1
|
Dudzik P, Lustyk K, Pytka K. Beyond dopamine: Novel strategies for schizophrenia treatment. Med Res Rev 2024; 44:2307-2330. [PMID: 38653551 DOI: 10.1002/med.22042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Despite extensive research efforts aimed at discovering novel antipsychotic compounds, a satisfactory pharmacological strategy for schizophrenia treatment remains elusive. All the currently available drugs act by modulating dopaminergic neurotransmission, leading to insufficient management of the negative and cognitive symptoms of the disorder. Due to these challenges, several attempts have been made to design agents with innovative, non-dopaminergic mechanisms of action. Consequently, a number of promising compounds are currently progressing through phases 2 and 3 of clinical trials. This review aims to examine the rationale behind the most promising of these strategies while simultaneously providing a comprehensive survey of study results. We describe the versatility behind the cholinergic neurotransmission modulation through the activation of M1 and M4 receptors, exemplified by the prospective drug candidate KarXT. Our discussion extends to the innovative approach of activating TAAR1 receptors via ulotaront, along with the promising outcomes of iclepertin, a GlyT-1 inhibitor with the potential to become the first treatment option for cognitive impairment associated with schizophrenia. Finally, we evaluate the 5-HT2A antagonist paradigm, assessing two recently developed serotonergic agents, pimavanserin and roluperidone. We present the latest advancements in developing novel solutions to the complex challenges posed by schizophrenia, offering an additional perspective on the diverse investigated drug candidates.
Collapse
Affiliation(s)
- Paulina Dudzik
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
2
|
Salinsky LM, Merritt CR, Zamora JC, Giacomini JL, Anastasio NC, Cunningham KA. μ-opioid receptor agonists and psychedelics: pharmacological opportunities and challenges. Front Pharmacol 2023; 14:1239159. [PMID: 37886127 PMCID: PMC10598667 DOI: 10.3389/fphar.2023.1239159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Opioid misuse and opioid-involved overdose deaths are a massive public health problem involving the intertwined misuse of prescription opioids for pain management with the emergence of extremely potent fentanyl derivatives, sold as standalone products or adulterants in counterfeit prescription opioids or heroin. The incidence of repeated opioid overdose events indicates a problematic use pattern consistent with the development of the medical condition of opioid use disorder (OUD). Prescription and illicit opioids reduce pain perception by activating µ-opioid receptors (MOR) localized to the central nervous system (CNS). Dysregulation of meso-corticolimbic circuitry that subserves reward and adaptive behaviors is fundamentally involved in the progressive behavioral changes that promote and are consequent to OUD. Although opioid-induced analgesia and the rewarding effects of abused opioids are primarily mediated through MOR activation, serotonin (5-HT) is an important contributor to the pharmacology of opioid abused drugs (including heroin and prescription opioids) and OUD. There is a recent resurgence of interest into psychedelic compounds that act primarily through the 5-HT2A receptor (5-HT 2A R) as a new frontier in combatting such diseases (e.g., depression, anxiety, and substance use disorders). Emerging data suggest that the MOR and 5-HT2AR crosstalk at the cellular level and within key nodes of OUD circuitry, highlighting a major opportunity for novel pharmacological intervention for OUD. There is an important gap in the preclinical profiling of psychedelic 5-HT2AR agonists in OUD models. Further, as these molecules carry risks, additional analyses of the profiles of non-hallucinogenic 5-HT2AR agonists and/or 5-HT2AR positive allosteric modulators may provide a new pathway for 5-HT2AR therapeutics. In this review, we discuss the opportunities and challenges associated with utilizing 5-HT2AR agonists as therapeutics for OUD.
Collapse
Affiliation(s)
| | | | | | | | - Noelle C. Anastasio
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Kathryn A. Cunningham
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
3
|
Riga MS, Paz V, Didriksen M, Celada P, Artigas F. Lu AF35700 reverses the phencyclidine-induced disruption of thalamo-cortical activity by blocking dopamine D 1 and D 2 receptors. Eur J Pharmacol 2023:175802. [PMID: 37295763 DOI: 10.1016/j.ejphar.2023.175802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Antipsychotic drugs of different chemical/pharmacological families show preferential dopamine (DA) D2 receptor (D2-R) vs. D1 receptor (D1-R) affinity, with the exception of clozapine, the gold standard of schizophrenia treatment, which shows a comparable affinity for both DA receptors. Here, we examined the ability of Lu AF35700 (preferential D1-R>D2-R antagonist), to reverse the alterations in thalamo-cortical activity induced by phencyclidine (PCP), used as a pharmacological model of schizophrenia. Lu AF35700 reversed the PCP-induced alteration of neuronal discharge and low frequency oscillation (LFO, 0.15-4 Hz) in thalamo-cortical networks. Likewise, Lu AF35700 prevented the increased c-fos mRNA expression induced by PCP in thalamo-cortical regions of awake rats. We next examined the contribution of D1-R and D2-R to the antipsychotic reversal of PCP effects. The D2-R antagonist haloperidol reversed PCP effects on thalamic discharge rate and LFO. Remarkably, the combination of sub-effective doses of haloperidol and SCH-23390 (DA D1-R antagonist) fully reversed the PCP-induced fall in thalamo-cortical LFO. However, unlike with haloperidol, SCH-23390 elicited different degrees of potentiation of the effects of low clozapine and Lu AF35700 doses. Overall, the present data support a synergistic interaction between both DA receptors to reverse the PCP-induced alterations of oscillatory activity in thalamo-cortical networks, possibly due to their simultaneous blockade in direct and indirect pathways of basal ganglia. The mild potentiation induced by SCH-23390 in the case of clozapine and Lu AF35700 suggests that, at effective doses, these agents reverse PCP effects through the simultaneous blockade of both DA receptors.
Collapse
Affiliation(s)
- Maurizio S Riga
- Department of Neuroscience and Experimental Therapeutics, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Veronica Paz
- Department of Neuroscience and Experimental Therapeutics, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Didriksen
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Valby, Denmark
| | - Pau Celada
- Department of Neuroscience and Experimental Therapeutics, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Artigas
- Department of Neuroscience and Experimental Therapeutics, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Babiczky Á, Matyas F. Molecular characteristics and laminar distribution of prefrontal neurons projecting to the mesolimbic system. eLife 2022; 11:78813. [PMID: 36063145 PMCID: PMC9444245 DOI: 10.7554/elife.78813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Prefrontal cortical influence over the mesolimbic system - including the nucleus accumbens (NAc) and the ventral tegmental area (VTA) - is implicated in various cognitive processes and behavioral malfunctions. The functional versatility of this system could be explained by an underlying anatomical complexity; however, the detailed characterization of the medial prefrontal cortical (mPFC) innervation of the NAc and VTA is still lacking. Therefore, combining classical retrograde and conditional viral tracing techniques with multiple fluorescent immunohistochemistry, we sought to deliver a precise, cell- and layer-specific anatomical description of the cortico-mesolimbic pathways in mice. We demonstrated that NAc- (mPFCNAc) and VTA-projecting mPFC (mPFCVTA) populations show different laminar distribution (layers 2/3-5a and 5b-6, respectively) and express different molecular markers. Specifically, calbindin and Ntsr1 are specific to mPFCNAc neurons, while mPFCVTA neurons express high levels of Ctip2 and FoxP2, indicating that these populations are mostly separated at the cellular level. We directly tested this with double retrograde tracing and Canine adenovirus type 2-mediated viral labeling and found that there is indeed minimal overlap between the two populations. Furthermore, whole-brain analysis revealed that the projection pattern of these populations is also different throughout the brain. Taken together, we demonstrated that the NAc and the VTA are innervated by two, mostly nonoverlapping mPFC populations with different laminar distribution and molecular profile. These results can contribute to the advancement in our understanding of mesocorticolimbic functions and its disorders in future studies.
Collapse
Affiliation(s)
- Ákos Babiczky
- Research Centre for Natural Sciences, Budapest, Hungary.,Institute of Experimental Medicine, Budapest, Hungary.,Doctoral School of Psychology/Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ferenc Matyas
- Research Centre for Natural Sciences, Budapest, Hungary.,Institute of Experimental Medicine, Budapest, Hungary.,Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
5
|
Souza R, Bueno D, Lima LB, Muchon MJ, Gonçalves L, Donato J, Shammah-Lagnado SJ, Metzger M. Top-down projections of the prefrontal cortex to the ventral tegmental area, laterodorsal tegmental nucleus, and median raphe nucleus. Brain Struct Funct 2022; 227:2465-2487. [DOI: 10.1007/s00429-022-02538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
|
6
|
López-Terrones E, Celada P, Riga MS, Artigas F. Preferential in vivo inhibitory action of serotonin in rat infralimbic versus prelimbic cortex: relevance for antidepressant treatments. Cereb Cortex 2022; 32:3000-3013. [DOI: 10.1093/cercor/bhab396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
The infralimbic (IL) cortex is the rodent equivalent of human ventral anterior cingulate cortex (vACC), which plays a key role in the pathophysiology and treatment of major depressive disorder (MDD). The modulation of glutamatergic neurotransmission in IL [but not in the adjacent prelimbic (PrL) cortex] evokes antidepressant-like or depressive-like behaviors, associated with changes in serotonin (5-HT) function, highlighting the relevance of glutamate/serotonin interactions in IL for emotional control. 5-HT modulates neuronal activity in PrL and cingulate (Cg) cortex but its effects in IL are largely unknown. We therefore compared the in vivo effects of 5-HT on pyramidal neuron activity in IL (n = 61) and PrL (n = 50) of anesthetized rats. IL pyramidal neurons were more responsive to physiological dorsal raphe stimulation (0.9 Hz) than PrL neurons (84% vs. 64%, respectively) and were inhibited to a greater extent (64% vs. 36%, respectively). Orthodromic activations (8% in PrL) were absent in IL, whereas biphasic responses were similar (20%) in both areas. Excitations were mediated by 5-HT2A-R activation, whereas inhibitions involved 3 different components: 5-HT1A-R, 5-HT3-R and GABAA-R, respectively. The remarkable inhibitory action of 5-HT in IL suggests that 5-HT-enhancing drugs may exert their antidepressant action by normalizing a glutamatergic hyperactivity in the vACC of MDD patients.
Collapse
Affiliation(s)
- Elena López-Terrones
- Depart. de Neurociències i Terapèutica Experimental , Institut d'Investigacions Biomèdiques de Barcelona, IIBB-CSIC; 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pau Celada
- Depart. de Neurociències i Terapèutica Experimental , Institut d'Investigacions Biomèdiques de Barcelona, IIBB-CSIC; 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maurizio S Riga
- Depart. de Neurociències i Terapèutica Experimental , Institut d'Investigacions Biomèdiques de Barcelona, IIBB-CSIC; 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Instituto de Salud Carlos III, 28029 Madrid, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC) , 41092 Sevilla, Spain
| | - Francesc Artigas
- Depart. de Neurociències i Terapèutica Experimental , Institut d'Investigacions Biomèdiques de Barcelona, IIBB-CSIC; 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
8
|
Neurobiology of reward-related learning. Neurosci Biobehav Rev 2021; 124:224-234. [PMID: 33581225 DOI: 10.1016/j.neubiorev.2021.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/23/2022]
Abstract
A major goal in psychology is to understand how environmental stimuli associated with primary rewards come to function as conditioned stimuli, acquiring the capacity to elicit similar responses to those elicited by primary rewards. Our neurobiological model is predicated on the Hebbian idea that concurrent synaptic activity on the primary reward neural substrate-proposed to be ventral tegmental area (VTA) dopamine (DA) neurons-strengthens the synapses involved. We propose that VTA DA neurons receive both a strong unconditioned stimulus signal (acetylcholine stimulation of DA cells) from the primary reward capable of unconditionally activating DA cells and a weak stimulus signal (glutamate stimulation of DA cells) from the neutral stimulus. Through joint stimulation the weak signal is potentiated and capable of activating the VTA DA cells, eliciting a conditioned response. The learning occurs when this joint stimulation initiates intracellular second-messenger cascades resulting in enhanced glutamate-DA synapses. In this review we present evidence that led us to propose this model and the most recent evidence supporting it.
Collapse
|
9
|
Abstract
Schizophrenia is a major mental illness associated with profound disability. Current treatments for schizophrenia (antipsychotics) all have a similar mechanism of action and are primarily dopamine type 2 receptor (D2R) antagonists. Antipsychotics are not fully effective for the majority of schizophrenia patients, suggesting the need for alternative approaches. The primary focus of this review is to assess the evidence for the role of the serotonin type 2A receptor (5-HT2AR) in schizophrenia. Topics include an overview of 5-HT2AR physiology and pathophysiology in schizophrenia, 5-HT2AR interaction with other neurotransmitter systems, including the glutamatergic system, a review of the 5-HT2AR/d-lysergic acid diethylamide (LSD) model of schizophrenia, a contrast of the 5-HT2AR and glutamatergic models of schizophrenia, and finally, a review of Food and Drug Administration (FDA)-approved and investigational 5-HT2AR-modulating compounds. Recent studies with lumeteperone, pimavanserin, and roluperidone are highlighted.
Collapse
|
10
|
Bueno D, Lima LB, Souza R, Gonçalves L, Leite F, Souza S, Furigo IC, Donato J, Metzger M. Connections of the laterodorsal tegmental nucleus with the habenular‐interpeduncular‐raphe system. J Comp Neurol 2019; 527:3046-3072. [DOI: 10.1002/cne.24729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Debora Bueno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Leandro B. Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Rudieri Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Luciano Gonçalves
- Department of Human AnatomyFederal University of the Triângulo Mineiro Uberaba Brazil
| | - Fernanda Leite
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Stefani Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Isadora C. Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Martin Metzger
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| |
Collapse
|
11
|
van den Munkhof HE, Arnt J, Celada P, Artigas F. The antipsychotic drug brexpiprazole reverses phencyclidine-induced disruptions of thalamocortical networks. Eur Neuropsychopharmacol 2017; 27:1248-1257. [PMID: 29128144 DOI: 10.1016/j.euroneuro.2017.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
Abstract
Brexpiprazole (BREX), a recently approved antipsychotic drug in the US and Canada, improves cognitive dysfunction in animal models, by still largely unknown mechanisms. BREX is a partial agonist at 5-HT1A and D2 receptors and antagonist at α1B- and α2C-adrenergic and 5-HT2A receptors all with a similar potency. The NMDA receptor antagonist phencyclidine (PCP), used as pharmacological model of schizophrenia, activates thalamocortical networks and decreases low frequency oscillations (LFO; <4 Hz). These effects are reversed by antipsychotics. Here we assessed the ability of BREX to reverse PCP-induced hyperactivity of thalamocortical circuits, and the involvement of 5-HT1A receptors in its therapeutic action. BREX reversed PCP-induced neuronal activation at a lower dose in centromedial/mediodorsal thalamic nuclei (CM/MD; 0.5mg/kg) than in pyramidal medial prefrontal cortex neurons (mPFC, 2mg/kg), perhaps due to antagonism at α1B-adrenoceptors, abundantly expressed in the thalamus. Conversely, a cumulative 0.5 mg/kg dose reversed a PCP-induced LFO decrease in mPFC but not in CM/MD. BREX reduced LFO in both areas, yet with a different dose-response, and moderately excited mPFC neurons. The latter effect was reversed by the 5-HT1A receptor antagonist WAY-100635. Thus, BREX partly antagonizes PCP-induced thalamocortical hyperactivity, differentially in mPFC versus CM/MD. This regional selectivity may be related to the differential expression of α1B-, α2C-adrenergic and 5-HT2A receptors in both regions and/or different neuronal types. Furthermore, the pro-cognitive properties of BREX may be related to the 5-HT1A receptor-mediated increase in mPFC pyramidal neuron activity. Overall, the present data provide new insight on the brain elements involved in BREX's therapeutic actions.
Collapse
Affiliation(s)
- Hanna E van den Munkhof
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jørn Arnt
- Lundbeck: Synaptic Transmission, Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark; Sunred Pharma Consulting ApS, Svend Gonges Vej 11A, DK-2680 Solrod Strand, Denmark
| | - Pau Celada
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Francesc Artigas
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
12
|
Abstract
Hallucinogens evoke sensory, perceptual, affective, and cognitive effects that may be useful to understand the neurobiological basis of mood and psychotic disorders. The present chapter reviews preclinical research carried out in recent years in order to better understand the action of psychotomimetic agents such as the noncompetitive NMDA receptor (NMDA-R) antagonists and serotonergic hallucinogens. Our studies have focused on the mechanisms through which these agents alter cortical activity. Noncompetitive NMDA-R antagonists, such as phencyclidine (PCP) and MK-801 (dizocilpine), as well as the serotonergic hallucinogens DOI and 5-MeO-DMT, produce similar effects on cellular and population activity in prefrontal cortex (PFC); these effects include alterations of pyramidal neuron discharge (with an overall increase in firing), as well as a marked attenuation of the low frequency oscillations (0.2-4 Hz) to which neuronal discharge is coupled in anesthetized rodents. PCP increases c-fos expression in excitatory neurons from various cortical and subcortical areas, particularly the thalamus. This effect of PCP involves the preferential blockade of NMDA-R on GABAergic neurons of the reticular nucleus of the thalamus, which provides feedforward inhibition to the rest of thalamic nuclei. It is still unknown whether serotonergic hallucinogens also affect thalamocortical networks. However, when examined, similar alterations in other cortical areas, such as the primary visual cortex (V1), have been observed, suggesting that these agents affect cortical activity in sensory and associative areas. Interestingly, the disruption of PFC activity induced by PCP, DOI and 5-MeO-DMT is reversed by classical and atypical antipsychotic drugs. This effect suggests a possible link between the mechanisms underlying the disruption of perception by multiple classes of hallucinogenic agents and the therapeutic efficacy of antipsychotic agents.
Collapse
|
13
|
|
14
|
Involvement of 5-HT 3 receptors in the action of vortioxetine in rat brain: Focus on glutamatergic and GABAergic neurotransmission. Neuropharmacology 2016; 108:73-81. [DOI: 10.1016/j.neuropharm.2016.04.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 01/03/2023]
|
15
|
De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 2016; 151:175-236. [PMID: 27013075 DOI: 10.1016/j.pneurobio.2016.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Since their discovery in the mammalian brain, it has been apparent that serotonin (5-HT) and dopamine (DA) interactions play a key role in normal and abnormal behavior. Therefore, disclosure of this interaction could reveal important insights into the pathogenesis of various neuropsychiatric diseases including schizophrenia, depression and drug addiction or neurological conditions such as Parkinson's disease and Tourette's syndrome. Unfortunately, this interaction remains difficult to study for many reasons, including the rich and widespread innervations of 5-HT and DA in the brain, the plethora of 5-HT receptors and the release of co-transmitters by 5-HT and DA neurons. The purpose of this review is to present electrophysiological and biochemical data showing that endogenous 5-HT and pharmacological 5-HT ligands modify the mesencephalic DA systems' activity. 5-HT receptors may control DA neuron activity in a state-dependent and region-dependent manner. 5-HT controls the activity of DA neurons in a phasic and excitatory manner, except for the control exerted by 5-HT2C receptors which appears to also be tonically and/or constitutively inhibitory. The functional interaction between the two monoamines will also be discussed in view of the mechanism of action of antidepressants, antipsychotics, anti-Parkinsonians and drugs of abuse.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux Cedex, France.
| | - Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
16
|
Qesseveur G, Petit AC, Nguyen HT, Dahan L, Colle R, Rotenberg S, Seif I, Robert P, David D, Guilloux JP, Gardier AM, Verstuyft C, Becquemont L, Corruble E, Guiard BP. Genetic dysfunction of serotonin 2A receptor hampers response to antidepressant drugs: A translational approach. Neuropharmacology 2016; 105:142-153. [PMID: 26764241 DOI: 10.1016/j.neuropharm.2015.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 01/31/2023]
Abstract
Pharmacological studies have yielded valuable insights into the role of the serotonin 2A (5-HT2A) receptor in major depressive disorder (MDD) and antidepressant drugs (ADs) response. However, it is still unknown whether genetic variants in the HTR2A gene affect the therapeutic outcome of ADs and the mechanism underlying the regulation of such response remains poorly described. In this context, a translational human-mouse study offers a unique opportunity to address the possibility that variations in the HTR2A gene may represent a relevant marker to predict the efficacy of ADs. In a first part of this study, we investigated in depressed patients the effect of three HTR2A single nucleotide polymorphisms (SNPs), selected for their potential functional consequences on 5-HT2A receptor (rs6313, rs6314 and rs7333412), on response and remission rates after 3 months of antidepressant treatments. We also explored the consequences of the constitutive genetic inactivation of the 5-HT2A receptor (i.e. in 5-HT2A(-/-) mice) on the activity of acute and prolonged administration of SSRIs. Our clinical data indicate that GG patients for the rs7333412 SNP were less prone to respond to ADs than AA/AG patients. In the preclinical study, we demonstrated that the 5-HT2A receptor exerts an inhibitory influence on the neuronal activity of the serotonergic system after acute administration of SSRIs. However, while the chronic administration of the SSRIs escitalopram or fluoxetine elicited a progressive increased in the firing rate of 5-HT neurons in 5-HT2A(+/+) mice, it failed to do so in 5-HT2A(-/-) mutants. These electrophysiological impairments were associated with a decreased ability of the chronic administration of fluoxetine to stimulate hippocampal plasticity and to produce antidepressant-like activities. Genetic loss of the 5-HT2A receptor compromised the activity of chronic treatment with SSRIs, making this receptor a putative marker to predict ADs response.
Collapse
Affiliation(s)
- Gaël Qesseveur
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, Fac Pharmacie, Châtenay Malabry, 92290, France
| | - Anne Cécile Petit
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, CESP, Fac Médecine Paris Sud, 94275, Le Kremlin Bicêtre, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Service de Psychiatrie, Le Kremlin Bicêtre, F-94275, France
| | - Hai Thanh Nguyen
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, Fac Pharmacie, Châtenay Malabry, 92290, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Romain Colle
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, CESP, Fac Médecine Paris Sud, 94275, Le Kremlin Bicêtre, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Service de Psychiatrie, Le Kremlin Bicêtre, F-94275, France
| | - Samuel Rotenberg
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, CESP, Fac Médecine Paris Sud, 94275, Le Kremlin Bicêtre, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Service de Psychiatrie, Le Kremlin Bicêtre, F-94275, France
| | - Isabelle Seif
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, Fac Pharmacie, Châtenay Malabry, 92290, France
| | - Pauline Robert
- UMS IPSIT (INST. Paris-Saclay d'innovation Thérapeutique), Paris Sud, France
| | - Denis David
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, Fac Pharmacie, Châtenay Malabry, 92290, France
| | - Jean-Philippe Guilloux
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, Fac Pharmacie, Châtenay Malabry, 92290, France
| | - Alain M Gardier
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, Fac Pharmacie, Châtenay Malabry, 92290, France
| | - Céline Verstuyft
- INSERM U1184, Le Kremlin Bicêtre, F-94276, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Le Kremlin Bicêtre, F-94275, France
| | - Laurent Becquemont
- INSERM U1184, Le Kremlin Bicêtre, F-94276, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, CESP, Fac Médecine Paris Sud, 94275, Le Kremlin Bicêtre, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Service de Psychiatrie, Le Kremlin Bicêtre, F-94275, France.
| | - Bruno P Guiard
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, Fac Pharmacie, Châtenay Malabry, 92290, France; Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
17
|
Guirado R, Umemori J, Sipilä P, Castrén E. Evidence for Competition for Target Innervation in the Medial Prefrontal Cortex. Cereb Cortex 2015; 26:1287-94. [PMID: 26637448 PMCID: PMC4737611 DOI: 10.1093/cercor/bhv280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inputs to sensory cortices are known to compete for target innervation through an activity-dependent mechanism during critical periods. To investigate whether this principle also applies to association cortices such as the medial prefrontal cortex (mPFC), we produced a bilateral lesion during early development to the ventral hippocampus (vHC), an input to the mPFC, and analyzed the intensity of the projection from another input, the basolateral amgydala (BLA). We found that axons from the BLA had a higher density of "en passant" boutons in the mPFC of lesioned animals. Furthermore, the density of neurons labeled with retrograde tracers was increased, and neurons projecting from the BLA to the mPFC showed increased expression of FosB. Since neonatal ventral hippocampal lesion has been used as an animal model of schizophrenia, we investigated its effects on behavior and found a negative correlation between the density of retrogradely labeled neurons in the BLA and the reduction of the startle response in the prepulse inhibition test. Our results not only indicate that the inputs from the BLA and the vHC compete for target innervation in the mPFC during postnatal development but also that subsequent abnormal rewiring might underlie the pathophysiology of neuropsychiatric disorders such as schizophrenia.
Collapse
Affiliation(s)
- Ramon Guirado
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Juzoh Umemori
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Pia Sipilä
- Neuroscience Center, University of Helsinki, Helsinki, Finland Current address: Max Planck Institute for Neurobiology, Martinsried, Germany
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Converse AK, Aubert Y, Allers KA, Sommer B, Abbott DH. Flibanserin-Stimulated Partner Grooming Reflects Brain Metabolism Changes in Female Marmosets. J Sex Med 2015; 12:2256-66. [PMID: 26635207 PMCID: PMC5681869 DOI: 10.1111/jsm.13068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Female sexual interest and arousal disorder is personally distressing for women. To better understand the mechanism of the candidate therapeutic, flibanserin, we determined its effects on an index of brain glucose metabolism. AIM We hypothesized that chronic treatment with flibanserin would alter metabolism in brain regions associated with serotonergic function and female sexual behavior. METHODS In a crossover design, eight adult female common marmosets (Calithrix jacchus) received daily flibanserin or vehicle. After 7-12 weeks of treatment, the glucose metabolism radiotracer [(18) F]fluorodeoxyglucose (FDG) was administered to each female immediately prior to 30 minutes of interaction with her male pairmate, after which females were anesthetized and imaged by positron emission tomography. Whole-brain normalized images were analyzed with anatomically defined regions of interest. Whole-brain voxelwise mapping was used to explore treatment effects. Correlations were examined between alterations in metabolism and pairmate social grooming. MAIN OUTCOME MEASURES Changes in metabolism associated with flibanserin were determined for dorsal raphe, medial prefrontal cortex (mPFC), medial preoptic area of hypothalamus (mPOA), ventromedial nucleus of hypothalamus, and field cornu ammonis 1 (CA1) of the hippocampus. RESULTS In response to chronic flibanserin, metabolism in mPOA declined, and this reduction correlated with increases in pairmate grooming. A cluster of voxels in frontal cortico-limbic regions exhibited reduced metabolism in response to flibanserin and overlapped with a voxel cluster in which reductions in metabolism correlated with increases in pairmate grooming. Finally, reductions in mPOA metabolism correlated with increases in metabolism in a cluster of voxels in somatosensory cortex. CONCLUSIONS Taken together, these results suggest that flibanserin-induced reductions in female mPOA neural activity increase intimate affiliative behavior with male pairmates.
Collapse
Affiliation(s)
| | - Yves Aubert
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, US
- Department of Biological and Medical Psychology, University of Bergen, NO
| | - Kelly A. Allers
- Department of CNS Diseases, Boehringer Ingelheim, Biberach, DE
| | - Bernd Sommer
- Department of CNS Diseases, Boehringer Ingelheim, Biberach, DE
| | - David H. Abbott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, US
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, US
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, US
| |
Collapse
|
19
|
Yamanishi K, Doe N, Sumida M, Watanabe Y, Yoshida M, Yamamoto H, Xu Y, Li W, Yamanishi H, Okamura H, Matsunaga H. Hepatocyte nuclear factor 4 alpha is a key factor related to depression and physiological homeostasis in the mouse brain. PLoS One 2015; 10:e0119021. [PMID: 25774879 PMCID: PMC4361552 DOI: 10.1371/journal.pone.0119021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 01/26/2015] [Indexed: 12/20/2022] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric disorder that involves marked disabilities in global functioning, anorexia, and severe medical comorbidities. MDD is associated with not only psychological and sociocultural problems, but also pervasive physical dysfunctions such as metabolic, neurobiological and immunological abnormalities. Nevertheless, the mechanisms underlying the interactions between these factors have yet to be determined in detail. The aim of the present study was to identify the molecular mechanisms responsible for the interactions between MDD and dysregulation of physiological homeostasis, including immunological function as well as lipid metabolism, coagulation, and hormonal activity in the brain. We generated depression-like behavior in mice using chronic mild stress (CMS) as a model of depression. We compared the gene expression profiles in the prefrontal cortex (PFC) of CMS and control mice using microarrays. We subsequently categorized genes using two web-based bioinformatics applications: Ingenuity Pathway Analysis and The Database for Annotation, Visualization, and Integrated Discovery. We then confirmed significant group-differences by analyzing mRNA and protein expression levels not only in the PFC, but also in the thalamus and hippocampus. These web tools revealed that hepatocyte nuclear factor 4 alpha (Hnf4a) may exert direct effects on various genes specifically associated with amine synthesis, such as genes involved in serotonin metabolism and related immunological functions. Moreover, these genes may influence lipid metabolism, coagulation, and hormonal activity. We also confirmed the significant effects of Hnf4a on both mRNA and protein expression levels in the brain. These results suggest that Hnf4a may have a critical influence on physiological homeostasis under depressive states, and may be associated with the mechanisms responsible for the interactions between MDD and the dysregulation of physiological homeostasis in humans.
Collapse
Affiliation(s)
- Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka, Japan
| | - Nobutaka Doe
- Laboratory of Neurogenesis and CNS Repair, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Section of Behavioral Science, Kouiken Co., Ltd., Akashi, Hyogo, Japan
| | - Miho Sumida
- Section of Behavioral Science, Kouiken Co., Ltd., Akashi, Hyogo, Japan
| | - Yuko Watanabe
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka, Japan
| | - Momoko Yoshida
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka, Japan
| | - Hideyuki Yamamoto
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yunfeng Xu
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Wen Li
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hiromichi Yamanishi
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
20
|
Howell LL, Cunningham KA. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol Rev 2015; 67:176-97. [PMID: 25505168 PMCID: PMC4279075 DOI: 10.1124/pr.114.009514] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder.
Collapse
MESH Headings
- Animals
- Behavior, Addictive/drug therapy
- Behavior, Addictive/metabolism
- Behavior, Addictive/psychology
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Central Nervous System Stimulants/adverse effects
- Cocaine/adverse effects
- Cocaine-Related Disorders/drug therapy
- Cocaine-Related Disorders/metabolism
- Cocaine-Related Disorders/physiopathology
- Cocaine-Related Disorders/psychology
- Disease Models, Animal
- Dopamine/metabolism
- Drug Design
- Humans
- Molecular Targeted Therapy
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/metabolism
- Serotonin Agents/therapeutic use
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Leonard L Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (L.L.H.); and Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (K.A.C.)
| | - Kathryn A Cunningham
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (L.L.H.); and Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (K.A.C.)
| |
Collapse
|
21
|
Vadovičová K, Gasparotti R. Reward and adversity processing circuits, their competition and interactions with dopamine and serotonin signaling. SCIENCEOPEN RESEARCH 2014. [DOI: 10.14293/s2199-1006.1.sor-life.aekzpz.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We propose that dorsal anterior cingulate cortex (dACC), anterior insula (AI) and adjacent caudolateral orbitofrontal cortex (clOFC), project to lateral habenula (LHb) and D2 loop of ventral striatum (VS), forming a functional adversity processing circuit, directed towards inhibitory avoidance and self-control. This circuit learns what is bad or harmful to us, evaluates and predicts risks - to stop us from selecting and going/moving for the bad or suboptimal choices that decrease our well-being and survival chances.
Proposed role of dACC is to generate a WARNING signal when things are going (or might end) bad or wrong to prevent negative consequences: pain, harm, loss or failure. The AI signals about bad, low, noxious and aversive qualities, which might make us sick or cause discomfort.
These cortical adversity processing regions activate directly and indirectly (via D2 loop of VS) the LHb, which then inhibits dopamine and serotonin release (and is reciprocally inhibited by VTA/SNc, DRN) to avoid choosing and doing things leading to harm or loss, but also to make us feel worse, even down when overstimulated. We propose that dopamine attenuates output of the adversity processing circuit, thus decreasing inhibitory avoidance and self-control, while serotonin attenuates dACC, AI, clOFC, D1 loop of VS, LHb, amygdala and pain pathway.
Thus, by reciprocal inhibition, by causing dopamine and serotonin suppression - and by being suppressed by them, the adversity processing circuit competes with reward processing circuit for control of choice behaviour and affective states. We propose stimulating effect of dopamine and calming inhibitory effect of serotonin on the active avoidance circuit involving amygdala, linked to threat processing, anger, fear, self-defense and violence. We describe causes and roles of dopamine and serotonin signaling in health and in mental dysfunctions. We add new idea on ventral ACC role in signaling that we are doing well and inducing serotonin, when we gain/reach safety, comfort, valuable resources (social or biological rewards), affection and achieve goals.
Collapse
|
22
|
Dembrow N, Johnston D. Subcircuit-specific neuromodulation in the prefrontal cortex. Front Neural Circuits 2014; 8:54. [PMID: 24926234 PMCID: PMC4046580 DOI: 10.3389/fncir.2014.00054] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/05/2014] [Indexed: 11/13/2022] Open
Abstract
During goal-directed behavior, the prefrontal cortex (PFC) exerts top-down control over numerous cortical and subcortical regions. PFC dysfunction has been linked to many disorders that involve deficits in cognitive performance, attention, motivation, and/or impulse control. A common theme among these disorders is that neuromodulation of the PFC is disrupted. Anatomically, the PFC is reciprocally connected with virtually all neuromodulatory centers. Recent studies of PFC neurons, both in vivo and ex vivo, have found that subpopulations of prefrontal projection neurons can be segregated into distinct subcircuits based on their long-range projection targets. These subpopulations differ in their connectivity, intrinsic properties, and responses to neuromodulators. In this review we outline the evidence for subcircuit-specific neuromodulation in the PFC, and describe some of the functional consequences of selective neuromodulation on behavioral states during goal-directed behavior.
Collapse
Affiliation(s)
- Nikolai Dembrow
- Center for Learning and Memory, The University of Texas at Austin Austin, TX, USA
| | - Daniel Johnston
- Center for Learning and Memory, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
23
|
Ullsperger M, Danielmeier C, Jocham G. Neurophysiology of performance monitoring and adaptive behavior. Physiol Rev 2014; 94:35-79. [PMID: 24382883 DOI: 10.1152/physrev.00041.2012] [Citation(s) in RCA: 425] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Successful goal-directed behavior requires not only correct action selection, planning, and execution but also the ability to flexibly adapt behavior when performance problems occur or the environment changes. A prerequisite for determining the necessity, type, and magnitude of adjustments is to continuously monitor the course and outcome of one's actions. Feedback-control loops correcting deviations from intended states constitute a basic functional principle of adaptation at all levels of the nervous system. Here, we review the neurophysiology of evaluating action course and outcome with respect to their valence, i.e., reward and punishment, and initiating short- and long-term adaptations, learning, and decisions. Based on studies in humans and other mammals, we outline the physiological principles of performance monitoring and subsequent cognitive, motivational, autonomic, and behavioral adaptation and link them to the underlying neuroanatomy, neurochemistry, psychological theories, and computational models. We provide an overview of invasive and noninvasive systemic measures, such as electrophysiological, neuroimaging, and lesion data. We describe how a wide network of brain areas encompassing frontal cortices, basal ganglia, thalamus, and monoaminergic brain stem nuclei detects and evaluates deviations of actual from predicted states indicating changed action costs or outcomes. This information is used to learn and update stimulus and action values, guide action selection, and recruit adaptive mechanisms that compensate errors and optimize goal achievement.
Collapse
|
24
|
The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition. Pharmacol Biochem Behav 2013; 123:45-54. [PMID: 23978501 DOI: 10.1016/j.pbb.2013.08.007] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/28/2013] [Accepted: 08/14/2013] [Indexed: 12/11/2022]
Abstract
Executive function is a collection of cognitive processes essential for higher order mental function. Processes involved in executive function include, but are not limited to, working memory, attention, cognitive flexibility, and impulse control. These complex behaviors are largely mediated by prefrontal cortical function but are modulated by dopaminergic, noradrenergic, serotonergic, and cholinergic input. The ability of these neurotransmitter systems to modulate executive function allows for adaptation in cognitive behavior in response to changes in the environment. Because of the important role these neurotransmitter systems play in regulating executive function, changes in these systems can also have a grave impact on executive function. In addition, polymorphisms in genes associated with these neurotransmitters are associated with phenotypic differences in executive function. Understanding how these naturally occurring polymorphisms contribute to different executive function phenotypes will advance basic knowledge of cognition and potentially further understanding and treatment of mental illness that involve changes in executive function. In this review, we will examine the influence of dopamine, norepinephrine, serotonin, and acetylcholine on the following measures of executive function: attention, cognitive flexibility, and impulse control. We will also review the effects of polymorphisms in genes associated with these neurotransmitter systems on these measures of executive function.
Collapse
|
25
|
Regulating Prefrontal Cortex Activation: An Emerging Role for the 5-HT2A Serotonin Receptor in the Modulation of Emotion-Based Actions? Mol Neurobiol 2013; 48:841-53. [DOI: 10.1007/s12035-013-8472-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
|
26
|
Celada P, Puig MV, Artigas F. Serotonin modulation of cortical neurons and networks. Front Integr Neurosci 2013; 7:25. [PMID: 23626526 PMCID: PMC3630391 DOI: 10.3389/fnint.2013.00025] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/01/2013] [Indexed: 01/20/2023] Open
Abstract
The serotonergic pathways originating in the dorsal and median raphe nuclei (DR and MnR, respectively) are critically involved in cortical function. Serotonin (5-HT), acting on postsynaptic and presynaptic receptors, is involved in cognition, mood, impulse control and motor functions by (1) modulating the activity of different neuronal types, and (2) varying the release of other neurotransmitters, such as glutamate, GABA, acetylcholine and dopamine. Also, 5-HT seems to play an important role in cortical development. Of all cortical regions, the frontal lobe is the area most enriched in serotonergic axons and 5-HT receptors. 5-HT and selective receptor agonists modulate the excitability of cortical neurons and their discharge rate through the activation of several receptor subtypes, of which the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT3 subtypes play a major role. Little is known, however, on the role of other excitatory receptors moderately expressed in cortical areas, such as 5-HT2C, 5-HT4, 5-HT6, and 5-HT7. In vitro and in vivo studies suggest that 5-HT1A and 5-HT2A receptors are key players and exert opposite effects on the activity of pyramidal neurons in the medial prefrontal cortex (mPFC). The activation of 5-HT1A receptors in mPFC hyperpolarizes pyramidal neurons whereas that of 5-HT2A receptors results in neuronal depolarization, reduction of the afterhyperpolarization and increase of excitatory postsynaptic currents (EPSCs) and of discharge rate. 5-HT can also stimulate excitatory (5-HT2A and 5-HT3) and inhibitory (5-HT1A) receptors in GABA interneurons to modulate synaptic GABA inputs onto pyramidal neurons. Likewise, the pharmacological manipulation of various 5-HT receptors alters oscillatory activity in PFC, suggesting that 5-HT is also involved in the control of cortical network activity. A better understanding of the actions of 5-HT in PFC may help to develop treatments for mood and cognitive disorders associated with an abnormal function of the frontal lobe.
Collapse
Affiliation(s)
- Pau Celada
- Department of Neurochemistry and Neuropharmacology, Institut d' Investigacions Biomèdiques de Barcelona (CSIC), IDIBAPS Barcelona, Spain ; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Madrid, Spain
| | | | | |
Collapse
|
27
|
The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev 2012; 37:2331-71. [PMID: 23261405 DOI: 10.1016/j.neubiorev.2012.12.007] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 11/26/2012] [Accepted: 12/10/2012] [Indexed: 12/18/2022]
Abstract
We present a comprehensive overview of the neurobiology of unipolar major depression and antidepressant drug action, integrating data from affective neuroscience, neuro- and psychopharmacology, neuroendocrinology, neuroanatomy, and molecular biology. We suggest that the problem of depression comprises three sub-problems: first episodes in people with low vulnerability ('simple' depressions), which are strongly stress-dependent; an increase in vulnerability and autonomy from stress that develops over episodes of depression (kindling); and factors that confer vulnerability to a first episode (a depressive diathesis). We describe key processes in the onset of a 'simple' depression and show that kindling and depressive diatheses reproduce many of the neurobiological features of depression. We also review the neurobiological mechanisms of antidepressant drug action, and show that resistance to antidepressant treatment is associated with genetic and other factors that are largely similar to those implicated in vulnerability to depression. We discuss the implications of these conclusions for the understanding and treatment of depression, and make some strategic recommendations for future research.
Collapse
|
28
|
Quesseveur G, Nguyen HT, Gardier AM, Guiard BP. 5-HT2 ligands in the treatment of anxiety and depression. Expert Opin Investig Drugs 2012; 21:1701-25. [PMID: 22917059 DOI: 10.1517/13543784.2012.719872] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION One third of depressed patients do not respond adequately to conventional antidepressants including the selective serotonin reuptake inhibitors (SSRIs). Therefore, multi-target drugs or augmentation strategies have been developed for the management of SSRIs-resistant patients. In this context, the 5-HT(2) receptor subtypes represent promising targets but their precise roles have yet to be determined. AREAS COVERED The aim of this review is to shed some light on the preclinical evidence supporting the use of 5-HT(2A) and/or 5-HT(2C) receptor antagonists such as antipsychotics, as potential effective adjuncts in SSRIs-resistant depression. This review synthesizes the current literature about the behavioral, electrophysiological and neurochemical effects of 5-HT(2) receptors ligands on the monoaminergic systems but also on adult hippocampal neurogenesis. EXPERT OPINION Although studies support the hypothesis that the inactivation of 5-HT(2A) and/or 5-HT(2C) receptors might be of interest to reinforce different facets of the therapeutic activity of SSRIs, this pharmacological strategy remains debatable notably because of the lack of chronic data in relevant animal models. Conversely, emerging evidence suggests that the activation of 5-HT(2B) receptor is required for antidepressant-like activity, opening the way to new therapeutic approaches. However, the potential risks related to the enhancement of monoaminergic neurotransmissions could represent a major concern.
Collapse
Affiliation(s)
- Gaël Quesseveur
- EA3544 University Paris-XI, Laboratoire de Neuropharmacologie, Fac. Pharmacie, F-92296, Châtenay-Malabry cedex, France
| | | | | | | |
Collapse
|
29
|
Seymour B, Daw ND, Roiser JP, Dayan P, Dolan R. Serotonin selectively modulates reward value in human decision-making. J Neurosci 2012; 32:5833-42. [PMID: 22539845 PMCID: PMC5321452 DOI: 10.1523/jneurosci.0053-12.2012] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/28/2012] [Indexed: 01/31/2023] Open
Abstract
Establishing a function for the neuromodulator serotonin in human decision-making has proved remarkably difficult because if its complex role in reward and punishment processing. In a novel choice task where actions led concurrently and independently to the stochastic delivery of both money and pain, we studied the impact of decreased brain serotonin induced by acute dietary tryptophan depletion. Depletion selectively impaired both behavioral and neural representations of reward outcome value, and hence the effective exchange rate by which rewards and punishments were compared. This effect was computationally and anatomically distinct from a separate effect on increasing outcome-independent choice perseveration. Our results provide evidence for a surprising role for serotonin in reward processing, while illustrating its complex and multifarious effects.
Collapse
Affiliation(s)
- Ben Seymour
- Wellcome Trust Centre for Neuroimaging, University College London-UCL, London WC1N 3BG, United Kingdom.
| | | | | | | | | |
Collapse
|
30
|
Häring M, Guggenhuber S, Lutz B. Neuronal populations mediating the effects of endocannabinoids on stress and emotionality. Neuroscience 2012; 204:145-58. [DOI: 10.1016/j.neuroscience.2011.12.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/12/2011] [Accepted: 12/12/2011] [Indexed: 01/17/2023]
|
31
|
Abstract
A variety of serotonin (5-HT) receptors, especially 5-HT(2A), 5-HT(1A), 5-HT(6), 5-HT(7), and 5-HT(2C), have been postulated to contribute to the mechanism of action of atypical antipsychotic drugs (APDs), i.e., APDs which cause fewer extrapyramidal side effects (EPS) at clinically optimal doses, in contrast with typical APDs, which are more likely to cause EPS. This advantage, rarely disputed, has made such drugs the preferred treatment for schizophrenia and other indications for APDs. These 5-HT receptors are still of interest as components of novel multireceptor or stand-alone APDs, and potentially to remediate cognitive deficits in schizophrenia. Almost all currently available atypical APDs are 5-HT(2A) receptor inverse agonists, as well as dopamine (DA) D(2) receptor antagonists or partial agonists. Amisulpride, an exceptional atypical APD, has 5-HT(7) antagonism to complement its DA D(2/3) antagonism. Some atypical APDs are also 5-HT(1A) partial agonists, 5-HT(6), or 5-HT(7) antagonists, or some combination of the above. 5-HT(2C) antagonism has been found to contribute to the metabolic side effects of some atypical APDs, whereas 5-HT(2C) agonists have potential as stand-alone APDs and/or cognitive enhancers. This review will provide an update of current preclinical and clinical evidence for the role of these five 5-HT receptors in the actions of current APDs and for the development of novel psychotropic drugs.
Collapse
Affiliation(s)
- Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
32
|
Llado-Pelfort L, Santana N, Ghisi V, Artigas F, Celada P. 5-HT1A Receptor Agonists Enhance Pyramidal Cell Firing in Prefrontal Cortex Through a Preferential Action on GABA Interneurons. Cereb Cortex 2011; 22:1487-97. [DOI: 10.1093/cercor/bhr220] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|