terme, Italy
| | - Lionella Palego
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Laura Betti
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Sara Fantasia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Davide Gravina
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Andrea Bordacchini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Virginia Pedrinelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- UFSMA Zona Apuana, Azienda USL Toscana Nord Ovest, 54100 Massa, Italy
| | - Gino Giannaccini
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| |
Collapse
|
6
|
Dirven BCJ, van Melis L, Daneva T, Dillen L, Homberg JR, Kozicz T, Henckens MJAG. Hippocampal Trauma Memory Processing Conveying Susceptibility to Traumatic Stress. Neuroscience 2024; 540:87-102. [PMID: 38220126 DOI: 10.1016/j.neuroscience.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
While the majority of the population is ever exposed to a traumatic event during their lifetime, only a fraction develops posttraumatic stress disorder (PTSD). Disrupted trauma memory processing has been proposed as a core factor underlying PTSD symptomatology. We used transgenic Targeted-Recombination-in-Active-Populations (TRAP) mice to investigate potential alterations in trauma-related hippocampal memory engrams associated with the development of PTSD-like symptomatology. Mice were exposed to a stress-enhanced fear learning paradigm, in which prior exposure to a stressor affects the learning of a subsequent fearful event (contextual fear conditioning using foot shocks), during which neuronal activity was labeled. One week later, mice were behaviorally phenotyped to identify mice resilient and susceptible to developing PTSD-like symptomatology. Three weeks post-learning, mice were re-exposed to the conditioning context to induce remote fear memory recall, and associated hippocampal neuronal activity was assessed. While no differences in the size of the hippocampal neuronal ensemble activated during fear learning were observed between groups, susceptible mice displayed a smaller ensemble activated upon remote fear memory recall in the ventral CA1, higher regional hippocampal parvalbuminneuronal density and a relatively lower activity of parvalbumininterneurons upon recall. Investigation of potential epigenetic regulators of the engram revealed rather generic (rather than engram-specific) differences between groups, with susceptible mice displaying lower hippocampal histone deacetylase 2 expression, and higher methylation and hydroxymethylation levels. These finding implicate variation in epigenetic regulation within the hippocampus, as well as reduced regional hippocampal activity during remote fear memory recall in interindividual differences in susceptibility to traumatic stress.
Collapse
Affiliation(s)
- Bart C J Dirven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Lennart van Melis
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Teya Daneva
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Lieke Dillen
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Tamas Kozicz
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Center for Individualized Medicine, Department of Clinical Genomics, and Biochemical Genetics Laboratory, Mayo Clinic, Rochester, MN 55905, USA; University of Pecs Medical School, Department of Anatomy, Pecs, Hungary
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Rahimi-Danesh M, Samizadeh MA, Sajadi AE, Rezvankhah T, Vaseghi S. Sex difference affects fear extinction but not lithium efficacy in rats following fear-conditioning with respect to the hippocampal level of BDNF. Pharmacol Biochem Behav 2024; 234:173675. [PMID: 37972713 DOI: 10.1016/j.pbb.2023.173675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
In rodents, exposure to electrical shock and creating a strong fear memory using fear-conditioning model can induce PTSD-like behavior. In this study, we induced a fear-conditioning model in rats and investigated freezing (PTSD-like) behavior, 21 days after three shocks exposure (0.6 mA, 3 s, 30 seconds interval) in both male and female rats. Lithium was injected intraperitoneally (100 mg/kg) in three protocols: (1) 1 h after fear-conditioning (2) 1 h, 24 h, and 48 h after fear-conditioning (3), 1 h, 24 h, 48 h, 72 h, and 96 h after fear-conditioning. Extinction training (20 sounds without shocks, 75 dB, 3 s, 30 seconds interval) was performed in three protocols: (1) 1 h after fear-conditioning (one session), (2) 1 h, 24 h, and 48 h after fear-conditioning (three sessions), (3), 1 h, 24 h, 48 h, 72 h, and 96 h after fear-conditioning (five sessions). Forced swim test (FST) and hot plate were used to assess behavior. Results showed that lithium in all protocols had no effect on freezing behavior, FST, and pain subthreshold in all rats. Extinction training decreased freezing behavior, with more efficacy in females. In males, only 5-session training was effective, while in females all protocols were effective. Extinction training also altered pain perception and the results of FST, depending on the sessions and was different in males and females. Brain-derived neurotrophic factor (BDNF) mRNA level was increased in females following 3 and 5 sessions, and in males following 5 sessions extinction training. In conclusion, we suggested that there is a sex difference for the effect of extinction training on freezing behavior and BDNF mRNA level in a rat model of fear-conditioning.
Collapse
Affiliation(s)
- Mehrsa Rahimi-Danesh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Mohammad-Ali Samizadeh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Amir-Ehsan Sajadi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Tara Rezvankhah
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
8
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci 2023; 17:1281401. [PMID: 38116070 PMCID: PMC10728304 DOI: 10.3389/fnins.2023.1281401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Saad N, Raviv D, Mizrachi Zer-Aviv T, Akirav I. Cannabidiol Modulates Emotional Function and Brain-Derived Neurotrophic Factor Expression in Middle-Aged Female Rats Exposed to Social Isolation. Int J Mol Sci 2023; 24:15492. [PMID: 37895171 PMCID: PMC10607116 DOI: 10.3390/ijms242015492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is associated with changes in cognitive and emotional function. Cannabidiol (CBD) has been reported to attenuate stress and anxiety in human and animal studies. In this study, we aimed to assess the therapeutic potential of CBD among middle-aged female rats exposed to social isolation (SI) and the potential involvement of brain-derived neurotrophic factor (BDNF) in these effects. Thirteen-month-old female rats were group-housed (GH) or exposed to social isolation (SI) and treated with vehicle or CBD (10 mg/kg). CBD restored the SI-induced immobility in the forced swim test and the SI-induced decrease in the expression of BDNF protein levels in the nucleus accumbens (NAc). CBD also increased the time that rats spent in the center in an open field, improved spatial training, and increased BDNF expression in the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA). BDNF expression was found to be correlated with an antidepressant (in the NAc) and an anxiolytic (in the mPFC, BLA, NAc) phenotype, and with learning improvement in the PFC. Together, our results suggest that CBD may serve as a beneficial agent for wellbeing in old age and may help with age-related cognitive decline.
Collapse
Affiliation(s)
- Nadya Saad
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (N.S.); (D.R.); (T.M.Z.-A.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Danielle Raviv
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (N.S.); (D.R.); (T.M.Z.-A.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Tomer Mizrachi Zer-Aviv
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (N.S.); (D.R.); (T.M.Z.-A.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (N.S.); (D.R.); (T.M.Z.-A.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
10
|
Bhattacharya S, MacCallum PE, Dayma M, McGrath-Janes A, King B, Dawson L, Bambico FR, Berry MD, Yuan Q, Martin GM, Preisser EL, Blundell JJ. A short pre-conception bout of predation risk affects both children and grandchildren. Sci Rep 2023; 13:10886. [PMID: 37407623 PMCID: PMC10322924 DOI: 10.1038/s41598-023-37455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Traumatic events that affect physiology and behavior in the current generation may also impact future generations. We demonstrate that an ecologically realistic degree of predation risk prior to conception causes lasting changes in the first filial (F1) and second filial (F2) generations. We exposed male and female mice to a live rat (predator stress) or control (non-predator) condition for 5 min. Ten days later, stressed males and females were bred together as were control males and females. Adult F1 offspring from preconception-stressed parents responded to a mild stressor with more anxiety-like behavior and hyperarousal than offspring from control parents. Exposing these F1 offspring to the mild stressor increased neuronal activity (cFOS) in the hippocampus and altered glucocorticoid system function peripherally (plasma corticosterone levels). Even without the mild stressor, F1 offspring from preconception-stressed parents still exhibited more anxiety-like behaviors than controls. Cross-fostering studies confirmed that preconception stress, not maternal social environment, determined offspring behavioral phenotype. The effects of preconception parental stress were also unexpectedly persistent and produced similar behavioral phenotypes in the F2 offspring. Our data illustrate that a surprisingly small amount of preconception predator stress alters the brain, physiology, and behavior of future generations. A better understanding of the 'long shadow' cast by fearful events is critical for understanding the adaptive costs and benefits of transgenerational plasticity. It also suggests the intriguing possibility that similar risk-induced changes are the rule rather than the exception in free-living organisms, and that such multigenerational impacts are as ubiquitous as they are cryptic.
Collapse
Affiliation(s)
- Sriya Bhattacharya
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
- Northwestern Polytechnic, Grande Prairie, AB, T8V 4C4, Canada
| | - Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Mrunal Dayma
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Andrea McGrath-Janes
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Brianna King
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Laura Dawson
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Francis R Bambico
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Mark D Berry
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Gerard M Martin
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Jacqueline J Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
11
|
Nahum K, Todder D, Zohar J, Cohen H. The Role of Microglia in the (Mal)adaptive Response to Traumatic Experience in an Animal Model of PTSD. Int J Mol Sci 2022; 23:ijms23137185. [PMID: 35806185 PMCID: PMC9266429 DOI: 10.3390/ijms23137185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/06/2023] Open
Abstract
The present study investigates whether predator scent-stress (PSS) shifts the microglia from a quiescent to a chronically activated state and whether morphological alterations in microglial activation differ between individuals displaying resilient vs. vulnerable phenotypes. In addition, we examined the role that GC receptors play during PSS exposure in the impairment of microglial activation and thus in behavioral response. Adult male Sprague Dawley rats were exposed to PSS or sham-PSS for 15 min. Behaviors were assessed with the elevated plus-maze (EPM) and acoustic startle response (ASR) paradigms 7 days later. Localized brain expression of Iba-1 was assessed, visualized, and classified based on their morphology and stereological counted. Hydrocortisone and RU486 were administered systemically 10 min post PSS exposure and behavioral responses were measured on day 7 and hippocampal expression of Ionized calcium-binding adaptor molecule 1 (Iba-1) was subsequently evaluated. Animals whose behavior was extremely disrupted (PTSD-phenotype) selectively displayed excessive expression of Iba-1 with concomitant downregulation in the expression of CX3C chemokine receptor 1 (CX3CR1) in hippocampal structures as compared with rats whose behavior was minimally or partially disrupted. Changes in microglial morphology have also been related only to the PTSD-phenotype group. These data indicate that PSS-induced microglia activation in the hippocampus serves as a critical mechanistic link between the HPA-axis and PSS-induced impairment in behavioral responses.
Collapse
Affiliation(s)
- Kesem Nahum
- Department of Psychology Experimental Psychology, Brain and Cognition, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Doron Todder
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8461144, Israel;
| | - Joseph Zohar
- Post-Trauma Center, Sheba Medical Center, Tel Aviv University, Tel Aviv 52621, Israel;
| | - Hagit Cohen
- Department of Psychology Experimental Psychology, Brain and Cognition, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8461144, Israel;
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Correspondence: ; Tel.: +972-8-6401742
| |
Collapse
|
12
|
Belity T, Horowitz M, Hoffman JR, Epstein Y, Bruchim Y, Todder D, Cohen H. Heat-Stress Preconditioning Attenuates Behavioral Responses to Psychological Stress: The Role of HSP-70 in Modulating Stress Responses. Int J Mol Sci 2022; 23:ijms23084129. [PMID: 35456946 PMCID: PMC9031159 DOI: 10.3390/ijms23084129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Exposure to high ambient temperature is a stressor that influences both biological and behavioral functions and has been previously shown to have an extensive impact on brain structure and function. Physiological, cellular and behavioral responses to heat-stress (HS) (40-41 °C, 2 h) were evaluated in adult male Sprague-Dawley rats. The effect of HS exposure before predator-scent stress (PSS) exposure (i.e., HS preconditioning) was examined. Finally, a possible mechanism of HS-preconditioning to PSS was investigated. Immunohistochemical analyses of chosen cellular markers were performed in the hippocampus and in the hypothalamic paraventricular nucleus (PVN). Plasma corticosterone levels were evaluated, and the behavioral assessment included the elevated plus-maze (EPM) and the acoustic startle response (ASR) paradigms. Endogenous levels of heat shock protein (HSP)-70 were manipulated using an amino acid (L-glutamine) and a pharmacological agent (Doxazosin). A single exposure to an acute HS resulted in decreased body mass (BM), increased body temperature and increased corticosterone levels. Additionally, extensive cellular, but not behavioral changes were noted. HS-preconditioning provided behavioral resiliency to anxiety-like behavior associated with PSS, possibly through the induction of HSP-70. Targeting of HSP-70 is an attractive strategy for stress-related psychopathology treatment.
Collapse
Affiliation(s)
- Tal Belity
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem 9112102, Israel; (M.H.); (Y.B.)
| | - Jay R. Hoffman
- Department of Physical Therapy, Ariel University, Ariel 40700, Israel;
| | - Yoram Epstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv and the Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan 52621, Israel;
| | - Yaron Bruchim
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem 9112102, Israel; (M.H.); (Y.B.)
- Intensive Care, Veterinary Emergency and Specialist Center, Youth Village Ben Shemen, Ben-Shemen 7311200, Israel
| | - Doron Todder
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8461144, Israel;
| | - Hagit Cohen
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8461144, Israel;
- Correspondence: ; Tel.: +972-8-6401743
| |
Collapse
|
13
|
Prior short-term exercise prevents behavioral and biochemical abnormalities induced by single prolonged stress in a rat model of posttraumatic stress disorder. Behav Brain Res 2022; 428:113864. [DOI: 10.1016/j.bbr.2022.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 11/21/2022]
|
14
|
Joshi A, Akhtar A, Saroj P, Kuhad A, Sah SP. Antidepressant-like effect of sodium orthovanadate in a mouse model of chronic unpredictable mild stress. Eur J Pharmacol 2022; 919:174798. [DOI: 10.1016/j.ejphar.2022.174798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
|
15
|
Calpe-López C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Resilience to the effects of social stress on vulnerability to developing drug addiction. World J Psychiatry 2022; 12:24-58. [PMID: 35111578 PMCID: PMC8783163 DOI: 10.5498/wjp.v12.i1.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/01/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
We review the still scarce but growing literature on resilience to the effects of social stress on the rewarding properties of drugs of abuse. We define the concept of resilience and how it is applied to the field of drug addiction research. We also describe the internal and external protective factors associated with resilience, such as individual behavioral traits and social support. We then explain the physiological response to stress and how it is modulated by resilience factors. In the subsequent section, we describe the animal models commonly used in the study of resilience to social stress, and we focus on the effects of chronic social defeat (SD), a kind of stress induced by repeated experience of defeat in an agonistic encounter, on different animal behaviors (depression- and anxiety-like behavior, cognitive impairment and addiction-like symptoms). We then summarize the current knowledge on the neurobiological substrates of resilience derived from studies of resilience to the effects of chronic SD stress on depression- and anxiety-related behaviors in rodents. Finally, we focus on the limited studies carried out to explore resilience to the effects of SD stress on the rewarding properties of drugs of abuse, describing the current state of knowledge and suggesting future research directions.
Collapse
Affiliation(s)
| | | | - Maria P García-Pardo
- Faculty of Social and Human Sciences, University of Zaragoza, Teruel 44003, Spain
| | - Maria A Aguilar
- Department of Psychobiology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
16
|
Yakhkeshi R, Roshani F, Akhoundzadeh K, Shafia S. Effect of treadmill exercise on serum corticosterone, serum and hippocampal BDNF, hippocampal apoptosis and anxiety behavior in an ovariectomized rat model of post-traumatic stress disorder (PTSD). Physiol Behav 2022; 243:113629. [PMID: 34743976 DOI: 10.1016/j.physbeh.2021.113629] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
There is a sex difference in vulnerability to PTSD and in response to therapeutic interventions. Since relation between gonadal hormones and PTSD has been revealed, this study aimed to understand the severity of PTSD-induced impairments after ovarian hormone deficiency and the influence of exercise on PTSD accompanied by ovarian hormone deficiency. Female adult Wistar rats were subjected to ovariectomy, PTSD, or combination ovariectomy plus PTSD. Twenty days after ovariectomy, PTSD was induced by single prolonged stress (SPS) model. The exercise started 14 days after SPS and continued for 4 weeks. Thirty minutes moderate treadmill exercise was planned for 5 days per week. On day 65, after assessing rats using the elevated plus-maze (EPM) test, corticosterone, BDNF, and apoptotic markers were tested. p < 0.05 was considered as significant level. The results showed that ovariectomy worsened the effect of SPS on hippocampal BDNF and led to greater increase in serum corticosterone and hippocampal caspase 3 and BAX in SPS rats. Also, ovariectomy exacerbated anxiety-like behavior in SPS rats. Exercise improved the alterations of hippocampal BDNF, corticosterone, caspase 3, and BAX in SPS ovariectomized rats. However, exercise had no statistically significant effect on anxiety-like behavior in this group. According to the results, exercise is effective to attenuate SPS-induced impairments in molecular and cellular responses even when the condition becomes more complicated due to ovarian hormone deficiency. However, exercise alone cannot help to improve behavior impairments in PTSD combined with an ovarian hormone deficiency. Therefore, exercise could likely be considered as a complementary intervention to strengthen other treatments.
Collapse
Affiliation(s)
- Reza Yakhkeshi
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Roshani
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kobra Akhoundzadeh
- PhD of physiology, Faculty of Nursing and Midwifery, Qom University of Medical Sciences, Qom, Iran.
| | - Sakineh Shafia
- PhD of physiology, Department of Physiology, Molecular and Cell Biology Research Center and Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
17
|
Chakraborty P, Chattarji S, Jeanneteau F. A salience hypothesis of stress in PTSD. Eur J Neurosci 2021; 54:8029-8051. [PMID: 34766390 DOI: 10.1111/ejn.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/13/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Attention to key features of contexts and things is a necessary tool for all organisms. Detecting these salient features of cues, or simply, salience, can also be affected by exposure to traumatic stress, as has been widely reported in individuals suffering from post-traumatic stress disorder (PTSD). Interestingly, similar observations have been robustly replicated across many animal models of stress as well. By using evidence from such rodent stress paradigms, in the present review, we explore PTSD through the lens of salience processing. In this context, we propose that interaction between the neurotrophin brain-derived neurotrophic factor (BDNF) and glucocorticoids determines the long lasting cellular and behavioural consequences of stress salience. We also describe the dual effect of glucocorticoid therapy in the amelioration of PTSD symptoms. Finally, by integrating in vivo observations at multiple scales of plasticity, we propose a unifying hypothesis that pivots on a crucial role of glucocorticoid signalling in dynamically orchestrating stress salience.
Collapse
Affiliation(s)
- Prabahan Chakraborty
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France.,Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India
| | - Sumantra Chattarji
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France
| |
Collapse
|
18
|
Robinson S, Mogul AS, Taylor-Yeremeeva EM, Khan A, Tirabassi AD, Wang HY. Stress Diminishes BDNF-stimulated TrkB Signaling, TrkB-NMDA Receptor Linkage and Neuronal Activity in the Rat Brain. Neuroscience 2021; 473:142-158. [PMID: 34298123 PMCID: PMC8455453 DOI: 10.1016/j.neuroscience.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
Exposure to intense or repeated stressors can lead to depression or post-traumatic stress disorder (PTSD). Neurological changes induced by stress include impaired neurotrophin signaling, which is known to influence synaptic integrity and plasticity. The present study used an ex vivo approach to examine the impact of acute or repeated stress on BDNF-stimulated TrkB signaling in hippocampus (HIPPO) and prefrontal cortex (PFC). Rats in an acute multiple stressor group experienced five stressors in one day whereas rats in a repeated unpredictable stressor group experienced 20 stressors across 10 days. After stress exposure, slices were incubated with vehicle or BDNF, followed by immunoprecipitation and immunoblot assays to assess protein levels, activation states and protein-protein linkage associated with BDNF-TrkB signaling. Three key findings are (1) exposure to stressors significantly diminished BDNF-stimulated TrkB signaling in HIPPO and PFC such that reductions in TrkB activation, diminished recruitment of adaptor proteins to TrkB, reduced activation of downstream signaling molecules, disruption of TrkB-NMDAr linkage, and changes in basal and BDNF-stimulated Arc expression were observed. (2) After stress, BDNF stimulation enhanced TrkB-NMDAr linkage in PFC, suggestive of compensatory mechanisms in this region. (3) We discovered an uncoupling between TrkB signaling, TrkB-NMDAr linkage and Arc expression in PFC and HIPPO. In addition, a robust surge in pro-inflammatory cytokines was observed in both regions after repeated exposure to stressors. Collectively, these data provide therapeutic targets for future studies that investigate how to reverse stress-induced downregulation of BDNF-TrkB signaling and underscore the need for functional studies that examine stress-related TrkB-NMDAr activities in PFC.
Collapse
Affiliation(s)
- Siobhan Robinson
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY, USA.
| | - Allison S Mogul
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY, USA
| | | | - Amber Khan
- Department of Molecular, Cellular & Biomedical Sciences, The City University of New York School of Medicine, New York, NY, USA; Department of Biology, Neuroscience Program, Graduate School of the City University of New York, New York, NY, USA
| | - Anthony D Tirabassi
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY, USA
| | - Hoau-Yan Wang
- Department of Molecular, Cellular & Biomedical Sciences, The City University of New York School of Medicine, New York, NY, USA; Department of Biology, Neuroscience Program, Graduate School of the City University of New York, New York, NY, USA
| |
Collapse
|
19
|
Jabbari-Zadeh F, Cao B, Stanley JA, Liu Y, Wu MJ, Tannous J, Lopez M, Sanches M, Mwangi B, Zunta-Soares GB, Soares JC. Evidence of altered metabolism of cellular membranes in bipolar disorder comorbid with post-traumatic stress disorder. J Affect Disord 2021; 289:81-87. [PMID: 33951550 DOI: 10.1016/j.jad.2021.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
In proton magnetic resonance spectroscopy (¹H MRS) studies, aberrant levels of choline-containing compounds that include glycerophosphocholine plus phosphocholine (GPC+PC), can signify alterations in the metabolism of cellular membrane phospholipids (MPLs) from a healthy baseline. In a recent ¹H MRS study, we reported increased GPC+PC in cortical and subcortical areas of adult patients with bipolar disorder I (BP-I). Post-traumatic stress disorder (PTSD) can worsen the severity of BP-I, but it is unclear whether the effect of a PTSD comorbidity in BP-I is associated with altered MPL metabolism. The purpose of this study was to re-investigate the ¹H MRS data to determine whether the regional extent of elevated GPC+PC was greater in BP-I patients with PTSD (BP-I/wPTSD) compared to BP-I without comorbid PTSD (BP-I/woPTSD) patients and healthy controls. GPC+PC levels from four brain areas [the anterior cingulate cortex (ACC), anterior-dorsal ACC, caudate, and putamen] were measured in 14 BP-I/wPTSD, 36 BP-I/woPTSD, and 44 healthy controls using a multi-voxel 1H MRS approach on a 3 Tesla system with high spatial resolution and absolute quantification. Results show a significant increase in GPC+PC levels from the caudate and putamen of BP-I/wPTSD patients compared to healthy controls (P<0.05) and in the putamen compared to BP-I/woPTSD patients (P<0.05). These findings are consistent with evidence of elevated degradation of MPLs in the neuropil that is more pronounced in BP-I patients with comorbid PTSD.
Collapse
Affiliation(s)
- Faramarz Jabbari-Zadeh
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Canada.
| | - Jeffrey A Stanley
- Department of Psychiatry & Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Yang Liu
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Mon-Ju Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Jonika Tannous
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Mizuki Lopez
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Marsal Sanches
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| |
Collapse
|
20
|
Dysregulation of miR-15a-5p, miR-497a-5p and miR-511-5p Is Associated with Modulation of BDNF and FKBP5 in Brain Areas of PTSD-Related Susceptible and Resilient Mice. Int J Mol Sci 2021; 22:ijms22105157. [PMID: 34068160 PMCID: PMC8153003 DOI: 10.3390/ijms22105157] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder occurring in susceptible individuals following a traumatic event. Understanding the mechanisms subserving trauma susceptibility/resilience is essential to develop new effective treatments. Increasing evidence suggests that non-coding RNAs, such as microRNAs (miRNAs), may play a prominent role in mediating trauma susceptibility/resilience. In this study, we evaluated the transcriptional expression of two key PTSD-related genes (FKBP5 and BDNF) and the relative targeting miRNAs (miR-15a-5p, miR-497a-5p, miR-511-5p, let-7d-5p) in brain areas of PTSD-related susceptible and resilient mice identified through our recently developed mouse model of PTSD (arousal-based individual screening (AIS) model). We observed lower transcript levels of miR-15a-5p, miR-497a-5p, and miR-511a-5p in the hippocampus and hypothalamus of susceptible mice compared to resilient mice, suggesting that the expression of these miRNAs could discriminate the two different phenotypes of stress-exposed mice. These miRNA variations could contribute, individually or synergically, to the inversely correlated transcript levels of FKBP5 and BDNF. Conversely, in the medial prefrontal cortex, downregulation of miR-15a-5p, miR-511-5p, and let-7d-5p was observed both in susceptible and resilient mice, and not accompanied by changes in their mRNA targets. Furthermore, miRNA expression in the different brain areas correlated to stress-induced behavioral scores (arousal score, avoidance-like score, social memory score and PTSD-like score), suggesting a linear connection between miRNA-based epigenetic modulation and stress-induced phenotypes. Pathway analysis of a miRNA network showed a statistically significant enrichment of molecular processes related to PTSD and stress. In conclusion, our results indicate that PTSD susceptibility/resilience might be shaped by brain-area-dependent modulation of miRNAs targeting FKBP5, BDNF, and other stress-related genes.
Collapse
|
21
|
Meade GM, Charron LS, Kilburn LW, Pei Z, Wang HY, Robinson S. A model of negative emotional contagion between male-female rat dyads: Effects of voluntary exercise on stress-induced behavior and BDNF-TrkB signaling. Physiol Behav 2021; 234:113286. [DOI: 10.1016/j.physbeh.2020.113286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
|
22
|
BDNF Protein and BDNF mRNA Expression of the Medial Prefrontal Cortex, Amygdala, and Hippocampus during Situational Reminder in the PTSD Animal Model. Behav Neurol 2021; 2021:6657716. [PMID: 33763156 PMCID: PMC7964114 DOI: 10.1155/2021/6657716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Whether BDNF protein and BDNF mRNA expression of the medial prefrontal cortex (mPFC; cingulated cortex area 1 (Cg1), prelimbic cortex (PrL), and infralimbic cortex (IL)), amygdala, and hippocampus (CA1, CA2, CA3, and dentate gyrus (DG)) was involved in fear of posttraumatic stress disorder (PTSD) during the situational reminder of traumatic memory remains uncertain. Footshock rats experienced an inescapable footshock (3 mA, 10 s), and later we have measured fear behavior for 2 min in the footshock environment on the situational reminder phase. In the final retrieval of situational reminder, BDNF protein and mRNA levels were measured. The results showed that higher BDNF expression occurred in the Cg1, PrL, and amygdala. Lower BDNF expression occurred in the IL, CA1, CA2, CA3, and DG. BDNF mRNA levels were higher in the mPFC and amygdala but lower in the hippocampus. The neural connection analysis showed that BDNF protein and BDNF mRNA exhibited weak connections among the mPFC, amygdala, and hippocampus during situational reminders. The present data did not support the previous viewpoint in neuroimaging research that the mPFC and hippocampus revealed hypoactivity and the amygdala exhibited hyperactivity for PTSD symptoms. These findings should be discussed with the previous evidence and provide clinical implications for PTSD.
Collapse
|
23
|
Volumetric trajectories of hippocampal subfields and amygdala nuclei influenced by adolescent alcohol use and lifetime trauma. Transl Psychiatry 2021; 11:154. [PMID: 33654086 PMCID: PMC7925562 DOI: 10.1038/s41398-021-01275-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Alcohol use and exposure to psychological trauma frequently co-occur in adolescence and share many risk factors. Both exposures have deleterious effects on the brain during this sensitive developmental period, particularly on the hippocampus and amygdala. However, very little is known about the individual and interactive effects of trauma and alcohol exposure and their specific effects on functionally distinct substructures within the adolescent hippocampus and amygdala. Adolescents from a large longitudinal sample (N = 803, 2684 scans, 51% female, and 75% White/Caucasian) ranging in age from 12 to 21 years were interviewed about exposure to traumatic events at their baseline evaluation. Assessments for alcohol use and structural magnetic resonance imaging scans were completed at baseline and repeated annually to examine neurodevelopmental trajectories. Hippocampal and amygdala subregions were segmented using Freesurfer v6.0 tools, followed by volumetric analysis with generalized additive mixed models. Longitudinal statistical models examined the effects of cumulative lifetime trauma measured at baseline and alcohol use measured annually on trajectories of hippocampal and amygdala subregions, while controlling for covariates known to impact brain development. Greater alcohol use, quantified using the Cahalan scale and measured annually, was associated with smaller whole hippocampus (β = -12.0, pFDR = 0.009) and left hippocampus tail volumes (β = -1.2, pFDR = 0.048), and larger right CA3 head (β = 0.4, pFDR = 0.027) and left subiculum (β = 0.7, pFDR = 0.046) volumes of the hippocampus. In the amygdala, greater alcohol use was associated with larger right basal nucleus volume (β = 1.3, pFDR = 0.040). The effect of traumatic life events measured at baseline was associated with larger right CA3 head volume (β = 1.3, pFDR = 0.041) in the hippocampus. We observed an interaction between baseline trauma and within-person age change where younger adolescents with greater trauma exposure at baseline had smaller left hippocampal subfield volumes in the subiculum (β = 0.3, pFDR = 0.029) and molecular layer HP head (β = 0.3, pFDR = 0.041). The interaction also revealed that older adolescents with greater trauma exposure at baseline had larger right amygdala nucleus volume in the paralaminar nucleus (β = 0.1, pFDR = 0.045), yet smaller whole amygdala volume overall (β = -3.7, pFDR = 0.003). Lastly, we observed an interaction between alcohol use and baseline trauma such that adolescents who reported greater alcohol use with greater baseline trauma showed smaller right hippocampal subfield volumes in the CA1 head (β = -1.1, pFDR = 0.011) and hippocampal head (β = -2.6, pFDR = 0.025), yet larger whole hippocampus volume overall (β = 10.0, pFDR = 0.032). Cumulative lifetime trauma measured at baseline and alcohol use measured annually interact to affect the volume and trajectory of hippocampal and amygdala substructures (measured via structural MRI annually), regions that are essential for emotion regulation and memory. Our findings demonstrate the value of examining these substructures and support the hypothesis that the amygdala and hippocampus are not homogeneous brain regions.
Collapse
|
24
|
Belity T, Hoffman JR, Horowitz M, Epstein Y, Bruchim Y, Cohen H. β-Alanine Supplementation Attenuates the Neurophysiological Response in Animals Exposed to an Acute Heat Stress. J Diet Suppl 2021; 19:443-458. [PMID: 33615958 DOI: 10.1080/19390211.2021.1889734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The effect of 30 days of β-alanine supplementation on neurophysiological responses of animals exposed to an acute heat stress (HS) was examined. Animals were randomized to one of three groups; exposed to HS (120 min at 40-41 °C) and fed a normal diet (EXP; n = 12); EXP and supplemented with β-alanine (EXP + BA; n = 10); or not exposed (CTL; n = 10). Hippocampal (CA1, CA3 and DG) and hypothalamic (PVN) immunoreactive (ir) cell numbers of COX2, IBA-1, BDNF, NPY and HSP70 were analyzed. Three animals in EXP and one in EXP-BA did not survive the HS, however no significant difference (p = 0.146) was noted in survival rate in EXP + BA. The % change in rectal temperature was significantly lower (p = 0.04) in EXP + BA than EXP. Elevations (p's < 0.05) in COX-2, IBA-1 and HSP70 ir-cell numbers were noted in animals exposed to HS in all subregions. COX-2 ir-cell numbers were attenuated for EXP + BA in CA1 (p = 0.02) and PVN (p = 0.015) compared to EXP. No difference in COX-2 ir-cell numbers was noted between CTL and EXP + BA at CA1. BDNF-ir cell numbers in CA1, DG and PVN were reduced (p's < 0.05) during HS compared to CTL. No difference in BDNF-ir cell numbers was noted between EXP + BA and CTL in CA3 and PVN. NPY-ir density was reduced in exposed animals in all subregions, but NPY-ir density for EXP-BA was greater than EXP in CA3 (p < 0.001) and PVN (p = 0.04). β-Alanine supplementation attenuated the thermoregulatory and inflammatory responses and maintained neurotrophin and neuropeptide levels during acute HS. Further research is necessary to determine whether β-alanine supplementation can increase survival rate during a heat stress.
Collapse
Affiliation(s)
- Tal Belity
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jay R Hoffman
- Department of Physical Therapy, Ariel University, Ariel, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel
| | - Yoram Epstein
- Heller Institute of Medical Research, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Bruchim
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagit Cohen
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
25
|
Schott BH, Kronenberg G, Schmidt U, Düsedau HP, Ehrentraut S, Geisel O, von Bohlen Und Halbach O, Gass P, Dunay IR, Hellweg R. Robustly High Hippocampal BDNF levels under Acute Stress in Mice Lacking the Full-length p75 Neurotrophin Receptor. PHARMACOPSYCHIATRY 2021; 54:205-213. [PMID: 33592642 DOI: 10.1055/a-1363-1680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) exerts its effects on neural plasticity via 2 distinct receptor types, the tyrosine kinase TrkB and the p75 neurotrophin receptor (p75NTR). The latter can promote inflammation and cell death while TrkB is critically involved in plasticity and memory, particularly in the hippocampus. Acute and chronic stress have been associated with suppression of hippocampal BDNF expression and impaired hippocampal plasticity. We hypothesized that p75NTR might be involved in the hippocampal stress response, in particular in stress-induced BDNF suppression, which might be accompanied by increased neuroinflammation. METHOD We assessed hippocampal BDNF protein concentrations in wild-type mice compared that in mice lacking the long form of the p75NTR (p75NTRExIII-/-) with or without prior exposure to a 1-hour restraint stress challenge. Hippocampal BDNF concentrations were measured using an optimized ELISA. Furthermore, whole-brain mRNA expression of pro-inflammatory interleukin-6 (Il6) was assessed with RT-PCR. RESULTS Deletion of full-length p75NTR was associated with higher hippocampal BDNF protein concentration in the stress condition, suggesting persistently high hippocampal BDNF levels in p75NTR-deficient mice, even under stress. Stress elicited increased whole-brain Il6 mRNA expression irrespective of genotype; however, p75NTRExIII-/- mice showed elevated baseline Il6 expression and thus a lower relative increase. CONCLUSIONS Our results provide evidence for a role of p75NTR signaling in the regulation of hippocampal BDNF levels, particularly under stress. Furthermore, p75NTR signaling modulates baseline but not stress-related Il6 gene expression in mice. Our findings implicate p75NTR signaling as a potential pathomechanism in BDNF-dependent modulation of risk for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Björn H Schott
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany.,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany.,Leibniz Institute for Neurobiology, Department of Behavioral Neurology, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Golo Kronenberg
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany.,University of Leicester and Leicestershire Partnership NHS Trust, Leicester, United Kingdom
| | - Ulrike Schmidt
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Bonn, Bonn, Germany
| | - Henning P Düsedau
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University, Magdeburg, Germany
| | - Stefanie Ehrentraut
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University, Magdeburg, Germany
| | - Olga Geisel
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Peter Gass
- Central Institute for Mental Health, Department of Psychiatry and Psychotherapy, Heidelberg University, Mannheim Faculty, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University, Magdeburg, Germany
| | - Rainer Hellweg
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
26
|
Inserra A, De Gregorio D, Gobbi G. Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms. Pharmacol Rev 2021; 73:202-277. [PMID: 33328244 DOI: 10.1124/pharmrev.120.000056] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence suggests safety and efficacy of psychedelic compounds as potential novel therapeutics in psychiatry. Ketamine has been approved by the Food and Drug Administration in a new class of antidepressants, and 3,4-methylenedioxymethamphetamine (MDMA) is undergoing phase III clinical trials for post-traumatic stress disorder. Psilocybin and lysergic acid diethylamide (LSD) are being investigated in several phase II and phase I clinical trials. Hence, the concept of psychedelics as therapeutics may be incorporated into modern society. Here, we discuss the main known neurobiological therapeutic mechanisms of psychedelics, which are thought to be mediated by the effects of these compounds on the serotonergic (via 5-HT2A and 5-HT1A receptors) and glutamatergic [via N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] systems. We focus on 1) neuroplasticity mediated by the modulation of mammalian target of rapamycin-, brain-derived neurotrophic factor-, and early growth response-related pathways; 2) immunomodulation via effects on the hypothalamic-pituitary-adrenal axis, nuclear factor ĸB, and cytokines such as tumor necrosis factor-α and interleukin 1, 6, and 10 production and release; and 3) modulation of serotonergic, dopaminergic, glutamatergic, GABAergic, and norepinephrinergic receptors, transporters, and turnover systems. We discuss arising concerns and ways to assess potential neurobiological changes, dependence, and immunosuppression. Although larger cohorts are required to corroborate preliminary findings, the results obtained so far are promising and represent a critical opportunity for improvement of pharmacotherapies in psychiatry, an area that has seen limited therapeutic advancement in the last 20 years. Studies are underway that are trying to decouple the psychedelic effects from the therapeutic effects of these compounds. SIGNIFICANCE STATEMENT: Psychedelic compounds are emerging as potential novel therapeutics in psychiatry. However, understanding of molecular mechanisms mediating improvement remains limited. This paper reviews the available evidence concerning the effects of psychedelic compounds on pathways that modulate neuroplasticity, immunity, and neurotransmitter systems. This work aims to be a reference for psychiatrists who may soon be faced with the possibility of prescribing psychedelic compounds as medications, helping them assess which compound(s) and regimen could be most useful for decreasing specific psychiatric symptoms.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Abstract
Twenty-two years after their discovery, the hypocretins (Hcrts), also known as orexins, are two of the most studied peptidergic systems, involved in myriad physiological systems that range from sleep, arousal, motivation, homeostatic regulation, fear, anxiety and learning. A causal relationship between activity of Hcrt and arousal stability was established shortly after their discovery and have led to the development of a new class of drugs to treat insomnia. In this review we discuss the many faces of the Hcrt system and examine recent findings that implicate decreased Hcrt function in the pathogenesis of a number of neuropsychiatric conditions. We also discuss future therapeutic strategies to replace or enhance Hcrt function as a treatment option for these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Erica Seigneur
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
28
|
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition with a wide range of behavioral disturbances and serious consequences for both patient and society. One of the main reasons for unsuccessful therapies is insufficient knowledge about its underlying pathomechanism. In the search for centrally signaling molecules that might be relevant to the development of PTSD we focus here on arginine vasopressin (AVP). So far AVP has not been strongly implicated in PTSD, but different lines of evidence suggest a possible impact of its signaling in all clusters of PTSD symptomatology. More specifically, in laboratory rodents, AVP agonists affect behavior in a PTSD-like manner, while significant reduction of AVP signaling in the brain e.g. in AVP-deficient Brattleboro rats, ameliorated defined behavioral parameters that can be linked to PTSD symptoms. Different animal models of PTSD also show alterations in the AVP signaling in distinct brain areas. However, pharmacological treatment targeting central AVP receptors via systemic routes is hampered by possible side effects that are linked to the peripheral action of AVP as a hormone. Indeed, the V1a receptor, the most common receptor subtype in the brain, is implicated in vasoconstriction. Thus, systemic treatment with V1a receptor antagonists would be implicated in hypotonia. This implies that novel treatment concepts are needed to target AVP receptors not only at brain level but also in distinct brain areas, to offer alternative treatments for PTSD.
Collapse
Affiliation(s)
- Eszter Sipos
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Bibiána Török
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Janos Szentagothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - István Barna
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mario Engelmann
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität, Magdeburg, Germany
- Center for Behavioural Brain Sciences (CBBS), Magdeburg, Germany
| | - Dóra Zelena
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
29
|
Verbitsky A, Dopfel D, Zhang N. Rodent models of post-traumatic stress disorder: behavioral assessment. Transl Psychiatry 2020; 10:132. [PMID: 32376819 PMCID: PMC7203017 DOI: 10.1038/s41398-020-0806-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022] Open
Abstract
Although the etiology and expression of psychiatric disorders are complex, mammals show biologically preserved behavioral and neurobiological responses to valent stimuli which underlie the use of rodent models of post-traumatic stress disorder (PTSD). PTSD is a complex phenotype that is difficult to model in rodents because it is diagnosed by patient interview and influenced by both environmental and genetic factors. However, given that PTSD results from traumatic experiences, rodent models can simulate stress induction and disorder development. By manipulating stress type, intensity, duration, and frequency, preclinical models reflect core PTSD phenotypes, measured through various behavioral assays. Paradigms precipitate the disorder by applying physical, social, and psychological stressors individually or in combination. This review discusses the methods used to trigger and evaluate PTSD-like phenotypes. It highlights studies employing each stress model and evaluates their translational efficacies against DSM-5, validity criteria, and criteria proposed by Yehuda and Antelman's commentary in 1993. This is intended to aid in paradigm selection by informing readers about rodent models, their benefits to the clinical community, challenges associated with the translational models, and opportunities for future work. To inform PTSD model validity and relevance to human psychopathology, we propose that models incorporate behavioral test batteries, individual differences, sex differences, strain and stock differences, early life stress effects, biomarkers, stringent success criteria for drug development, Research Domain Criteria, technological advances, and cross-species comparisons. We conclude that, despite the challenges, animal studies will be pivotal to advances in understanding PTSD and the neurobiology of stress.
Collapse
Affiliation(s)
- Alexander Verbitsky
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Dopfel
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
30
|
He SC, Wu S, Wang C, Wang DM, Wang J, Xu H, Wang L, Zhang XY. Interaction between job stress, serum BDNF level and the BDNF rs2049046 polymorphism in job burnout. J Affect Disord 2020; 266:671-677. [PMID: 32056943 DOI: 10.1016/j.jad.2020.01.181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 01/31/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Some studies have shown that long-term exposure to job stress could result in burnout, and BDNF polymorphism may play an important role in its psychopathological mechanism. However, the inter-relationships between the job-related stress, serum BDNF level, BDNF genotype and job burnout have not been examined. This study was to explore the job stress × BDNF rs2049046 interaction and the role of serum BDNF level in job burnout in a Chinese Han population. METHODS Using a cross-sectional design, 205 healthy subjects were recruited from a public institution in Beijing and assessed for job stress using the House and Rizzo's Work Stress Scale, and job burnout using the Maslach Burnout Inventory (MBI). The BDNF rs2049046 polymorphism was genotyped and serum BDNF (sBDNF) levels were assayed in all of subjects. RESULTS The correlations between the job stress score and two burnout subscale scores (emotional exhaustion and cynicism) were significant (both p < 0.001), but not with professional efficacy. There were no significant main effects of the BDNF rs2049046 genotype on burnout, and no significant correlation was observed between sBDNF levels and job burnout. However, the interaction between the job stress and the BDNF rs2049046 genotype (F = 2.709, df = 2, 183, p = 0.032) or between the job stress and sBDNF levels on burnout was significant (t = -2.132, p = 0.035). To be specific, the individuals with the BDNF rs2049046 AT genotype showed a greater susceptibility to the burnout cynicism compared to AA homozygote only in medium-stress group (F = 4.327, df = 1,117, p = 0.015). The individuals who had lower sBDNF showed higher burnout level than those who had higher sBDNF in low-stress group. CONCLUSIONS Our findings suggest that the BDNF system may interact with job stress to affect burnout, showing that interaction between BDNF rs2049046 and job stress or the interaction between BDNF levels with work stress on certain burnout dimensions.
Collapse
Affiliation(s)
- Shu-Chang He
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, 5 Yiheyuan Road, Haidian district, 100871 Beijing, China.
| | - Shuang Wu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, 5 Yiheyuan Road, Haidian district, 100871 Beijing, China
| | - Chao Wang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, 5 Yiheyuan Road, Haidian district, 100871 Beijing, China
| | - Dong-Mei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Hang Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Li Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
31
|
Cohen H, Zohar J, Carmi L. Effects of agomelatine on behaviour, circadian expression of period 1 and period 2 clock genes and neuroplastic markers in the predator scent stress rat model of PTSD. World J Biol Psychiatry 2020; 21:255-273. [PMID: 30230406 DOI: 10.1080/15622975.2018.1523560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives: The therapeutic value of the antidepressant agomelatine in the aftermath of traumatic experience and early post-reminder has been questioned. Herein, agomelatine, its vehicle or melatonin agonist were administered either acutely 1 h post-stressor or repeatedly (7 days) after early post-reminder in a post-traumatic stress rat model (PSS) using the scent of predator urine.Methods: Behavioural responses, and brain molecular and morphological changes were evaluated after each treatment procedure in PSS-exposed and unexposed rats.Results: When administered immediately after PSS, agomelatine induced a significant reduction of anxiety-like behaviour as assessed in the elevated-plus-maze and acoustic startle response at 8 days post-administration. Concomitantly, agomelatine significantly decreased Per1/Per2 expression in the CA1/CA3 areas, suprachiasmatic nucleus and basolateral amygdala, thereby partially restoring genes expression overregulated by PSS. Agomelatine further significantly increased cell growth and facilitated dendritic growth and arbour in dentate gyrus (DG) granule and apical CA1 cells and upregulated brain-derived neurotrophic factor protein in the DG and cortex III versus vehicle. When administered early post-reminder over 7 days before testing, agomelatine was ineffective on behavioural responses pattern, molecular and morphological changes induced by PSS.Conclusions: These findings suggest that agomelatine may be a potential agent in the acute aftermath of traumatic stress exposure.
Collapse
Affiliation(s)
- Hagit Cohen
- Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Joseph Zohar
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Carmi
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Cohen S, Matar MA, Vainer E, Zohar J, Kaplan Z, Cohen H. Significance of the orexinergic system in modulating stress-related responses in an animal model of post-traumatic stress disorder. Transl Psychiatry 2020; 10:10. [PMID: 32066707 PMCID: PMC7026175 DOI: 10.1038/s41398-020-0698-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/02/2019] [Accepted: 10/20/2019] [Indexed: 01/23/2023] Open
Abstract
Converging evidence indicates that orexins (ORXs), the regulatory neuropeptides, are implicated in anxiety- and depression-related behaviors via the modulation of neuroendocrine, serotonergic, and noradrenergic systems. This study evaluated the role of the orexinergic system in stress-associated physiological responses in a controlled prospective animal model. The pattern and time course of activation of hypothalamic ORX neurons in response to predator-scent stress (PSS) were examined using c-Fos as a marker for neuronal activity. The relationship between the behavioral response pattern 7 days post-exposure and expressions of ORXs was evaluated. We also investigated the effects of intracerebroventricular microinfusion of ORX-A or almorexant (ORX-A/B receptor antagonist) on behavioral responses 7 days following PSS exposure. Hypothalamic levels of ORX-A, neuropeptide Y (NPY), and brain-derived neurotrophic factor (BDNF) were assessed. Compared with rats whose behaviors were extremely disrupted (post-traumatic stress disorder [PTSD]-phenotype), those whose behaviors were minimally selectively disrupted displayed significantly upregulated ORX-A and ORX-B levels in the hypothalamic nuclei. Intracerebroventricular microinfusion of ORX-A before PSS reduced the prevalence of the PTSD phenotype compared with that of artificial cerebrospinal fluid or almorexant, and rats treated with almorexant displayed a higher prevalence of the PTSD phenotype than did untreated rats. Activated ORX neurons led to upregulated expressions of BDNF and NPY, which might provide an additional regulatory mechanism for the modulation of adaptive stress responses. The study indicates that the activated ORX system might promote adaptive responses to PSS probably via stimulation of BDNF and NPY secretion, and early intervention with ORX-A reduces the prevalence of the PTSD phenotype and increases the prevalence of adaptive phenotypes. The findings provide some insights into the mechanisms underlying the involvement of the ORX system in stress-related disorders.
Collapse
Affiliation(s)
- Shlomi Cohen
- Ministry of Health, Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer- Sheva, Israel
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael A Matar
- Ministry of Health, Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer- Sheva, Israel
| | - Ella Vainer
- Ministry of Health, Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer- Sheva, Israel
| | - Joseph Zohar
- Division of Psychiatry, The Chaim Sheba Medical Center, Ramat-Gan, Israel
- Sackler Medical School, Tel-Aviv University, Tel-Aviv, Israel
| | - Zeev Kaplan
- Ministry of Health, Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer- Sheva, Israel
| | - Hagit Cohen
- Ministry of Health, Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer- Sheva, Israel.
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
33
|
Abstract
Individuals with post-traumatic stress disorder avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal axis response at the time of trauma. Our laboratory uses predator odor (i.e. bobcat urine) stress to divide adult Wistar rats into groups that exhibit high (avoiders) or low (nonavoiders) avoidance of a predator odor-paired context, modeling the fact that not all humans exposed to traumatic events develop psychiatric conditions. Male avoiders exhibit lower body weight gain after stress, as well as extinction-resistant avoidance that persists after a second stress exposure. These animals also show attenuated hypothalamic-pituitary-adrenal axis response to predator odor that predicts subsequent avoidance of the odor-paired context. Avoiders exhibit unique brain activation profiles relative to nonavoiders and controls (as measured by Fos immunoreactivity), and higher corticotropin-releasing factor levels in multiple brain regions. Furthermore, avoider rats exhibit escalated and compulsive-like alcohol self-administration after traumatic stress. Here, we review the predator odor avoidance model of post-traumatic stress disorder and its utility for tracking behavior and measuring biological outcomes predicted by avoidance. The major strengths of this model are (i) etiological validity with exposure to a single intense stressor, (ii) established approach distinguishing individual differences in stress reactivity, and (iii) robust behavioral and biological phenotypes during and after trauma.
Collapse
|
34
|
Uniyal A, Singh R, Akhtar A, Bansal Y, Kuhad A, Sah SP. Co-treatment of piracetam with risperidone rescued extinction deficits in experimental paradigms of post-traumatic stress disorder by restoring the physiological alterations in cortex and hippocampus. Pharmacol Biochem Behav 2019; 185:172763. [DOI: 10.1016/j.pbb.2019.172763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
|
35
|
Regular Music Exposure in Juvenile Rats Facilitates Conditioned Fear Extinction and Reduces Anxiety after Foot Shock in Adulthood. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8740674. [PMID: 31380440 PMCID: PMC6662454 DOI: 10.1155/2019/8740674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022]
Abstract
Music exposure is known to play a positive role in learning and memory and can be a complementary treatment for anxiety and fear. However, whether juvenile music exposure affects adult behavior is not known. Two-week-old Sprague-Dawley rats were exposed to music for 2 hours daily or to background noise (controls) for a period of 3 weeks. At 60 days of age, rats were subjected to auditory fear conditioning, fear extinction training, and anxiety-like behavior assessments or to anterior cingulate cortex (ACC) brain-derived neurotrophic factor (BDNF) assays. We found that the music-exposed rats showed significantly less freezing behaviors during fear extinction training and spent more time in the open arm of the elevated plus maze after fear conditioning when compared with the control rats. Moreover, the BDNF levels in the ACC in the music group were significantly higher than those of the controls with the fear conditioning session. This result suggests that music exposure in juvenile rats decreases anxiety-like behaviors, facilitates fear extinction, and increases BDNF levels in the ACC in adulthood after a stressful event.
Collapse
|
36
|
Bhattacharya S, Fontaine A, MacCallum PE, Drover J, Blundell J. Stress Across Generations: DNA Methylation as a Potential Mechanism Underlying Intergenerational Effects of Stress in Both Post-traumatic Stress Disorder and Pre-clinical Predator Stress Rodent Models. Front Behav Neurosci 2019; 13:113. [PMID: 31191267 PMCID: PMC6547031 DOI: 10.3389/fnbeh.2019.00113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Although most humans will experience some type of traumatic event in their lifetime only a small set of individuals will go on to develop post-traumatic stress disorder (PTSD). Differences in sex, age, trauma type, and comorbidity, along with many other elements, contribute to the heterogenous manifestation of this disorder. Nonetheless, aberrant hypothalamus-pituitary-adrenal (HPA) axis activity, especially in terms of cortisol and glucocorticoid receptor (GR) alterations, has been postulated as a tenable factor in the etiology and pathophysiology of PTSD. Moreover, emerging data suggests that the harmful effects of traumatic stress to the HPA axis in PTSD can also propagate into future generations, making offspring more prone to psychopathologies. Predator stress models provide an ethical and ethologically relevant way to investigate tentative mechanisms that are thought to underlie this phenomenon. In this review article, we discuss findings from human and laboratory predator stress studies that suggest changes to DNA methylation germane to GRs may underlie the generational effects of trauma transmission. Understanding mechanisms that promote stress-induced psychopathology will represent a major advance in the field and may lead to novel treatments for such devastating, and often treatment-resistant trauma and stress-disorders.
Collapse
Affiliation(s)
- Sriya Bhattacharya
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Audrey Fontaine
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada.,Institut des Systèmes Intelligents et de Robotique (ISIR), Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - James Drover
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
37
|
Abstract
The goals of animal research in post-traumatic stress disorder (PTSD) include better understanding the neurophysiological etiology of PTSD, identifying potential targets for novel pharmacotherapies, and screening drugs for their potential use as PTSD treatment in humans. Diagnosis of PTSD relies on a patient interview and, as evidenced by changes to the diagnostic criteria in the DSM-5, an adequate description of this disorder in humans is a moving target. Therefore, it may seem insurmountable to model the construct of PTSD in animals such as rodents. Fortunately, the neural circuitry involved in fear and anxiety, thought to be essential to the etiology of PTSD in humans, is highly conserved throughout evolution. Furthermore, many symptoms can be modeled using behavioral tests that have face, construct, and predictive validity. Because PTSD is precipitated by a definite traumatic experience, animal models can simulate the induction of PTSD, and test causal factors with longitudinal designs. Accordingly, several animal models of physical and psychological trauma have been established. This review discusses the widely used animal models of PTSD in rodents, and overviews their strengths and weaknesses in terms of face, construct, and predictive validity.
Collapse
Affiliation(s)
- Elizabeth I Flandreau
- Grand Valley State University, 1 Campus Drive, Allendale, MI, 49401, USA.
- Department of Behavioral Neurobiology, Hungarian Academy of Sciences, Institute of Experimental Medicine, 43 Szigony Street, Budapest, 1083, Hungary.
| | - Mate Toth
- Grand Valley State University, 1 Campus Drive, Allendale, MI, 49401, USA
- Department of Behavioral Neurobiology, Hungarian Academy of Sciences, Institute of Experimental Medicine, 43 Szigony Street, Budapest, 1083, Hungary
| |
Collapse
|
38
|
Daou M, Sassi JM, Miller MW, Gonzalez AM. Effects of a Multi-Ingredient Energy Supplement on Cognitive Performance and Cerebral-Cortical Activation. J Diet Suppl 2019. [DOI: 10.1080/19390211.2018.1440686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Marcos Daou
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | | | | | - Adam M. Gonzalez
- Department of Health Professions, Hofstra University, Hempstead, NY, USA
| |
Collapse
|
39
|
Richter-Levin G, Stork O, Schmidt MV. Animal models of PTSD: a challenge to be met. Mol Psychiatry 2019; 24:1135-1156. [PMID: 30816289 PMCID: PMC6756084 DOI: 10.1038/s41380-018-0272-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
Recent years have seen increased interest in psychopathologies related to trauma exposure. Specifically, there has been a growing awareness to posttraumatic stress disorder (PTSD) in part due to terrorism, climate change-associated natural disasters, the global refugee crisis, and increased violence in overpopulated urban areas. However, notwithstanding the increased awareness to the disorder, the increasing number of patients, and the devastating impact on the lives of patients and their families, the efficacy of available treatments remains limited and highly unsatisfactory. A major scientific effort is therefore devoted to unravel the neural mechanisms underlying PTSD with the aim of paving the way to developing novel or improved treatment approaches and drugs to treat PTSD. One of the major scientific tools used to gain insight into understanding physiological and neuronal mechanisms underlying diseases and for treatment development is the use of animal models of human diseases. While much progress has been made using these models in understanding mechanisms of conditioned fear and fear memory, the gained knowledge has not yet led to better treatment options for PTSD patients. This poor translational outcome has already led some scientists and pharmaceutical companies, who do not in general hold opinions against animal models, to propose that those models should be abandoned. Here, we critically examine aspects of animal models of PTSD that may have contributed to the relative lack of translatability, including the focus on the exposure to trauma, overlooking individual and sex differences, and the contribution of risk factors. Based on findings from recent years, we propose research-based modifications that we believe are required in order to overcome some of the shortcomings of previous practice. These modifications include the usage of animal models of PTSD which incorporate risk factors and of the behavioral profiling analysis of individuals in a sample. These modifications are aimed to address factors such as individual predisposition and resilience, thus taking into consideration the fact that only a fraction of individuals exposed to trauma develop PTSD. We suggest that with an appropriate shift of practice, animal models are not only a valuable tool to enhance our understanding of fear and memory processes, but could serve as effective platforms for understanding PTSD, for PTSD drug development and drug testing.
Collapse
Affiliation(s)
- Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel. .,The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel. .,Psychology Department, University of Haifa, Haifa, Israel.
| | - Oliver Stork
- 0000 0001 1018 4307grid.5807.aDepartment of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany ,grid.452320.2Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Mathias V. Schmidt
- 0000 0000 9497 5095grid.419548.5Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
40
|
Gepner Y, Hoffman JR, Hoffman MW, Zelicha H, Cohen H, Ostfeld I. Association between circulating inflammatory markers and marksmanship following intense military training. J ROY ARMY MED CORPS 2018; 165:391-394. [DOI: 10.1136/jramc-2018-001084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 01/05/2023]
Abstract
IntroductionIntense military operations during deployment or training are associated with elevations in inflammatory cytokine markers. However, the influence of an inflammatory response on military-specific skills is unclear. This study examined the association between brain-derived neurotrophic factor (BDNF), glial fibrillar acidic protein, markers of inflammation, marksmanship and cognitive function following a week of intense military field training.MethodsTwenty male soldiers (20.1±0.6 years; 1.78±0.05m; 74.1±7.9kg) from the same elite combat unit of the Israel Defense Forces volunteered to participate in this study. Soldiers completed a five-day period of intense field training including navigation of 27.8km/day with load carriages of ~50% of their body mass. Soldiers slept approximately fivehours per day and were provided with military field rations. Following the final navigational exercise, soldiers returned to their base and provided a blood sample. In addition, cognitive function assessment and both dynamic and static shooting (15 shots each) were performed following a 200 m gauntlet, in which soldiers had to use hand-to-hand combat skills to reach the shooting range.ResultsResults revealed that tumour necrosis factor-α (TNF-α) concentrations were inversely correlated with dynamic shooting (r=−0.646, p=0.005). In addition, a trend (r=0.415, p=0.098) was noted between TNF-α concentrations and target engagement speed (ie, time to complete the shooting protocol). BDNF concentrations were significantly correlated with the Serial Sevens Test performance (r=0.672, p=0.012).ConclusionThe results of this investigation indicate that elevated TNF-α concentrations and lower BDNF concentrations in soldiers following intense military training were associated with decreases in marksmanship and cognitive function, respectively.
Collapse
|
41
|
Burstein O, Shoshan N, Doron R, Akirav I. Cannabinoids prevent depressive-like symptoms and alterations in BDNF expression in a rat model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:129-139. [PMID: 29458190 DOI: 10.1016/j.pnpbp.2018.01.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 11/29/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating condition highly comorbid with depression. The endocannabinoid (eCB) system and brain-derived neurotrophic factor (BDNF) are suggestively involved in both disorders. We examined whether cannabinoids can prevent the long-term depressive-like symptoms induced by exposure to the shock and situational reminders (SRs) model of PTSD. The CB1/2 receptor agonist WIN55,212-2 (0.5 mg/kg; i.p.), the fatty acid hydrolase (FAAH) inhibitor URB597 (0.3 mg/kg, i.p.) or vehicle were administered 2 h after severe shock. Cannabinoids prevented the shock/SRs-induced alterations in social recognition memory, locomotion, passive coping, anxiety-like behavior, anhedonia, fear retrieval, fear extinction and startle response as well as the decrease in BDNF levels in the hippocampus and prefrontal cortex (PFC). Furthermore, significant correlations were found between depressive-like behaviors and BDNF levels in the brain. The findings suggest that cannabinoids may prevent both depressive- and PTSD-like symptoms following exposure to severe stress and that alterations in BDNF levels in the brains' fear circuit are involved in these effects.
Collapse
Affiliation(s)
- Or Burstein
- School of Behavioral Science, The Academic College Tel-Aviv-Yaffo, Tel-Aviv, Israel
| | - Noa Shoshan
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | - Ravid Doron
- School of Behavioral Science, The Academic College Tel-Aviv-Yaffo, Tel-Aviv, Israel
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
42
|
Kim GS, Smith AK, Nievergelt CM, Uddin M. Neuroepigenetics of Post-Traumatic Stress Disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:227-253. [PMID: 30072055 PMCID: PMC6474244 DOI: 10.1016/bs.pmbts.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While diagnosis of PTSD is based on behavioral symptom clusters that are most directly associated with brain function, epigenetic studies of PTSD in humans to date have been limited to peripheral tissues. Animal models of PTSD have been key for understanding the epigenetic alterations in the brain most directly relevant to endophenotypes of PTSD, in particular those pertaining to fear memory and stress response. This chapter provides an overview of neuroepigenetic studies based on animal models of PTSD, with an emphasis on the effect of stress on fear memory. Where relevant, we also describe human-based studies with relevance to neuroepigenetic insights gleaned from animal work and suggest promising directions for future studies of PTSD neuroepigenetics in living humans that combine peripheral epigenetic measures with measures of central nervous system activity, structure and function.
Collapse
Affiliation(s)
- Grace S Kim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Medical Scholars Program, University of Illinois College of Medicine, Urbana, IL, United States
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Monica Uddin
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
43
|
Cohen H, Zohar J, Kaplan Z, Arnt J. Adjunctive treatment with brexpiprazole and escitalopram reduces behavioral stress responses and increase hypothalamic NPY immunoreactivity in a rat model of PTSD-like symptoms. Eur Neuropsychopharmacol 2018; 28:63-74. [PMID: 29224968 DOI: 10.1016/j.euroneuro.2017.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 10/19/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
The study explored effects of brexpiprazole (partial D2/5-HT1A agonist, 5-HT2A and α1B/2C-adrenoceptor antagonist) in rats exposed to predator scent stress (PSS), a proposed model of PTSD-like phenotype. Brexpiprazole (3.0mg/kg, PO), escitalopram (5.0mg/kg, IP) and their combination were administered twice daily for 14 days, starting 14 days after exposure to PSS or sham-PSS, shortly after a situational stress reminder. One day after last treatment behavioral responsivity was assessed. Brexpiprazole+escitalopram-treated rats spent more time in open arms, entered open arms more often and exhibited a lower anxiety index in the elevated plus maze than vehicle-treated, PSS-exposed rats. Adjunct brexpiprazole+escitalopram treatment reduced startle amplitude, compared with vehicle-treated, PSS-exposed rats. Treatment with either drug alone did not attenuate anxiety-like behaviors following PSS exposure. Use of cut-off behavioral criteria confirmed that adjunct treatment shifted prevalence of PSS-exposed rats from extreme towards minimal behavioral responders. One day following behavioral tests, brains were prepared for immunohistochemical analysis of number of BDNF-positive cells and of NPY-positive cells/fibers. PSS exposure decreased BDNF levels in hippocampus, but this was not affected by drug treatments. PSS exposure decreased number of NPY positive cells/fibers in paraventricular and arcuate nuclei of hypothalamus. Adjunct treatment with brexpiprazole+escitalopram increased NPY in PSS- and sham-exposed rats. Treatment with brexpiprazole alone had no effects, while treatment with escitalopram alone increased NPY in the arcuate nucleus of PSS-exposed rats. In conclusion, treatment with brexpiprazole+escitalopram may be an effective intervention for the attenuation of PTSD-like stress responses, which in part may be mediated by activating NPY function.
Collapse
Affiliation(s)
- Hagit Cohen
- Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Zohar
- The Chaim Sheba Medical Center, Sackler Medical School, Tel-Aviv University, Tel Hashomer, Israel
| | - Zeev Kaplan
- Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jørn Arnt
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark; Sunred Pharma Consulting ApS, Svend Gonges Vej 11A, DK-2680 Solrod Strand, Denmark.
| |
Collapse
|
44
|
Saur L, Neves LT, Greggio S, Venturin GT, Jeckel CMM, Costa Da Costa J, Bertoldi K, Schallenberger B, Siqueira IR, Mestriner RG, Xavier LL. Ketamine promotes increased freezing behavior in rats with experimental PTSD without changing brain glucose metabolism or BDNF. Neurosci Lett 2017; 658:6-11. [PMID: 28823895 DOI: 10.1016/j.neulet.2017.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022]
Abstract
Acute treatment with ketamine, an NMDA receptor antagonist, has been reported to be efficacious in treating depression. The goal of our study was to evaluate ketamine treatment in an animal model of another important psychiatric disease, post-traumatic stress disorder (PTSD). Fifty-eight male rats were initially divided into four groups: Control+Saline (CTRL+SAL), Control+Ketamine (CTRL+KET), PTSD+Saline (PTSD+SAL) and PTSD+Ketamine (PTSD+KET). To mimic PTSD we employed the inescapable footshock protocol. The PTSD animals were classified according to freezing behavior duration into "extreme behavioral response" (EBR) or "minimal behavioral response" (MBR). Afterwards, the glucose metabolism and BDNF were evaluated in the hippocampus, frontal cortex, and amygdala. Our results show that animals classified as EBR exhibited increased freezing behavior and that ketamine treatment further increased freezing duration. Glucose metabolism and BDNF levels showed no significant differences. These results suggest ketamine might aggravate PTSD symptoms and that this effect is unrelated to alterations in glucose metabolism or BDNF protein levels.
Collapse
Affiliation(s)
- Lisiani Saur
- Laboratório de Biologia Celular e Tecidual, FaBio, PUCRS, Porto Alegre, RS, Brazil.
| | - Laura Tartari Neves
- Laboratório de Biologia Celular e Tecidual, FaBio, PUCRS, Porto Alegre, RS, Brazil
| | - Samuel Greggio
- Instituto do Cérebro do Rio Grande do Sul- PUCRS, Porto Alegre, RS, Brazil
| | | | | | | | - Karine Bertoldi
- Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | - Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, FaBio, PUCRS, Porto Alegre, RS, Brazil
| |
Collapse
|
45
|
Inflammation and vascular remodeling in the ventral hippocampus contributes to vulnerability to stress. Transl Psychiatry 2017; 7:e1160. [PMID: 28654094 PMCID: PMC5537643 DOI: 10.1038/tp.2017.122] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/13/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022] Open
Abstract
During exposure to chronic stress, some individuals engage in active coping behaviors that promote resiliency to stress. Other individuals engage in passive coping that is associated with vulnerability to stress and with anxiety and depression. In an effort to identify novel molecular mechanisms that underlie vulnerability or resilience to stress, we used nonbiased analyses of microRNAs in the ventral hippocampus (vHPC) to identify those miRNAs differentially expressed in active (long-latency (LL)/resilient) or passive (short-latency (SL)/vulnerable) rats following chronic social defeat. In the vHPC of active coping rats, miR-455-3p level was increased, while miR-30e-3p level was increased in the vHPC of passive coping rats. Pathway analyses identified inflammatory and vascular remodeling pathways as enriched by genes targeted by these microRNAs. Utilizing several independent markers for blood vessels, inflammatory processes and neural activity in the vHPC, we found that SL/vulnerable rats exhibit increased neural activity, vascular remodeling and inflammatory processes that include both increased blood-brain barrier permeability and increased number of microglia in the vHPC relative to control and resilient rats. To test the relevance of these changes for the development of the vulnerable phenotype, we used pharmacological approaches to determine the contribution of inflammatory processes in mediating vulnerability and resiliency. Administration of the pro-inflammatory cytokine vascular endothelial growth factor-164 increased vulnerability to stress, while the non-steroidal anti-inflammatory drug meloxicam attenuated vulnerability. Collectively, these results show that vulnerability to stress is determined by a re-designed neurovascular unit characterized by increased neural activity, vascular remodeling and pro-inflammatory mechanisms in the vHPC. These results suggest that dampening inflammatory processes by administering anti-inflammatory agents reduces vulnerability to stress. These results have translational relevance as they suggest that administration of anti-inflammatory agents may reduce the impact of stress or trauma in vulnerable individuals.
Collapse
|
46
|
Kooshki R, Abbasnejad M, Esmaeili-Mahani S, Raoof M. The Modulatory Role of Orexin 1 Receptor in CA1 on Orofacial Pain-induced Learning and Memory Deficits in Rats. Basic Clin Neurosci 2017; 8:213-222. [PMID: 28781729 PMCID: PMC5535327 DOI: 10.18869/nirp.bcn.8.3.213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction: Cognitive impairment is commonly associated with pain. The modulatory role of orexin 1 receptor (OX1R) in pain pathways as well as learning and memory processes is reported in several studies. The current study was designed to investigate the possible role of CA1-hippocampal OX1R on spatial learning and memory of rats following capsaicin-induced orofacial pain. Methods: Orofacial pain was induced by subcutaneous intra lip injection of capsaicin (100 μg). CA1 administration of orexin A and its selective antagonist (SB-334867-A) were performed 20 minutes prior to capsaicin injection. Learning and spatial memory performances were assessed by Morris Water Maze (MWM) task. Results: Capsaicin treated rats showed impairment in spatial learning and memory. In addition, pretreatment with orexin A (20 and 40 nM/rat) significantly attenuated learning and memory impairment in capsaicin-treated rats. Conversely, blockage of OX1R via SB-334867-A (40 and 80 nM/rat) significantly exaggerated learning and memory loss in capsaicin-treated rats. Conclusion: The obtained results indicated that CA1 OX1R may be involved in modulation of capsaicin –induced spatial learning and memory impairment.
Collapse
Affiliation(s)
- Razieh Kooshki
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Raoof
- Laboratory of Molecular Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Endodontics, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
47
|
Cooke RF, Mehrkam LR, Marques RS, Lippolis KD, Bohnert DW. Effects of a simulated wolf encounter on brain and blood biomarkers of stress-related psychological disorders in beef cows with or without previous exposure to wolves. J Anim Sci 2017; 95:1154-1163. [PMID: 28380532 DOI: 10.2527/jas.2016.1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This experiment compared mRNA expression of brain-blood biomarkers associated with stress-related psychological disorders, including post-traumatic stress disorder (PTSD), in beef cows from wolf-naïve and wolf-experienced origins that were subjected to a simulated wolf encounter. Multiparous, non-pregnant, non-lactating Angus-crossbred cows from the Eastern Oregon Agricultural Research Center (Burns, OR; CON; = 10) and from a commercial operation near Council, ID (WLF; = 10) were used. To date, gray wolves are not present around Burns, OR, and thus CON were naïve to wolves. Conversely, wolves are present around Council, ID, and WLF cows were selected from a herd that had experienced multiple wolf-predation episodes from 2008 to 2015. After a 60-d commingling and adaptation period, CON and WLF cows were allocated to groups A or B (d -1; 5 CON and 5 WLF cows in each group). On d 0, cows from group A were sampled for blood and immediately slaughtered, and samples were analyzed to evaluate inherent differences between CON and WLF cows. On d 1, cows from group B were exposed in pairs (1 CON and 1 WLF cow) to experimental procedures. Cows were sampled for blood, moved to 2 adjacent drylot pens (1 WLF and 1 CON cow/pen) and subjected to a simulated wolf encounter event for 20 min. The encounter consisted of (1) cotton plugs saturated with wolf urine attached to the drylot fence, (2) reproduction of wolf howls, and (3) three leashed dogs that were walked along the fence perimeter. Thereafter, another blood sample was collected and cows were slaughtered. Upon slaughter, the brain was removed and dissected for collection of the hypothalamus, and one longitudinal slice of the medial pre-frontal cortex, amygdala, and Cornu Ammonis (1 region of the hippocampus from both hemispheres). Within cows from group A, expression of in hippocampus and amygdala were greater ( < 0.01) in WLF vs. CON cows. Within cows from group B, expression of hippocampal mRNA and expression of c mRNA in hippocampus and amygdala were less ( ≤ 0.04) in WLF vs. CON cows. These are key biological markers known to be downregulated during stress-related psychological disorders elicited by fear, particularly PTSD. Hence, cows originated from a wolf-experienced herd presented biological evidence suggesting a psychological disorder, such as PTSD, after the simulated wolf encounter when compared with cows originated from a wolf-naïve herd.
Collapse
|
48
|
Effects of moderate treadmill exercise and fluoxetine on behavioural and cognitive deficits, hypothalamic-pituitary-adrenal axis dysfunction and alternations in hippocampal BDNF and mRNA expression of apoptosis – related proteins in a rat model of post-traumatic stress disorder. Neurobiol Learn Mem 2017; 139:165-178. [DOI: 10.1016/j.nlm.2017.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 12/14/2016] [Accepted: 01/21/2017] [Indexed: 12/15/2022]
|
49
|
He SC, Zhang YY, Zhan JY, Wang C, Du XD, Yin GZ, Cao B, Ning YP, Soares JC, Zhang XY. Burnout and cognitive impairment: Associated with serum BDNF in a Chinese Han population. Psychoneuroendocrinology 2017; 77:236-243. [PMID: 28119229 DOI: 10.1016/j.psyneuen.2017.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Some studies have demonstrated that subjects with chronic burnout showed cognitive impairments; however, cognitive performance in burnout has been under-investigated. Increasing evidence show that brain-derived neurotrophic factor (BDNF) plays a critical role in cognitive function. We hypothesized that decreased BDNF may be associated with cognitive impairments in burnout, which has not been investigated yet. The aim of the present study was to examine the association of BDNF with cognitive impairment in burnout. METHOD Using a cross-sectional design, 712 healthy subjects were recruited from a general hospital and they were all measured with the Maslach Burnout Inventory (MBI). We assessed part of subjects on the repeatable battery for the assessment of neuropsychological status (RBANS) (n=192) and serum BDNF levels (n=127). RESULTS 30.5% of the subjects had burnout. Compared to those non-burnout subjects, the burnout subjects were younger, had significant lower BDNF levels (p=0.003) and scored lower on immediate memory, RBANS total score and attention (all p<0.05). Interestingly, after the Bonferroni correction, there were negative correlations between BDNF and MBI total score or reduced professional accomplishment (PA). Moreover, BDNF was positively associated with immediate memory, attention and RBANS total score. Further multiple regression analysis showed that BDNF was an independent contributor to the RBANS total score and attention, and BDNF and MBI depersonalization (DP) were independent contributors to immediate memory. In addition, there was mediating effect of BDNF in the relation between burnout and cognitive impairments. CONCLUSIONS Our results suggest that burnout is associated with significant cognitive impairments and decreased BDNF. Moreover, decreased BDNF is associated with cognitive impairments in burnout.
Collapse
Affiliation(s)
- S C He
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.
| | - Y Y Zhang
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - J Y Zhan
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - C Wang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - X D Du
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - G Z Yin
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - B Cao
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Y P Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - J C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - X Y Zhang
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Psychiatry Research Center, Beijing HuiLongGuan hospital, Peking University, Beijing, China.
| |
Collapse
|
50
|
Behavioral and inflammatory response in animals exposed to a low-pressure blast wave and supplemented with β-alanine. Amino Acids 2017; 49:871-886. [PMID: 28161798 PMCID: PMC5383715 DOI: 10.1007/s00726-017-2383-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/18/2017] [Indexed: 12/30/2022]
Abstract
This study investigated the benefit of β-alanine (BA) supplementation on behavioral and cognitive responses relating to mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) in rats exposed to a low-pressure blast wave. Animals were fed a normal diet with or without (PL) BA supplementation (100 mg kg−1) for 30-day, prior to being exposed to a low-pressure blast wave. A third group of animals served as a control (CTL). These animals were fed a normal diet, but were not exposed to the blast. Validated cognitive-behavioral paradigms were used to assess both mTBI and PTSD-like behavior on days 7–14 following the blast. Brain-derived neurotrophic factor (BDNF), neuropeptide Y, glial fibrillary acidic protein (GFAP) and tau protein expressions were analyzed a day later. In addition, brain carnosine and histidine content was assessed as well. The prevalence of animals exhibiting mTBI-like behavior was significantly lower (p = 0.044) in BA than PL (26.5 and 46%, respectively), but no difference (p = 0.930) was noted in PTSD-like behavior between the groups (10.2 and 12.0%, respectively). Carnosine content in the cerebral cortex was higher (p = 0.048) for BA compared to PL, while a trend towards a difference was seen in the hippocampus (p = 0.058) and amygdala (p = 0.061). BDNF expression in the CA1 subregion of PL was lower than BA (p = 0.009) and CTL (p < 0.001), while GFAP expression in CA1 (p = 0.003) and CA3 (p = 0.040) subregions were higher in PL than other groups. Results indicated that BA supplementation for 30-day increased resiliency to mTBI in animals exposed to a low-pressure blast wave.
Collapse
|