1
|
Grabon W, Bodennec J, Rheims S, Belmeguenai A, Bezin L. Update on the controversial identity of cells expressing cnr2 gene in the nervous system. CNS Neurosci Ther 2023; 29:760-770. [PMID: 36604187 PMCID: PMC9928557 DOI: 10.1111/cns.13977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023] Open
Abstract
The function of cannabinoid receptor type 2 (CB2R), mainly expressed by leukocytes, has long been limited to its peripheral immunomodulatory role. However, the use of CB2R-specific ligands and the availability of CB2R-Knock Out mice revealed that it could play a functional role in the CNS not only under physiological but also under pathological conditions. A direct effect on the nervous system emerged when CB2R mRNA was detected in neural tissues. However, accurate mapping of CB2R protein expression in the nervous system is still lacking, partly because of the lack of specificity of antibodies available. This review examines the regions and cells of the nervous system where CB2R protein is most likely present by cross-referencing mRNA and protein data published to date. Of the many antibodies developed to target CB2R, only a few have partially passed specificity tests and detected CB2R in the CNS. Efforts must be continued to support the development of more specific and better validated antibodies in each of the species in which CB2R protein is sought or needs to be quantified.
Collapse
Affiliation(s)
- Wanda Grabon
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Jacques Bodennec
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Sylvain Rheims
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Amor Belmeguenai
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Laurent Bezin
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| |
Collapse
|
2
|
Ishiguro H, Kibret BG, Horiuchi Y, Onaivi ES. Potential Role of Cannabinoid Type 2 Receptors in Neuropsychiatric and Neurodegenerative Disorders. Front Psychiatry 2022; 13:828895. [PMID: 35774086 PMCID: PMC9237241 DOI: 10.3389/fpsyt.2022.828895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) is composed of the two canonical receptor subtypes; type-1 cannabinoid (CB1R) and type 2 receptor (CB2R), endocannabinoids (eCBs) and enzymes responsible for the synthesis and degradation of eCBs. Recently, with the identification of additional lipid mediators, enzymes and receptors, the expanded ECS called the endocannabinoidome (eCBome) has been identified and recognized. Activation of CB1R is associated with a plethora of physiological effects and some central nervous system (CNS) side effects, whereas, CB2R activation is devoid of such effects and hence CB2Rs might be utilized as potential new targets for the treatment of different disorders including neuropsychiatric disorders. Previous studies suggested that CB2Rs were absent in the brain and they were considered as peripheral receptors, however, recent studies confirmed the presence of CB2Rs in different brain regions. Several studies have now focused on the characterization of its physiological and pathological roles. Studies done on the role of CB2Rs as a therapeutic target for treating different disorders revealed important putative role of CB2R in neuropsychiatric disorders that requires further clinical validation. Here we provide current insights and knowledge on the potential role of targeting CB2Rs in neuropsychiatric and neurodegenerative disorders. Its non-psychoactive effect makes the CB2R a potential target for treating CNS disorders; however, a better understanding of the fundamental pharmacology of CB2R activation is essential for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Kofu, Japan
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Kofu, Japan
| | - Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| |
Collapse
|
3
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, López-Picón F, Morcuende Á, Femenía T, Manzanares J. Biomarkers of the Endocannabinoid System in Substance Use Disorders. Biomolecules 2022; 12:biom12030396. [PMID: 35327588 PMCID: PMC8946268 DOI: 10.3390/biom12030396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Despite substance use disorders (SUD) being one of the leading causes of disability and mortality globally, available therapeutic approaches remain ineffective. The difficulty in accurately characterizing the neurobiological mechanisms involved with a purely qualitative diagnosis is an obstacle to improving the classification and treatment of SUD. In this regard, identifying central and peripheral biomarkers is essential to diagnosing the severity of drug dependence, monitoring therapeutic efficacy, predicting treatment response, and enhancing the development of safer and more effective pharmacological tools. In recent years, the crucial role that the endocannabinoid system (ECS) plays in regulating the reinforcing and motivational properties of drugs of abuse has been described. This has led to studies characterizing ECS alterations after exposure to various substances to identify biomarkers with potential diagnostic, prognostic, or therapeutic utility. This review aims to compile the primary evidence available from rodent and clinical studies on how the ECS components are modified in the context of different substance-related disorders, gathering data from genetic, molecular, functional, and neuroimaging experimental approaches. Finally, this report concludes that additional translational research is needed to further characterize the modifications of the ECS in the context of SUD, and their potential usefulness in the necessary search for biomarkers.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Francisco López-Picón
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, 20520 Turku, Finland;
| | - Álvaro Morcuende
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
| | - Teresa Femenía
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-965-919-248
| |
Collapse
|
4
|
Kibret BG, Ishiguro H, Horiuchi Y, Onaivi ES. New Insights and Potential Therapeutic Targeting of CB2 Cannabinoid Receptors in CNS Disorders. Int J Mol Sci 2022; 23:975. [PMID: 35055161 PMCID: PMC8778243 DOI: 10.3390/ijms23020975] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022] Open
Abstract
The endocannabinoid system (ECS) is ubiquitous in most human tissues, and involved in the regulation of mental health. Consequently, its dysregulation is associated with neuropsychiatric and neurodegenerative disorders. Together, the ECS and the expanded endocannabinoidome (eCBome) are composed of genes coding for CB1 and CB2 cannabinoid receptors (CB1R, CB2R), endocannabinoids (eCBs), and the metabolic enzyme machinery for their synthesis and catabolism. The activation of CB1R is associated with adverse effects on the central nervous system (CNS), which has limited the therapeutic use of drugs that bind this receptor. The discovery of the functional neuronal CB2R raised new possibilities for the potential and safe targeting of the ECS for the treatment of CNS disorders. Previous studies were not able to detect CB2R mRNA transcripts in brain tissue and suggested that CB2Rs were absent in the brain and were considered peripheral receptors. Studies done on the role of CB2Rs as a potential therapeutic target for treating different disorders revealed the important putative role of CB2Rs in certain CNS disorders, which requires further clinical validation. This review addresses recent advances on the role of CB2Rs in neuropsychiatric and neurodegenerative disorders, including, but not limited to, anxiety, depression, schizophrenia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and addiction.
Collapse
Affiliation(s)
- Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| | - Hiroki Ishiguro
- Department of Neuropsychiatry and Clinical Ethics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan;
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| |
Collapse
|
5
|
De Sa Nogueira D, Bourdy R, Alcala-Vida R, Filliol D, Andry V, Goumon Y, Zwiller J, Romieu P, Merienne K, Olmstead MC, Befort K. Hippocampal Cannabinoid 1 Receptors Are Modulated Following Cocaine Self-administration in Male Rats. Mol Neurobiol 2022; 59:1896-1911. [PMID: 35032317 DOI: 10.1007/s12035-022-02722-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
Cocaine addiction is a complex pathology inducing long-term neuroplastic changes that, in turn, contribute to maladaptive behaviors. This behavioral dysregulation is associated with transcriptional reprogramming in brain reward circuitry, although the mechanisms underlying this modulation remain poorly understood. The endogenous cannabinoid system may play a role in this process in that cannabinoid mechanisms modulate drug reward and contribute to cocaine-induced neural adaptations. In this study, we investigated whether cocaine self-administration induces long-term adaptations, including transcriptional modifications and associated epigenetic processes. We first examined endocannabinoid gene expression in reward-related brain regions of the rat following self-administered (0.33 mg/kg intravenous, FR1, 10 days) cocaine injections. Interestingly, we found increased Cnr1 expression in several structures, including prefrontal cortex, nucleus accumbens, dorsal striatum, hippocampus, habenula, amygdala, lateral hypothalamus, ventral tegmental area, and rostromedial tegmental nucleus, with most pronounced effects in the hippocampus. Endocannabinoid levels, measured by mass spectrometry, were also altered in this structure. Chromatin immunoprecipitation followed by qPCR in the hippocampus revealed that two activating histone marks, H3K4Me3 and H3K27Ac, were enriched at specific endocannabinoid genes following cocaine intake. Targeting CB1 receptors using chromosome conformation capture, we highlighted spatial chromatin re-organization in the hippocampus, as well as in the nucleus accumbens, suggesting that destabilization of the chromatin may contribute to neuronal responses to cocaine. Overall, our results highlight a key role for the hippocampus in cocaine-induced plasticity and broaden the understanding of neuronal alterations associated with endocannabinoid signaling. The latter suggests that epigenetic modifications contribute to maladaptive behaviors associated with chronic drug use.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France.,Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Romain Bourdy
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Rafael Alcala-Vida
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Dominique Filliol
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Virginie Andry
- Institut Des Neurosciences Cellulaires Et Intégratives (INCI), UPR 3212, CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France
| | - Yannick Goumon
- Institut Des Neurosciences Cellulaires Et Intégratives (INCI), UPR 3212, CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Pascal Romieu
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Karine Merienne
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Mary C Olmstead
- Department of Psychology, Center for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France.
| |
Collapse
|
6
|
Chronic ∆-9-tetrahydrocannabinol administration delays acquisition of schedule-induced drinking in rats and retains long-lasting effects. Psychopharmacology (Berl) 2022; 239:1359-1372. [PMID: 34436650 PMCID: PMC9110535 DOI: 10.1007/s00213-021-05952-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
RATIONALE Schedule-induced drinking (SID) is a behavioural phenomenon characterized by an excessive and repetitive drinking pattern with a distinctive temporal distribution that has been proposed as a robust and replicable animal model of compulsivity. Despite cannabis currently being the most widely consumed illicit drug, with growing interest in its clinical applications, little is known about the effects of ∆-9-tetrahydrocannabinol (THC) on SID. OBJECTIVES The effects of chronic and acute THC administration on SID acquisition, maintenance and extinction were studied, as were the effects of such administrations on the distinctive temporal distribution pattern of SID. METHODS THC (5 mg/kg i.p.), or the corresponding vehicle, was administered to adult Wistar rats for 14 days in a row. Subsequently, THC effects on SID acquisition were tested during 21 sessions using a 1-h fixed-time 60-s food delivery schedule. Acute effects of THC were also evaluated after SID development. Finally, two extinction sessions were conducted to assess behavioural persistence. RESULTS The results showed that previous chronic THC treatment delayed SID acquisition and altered the distinctive behavioural temporal distribution pattern during sessions. Moreover, acute THC administration after SID development decreased SID performance in animals chronically pre-treated with the drug. No great persistence effects were observed during extinction in animals pre-treated with THC. CONCLUSIONS These results suggest that chronic THC affects SID development, confirming that it can disrupt learning, possibly causing alterations in time estimation, and also leads to animals being sensitized when they are re-exposed to the drug after long periods without drug exposure.
Collapse
|
7
|
The interactions of alcohol and cocaine regulate the expression of genes involved in the GABAergic, glutamatergic and endocannabinoid systems of male and female rats. Neuropharmacology 2021; 206:108937. [PMID: 34965406 DOI: 10.1016/j.neuropharm.2021.108937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Although the pharmacological and behavioural interactions between cocaine and alcohol are well established, less is known about how polyconsumption of these drugs affects the neurotransmitter systems involved in their psychoactive effects and in particular, in the process of addiction. Here, rats of both sexes at two stages of development were studied under a chronic regime of intravenous cocaine and/or alcohol administration. Brain samples from the medial prefrontal cortex, nucleus accumbens, hippocampus and amygdala were extracted to analyse the mRNA expression of genes encoding subunits of the GABA, NMDA and AMPA receptors, as well as the expression of the CB1 receptor, and that of enzymes related to the biosynthesis and degradation of endocannabinoids. Moreover, two synaptic scaffold proteins related to GABA and NMDA receptors, gephyrin and PSD-95, were quantified in Western blots. Significant interactions between cocaine and alcohol were common, affecting the GABAergic and endocannabinoid systems in the medial prefrontal cortex and amygdala of young adults, whereas such interactions were evident in the glutamatergic and endocannabinoid systems in adults, as well as a more pronounced sex effect. Significant interactions between these drugs affecting the scaffold proteins were evident in the medial prefrontal cortex and nucleus accumbens of young adults, and in the nucleus accumbens and amygdala of adults, but not in the hippocampus. These results highlight the importance of considering the interactions between cocaine and alcohol on neurotransmitter systems in the context of polyconsumption, specifically when treating problems of abuse of these two substances.
Collapse
|
8
|
Gish A, Wiart JF, Turpin E, Allorge D, Gaulier JM. État de l’art et intérêt des dosages plasmatiques des substances endocannabinoïdes et endocannabinoïdes-like. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2021. [DOI: 10.1016/j.toxac.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Cabañero D, Martín-García E, Maldonado R. The CB2 cannabinoid receptor as a therapeutic target in the central nervous system. Expert Opin Ther Targets 2021; 25:659-676. [PMID: 34424117 DOI: 10.1080/14728222.2021.1971196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Targeting CB2 cannabinoid receptor (CB2r) represents a promising approach for the treatment of central nervous system disorders. These receptors were identified in peripheral tissues, but also in neurons in the central nervous system. New findings have highlighted the interest to target these central receptors to obtain therapeutic effects devoid of the classical cannabinoid side-effects. AREAS COVERED In this review, we searched PubMed (January 1991-May 2021), ClinicalTrials.gov and Cochrane Library databases for articles, reviews and clinical trials. We first introduce the relevance of CB2r as a key component of the endocannabinoid system. We discuss CB2r interest as a possible novel target in the treatment of pain. This receptor has raised interest as a potential target for neurodegenerative disorders treatment, as we then discussed. Finally, we underline studies revealing a novel potential CB2r interest in mental disorders treatment. EXPERT OPINION In spite of the interest of targeting CB2r for pain, clinical trials evaluating CB2r agonist analgesic efficacy have currently failed. The preferential involvement of CB2r in preventing the development of chronic pain could influence the failure of clinical trials designed for the treatment of already established pain syndromes. Specific trials should be designed to target the prevention of chronic pain development.
Collapse
Affiliation(s)
- David Cabañero
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Universidad Miguel Hernández. Elche, Alicante, Spain
| | - Elena Martín-García
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Rafael Maldonado
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
10
|
Rosário BDA, de Nazaré MDFS, Estadella D, Ribeiro DA, Viana MDB. Behavioral and neurobiological alterations induced by chronic use of crack cocaine. Rev Neurosci 2020; 31:59-75. [PMID: 31129656 DOI: 10.1515/revneuro-2018-0118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/25/2019] [Indexed: 01/01/2023]
Abstract
Crack cocaine is the crystal form of cocaine and can be smoked, and rapidly absorbed, and, in part for this reason, is potently addictive. It is hypothesized that crack cocaine is able to induce important changes in different tissues and organs, and thus dramatically alter behavior. Nevertheless, which alterations in the central nervous system are related to its frequent use is still a matter of discussion. The present study is a literature review of articles published between the years 2008 and 2018 on the theme 'crack cocaine and brain' available in PUBMED, MEDLINE, EMBASE, and Google scholar databases. The results show that the use of crack cocaine induces important behavioral, neuroanatomical, and biochemical alterations. The main behavioral sequelae include cognitive and emotional changes, such as increased anxiety and depressive symptoms, attention and memory deficits, and hyperactivity. Among the neurobiological alterations are reductions in the activity of the prefrontal, anterior cingulate cortex, and nucleus accumbens. Molecular changes include decreases in neurotrophic factors and increases in oxidative stress and inflammatory cytokines, which may be responsible for the morphological alterations observed. It is also hypothesized that these neurobiological changes might explain the emotional and cognitive dysfunctions experienced by crack cocaine addicts.
Collapse
Affiliation(s)
- Bárbara Dos Anjos Rosário
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-20 Santos SP, Brazil
| | | | - Débora Estadella
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-20 Santos SP, Brazil
| | - Daniel Araki Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-20 Santos SP, Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-20 Santos SP, Brazil, e-mail:
| |
Collapse
|
11
|
Zhang HY, Shen H, Jordan CJ, Liu QR, Gardner EL, Bonci A, Xi ZX. CB 2 receptor antibody signal specificity: correlations with the use of partial CB 2-knockout mice and anti-rat CB 2 receptor antibodies. Acta Pharmacol Sin 2019; 40:398-409. [PMID: 29967455 DOI: 10.1038/s41401-018-0037-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
Abstract
Cannabinoid CB1 receptors are highly expressed in the brain and functionally modulate presynaptic neurotransmitter release, while cannabinoid CB2 receptors (CB2Rs) were initially identified in the spleen and regarded as peripheral cannabinoid receptors. Recently, growing evidence indicates the presence of functional CB2Rs in the brain. However, this finding is disputed because of the specificity of CB2R antibody signals. We used two strains of currently available partial CB2-knockout (CB2-KO) mice as controls, four anti-rat or anti-mouse CB2R antibodies, and mRNA quantification to further address this issue. Western blot assays using the four antibodies detected a CB2R-like band at ~40 kD in both the brain and spleen. Notably, more bands were detected in the brain than in the spleen, and specific immune peptides blocked band detection. Immunohistochemical assays also detected CB2-like immunostaining in mouse midbrain dopamine neurons. CB2R deletion in CB2-KO mice may reduce or leave CB2R-like immunoreactivity unaltered depending on antibody epitope. Antibodies with epitopes at the receptor-deleted region detected a significant reduction in CB2R band density and immunostaining in N-terminal-deleted Deltagen and C-terminal-deleted Zimmer strain CB2-KO mice. Other antibodies with epitopes at the predicted receptor-undeleted regions detected similar band densities and immunostaining in wild-type and CB2-KO mice. Quantitative RT-PCR assays detected CB2 mRNA expression using probes that targeted upstream or downstream gene sequences but not the probe that targeted the gene-deleted sequence in Deltagen or Zimmer CB2-KO mice. These findings suggest that none of the tested four polyclonal antibodies are highly mouse CB2R-specific. Non-specific binding may be related to the expression of mutant or truncated CB2R-like proteins in partial CB2-KO mice and the use of anti-rat CB2 antibodies because the epitopes are different between rat and mouse CB2Rs.
Collapse
|
12
|
Role of the endocannabinoid system in drug addiction. Biochem Pharmacol 2018; 157:108-121. [PMID: 30217570 DOI: 10.1016/j.bcp.2018.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Drug addiction is a chronic relapsing disorder that produces a dramaticglobal health burden worldwide. Not effective treatment of drug addiction is currently available probably due to the difficulties to find an appropriate target to manage this complex disease raising the needs for further identification of novel therapeutic approaches. The endocannabinoid system has been found to play a crucial role in the neurobiological substrate underlying drug addiction. Endocannabinoids and cannabinoid receptors are widely expressed in the main areas of the mesocorticolimbic system that participate in the initiation and maintenance of drug consumption and in the development of compulsion and loss of behavioral control occurring during drug addiction. The identification of the important role played by CB1 cannabinoid receptors in drug addiction encouraged the possible used of an early commercialized CB1 receptor antagonist for treating drug addiction. However, the incidence of serious psychiatric adverse events leaded to the sudden withdrawal from the market of this CB1 antagonist and all the research programs developed by pharmaceutical companies to obtain new CB1 antagonists were stopped. Currently, new research strategies are under development to target the endocannabinoid system for drug addiction avoiding these side effects, which include allosteric negative modulators of CB1 receptors and compounds targeting CB2 receptors. Recent studies showing the potential role of CB2 receptors in the addictive properties of different drugs of abuse have open a promising research opportunity to develop novel possible therapeutic approaches.
Collapse
|
13
|
Avvisati R, Meringolo M, Stendardo E, Malavasi E, Marinelli S, Badiani A. Intravenous self-administration of benzydamine, a non-steroidal anti-inflammatory drug with a central cannabinoidergic mechanism of action. Addict Biol 2018; 23:610-619. [PMID: 28429885 DOI: 10.1111/adb.12516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 11/27/2022]
Abstract
Benzydamine (BZY) is a non-steroidal anti-inflammatory drug used for the topical treatment of inflammations of the oral and vaginal mucosae. Virtually nothing is known about the central pharmacological actions of BZY. Yet there are reports of voluntary systemic overdosage of BZY in drug addicts, resulting in a euphoric, hallucinatory state. In the present study, we investigated the reinforcing properties of BZY in a rat self-administration paradigm. We found that BZY has a powerful reinforcing effect and that this effect is greatly facilitated in animals that already had substance experience, having previously self-administered heroin and cocaine, indicating cross sensitization between BZY and other common drugs of abuse. We then assessed the effect of BZY on prelimbic cortex-to-nucleus accumbens glutamatergic transmission, using field recordings in rat parasagittal brain slices. BZY dose-dependently reduced both field excitatory post synaptic potential amplitude and paired pulse ratio, suggesting a presynaptic mechanism of action. Similarly to the in vivo paradigm, also the electrophysiological effects of BZY were potentiated in slices from animals that had undergone cocaine and heroin self-administration. Furthermore, BZY-induced Long Term Depression (LTD)-like responses in the prelimbic cortex-to-nucleus accumbens circuitry were significantly reduced in the presence of the CB1 receptor antagonist AM251. These findings provide firm evidence of the abuse liability of BZY and suggest a possible cannabinoidergic mechanism of action. Further research is needed in order to give insights into the molecular mechanism underlying BZY psychoactive and reinforcing effects, to better understand its abuse potential.
Collapse
Affiliation(s)
- Riccardo Avvisati
- Department of Physiology and Pharmacology; Sapienza University of Rome; Italy
- Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology; University of Sussex; UK
| | - Maria Meringolo
- Department of Physiology and Pharmacology; Sapienza University of Rome; Italy
| | - Emiliana Stendardo
- Department of Physiology and Pharmacology; Sapienza University of Rome; Italy
| | - Elisa Malavasi
- Department of Physiology and Pharmacology; Sapienza University of Rome; Italy
| | | | - Aldo Badiani
- Department of Physiology and Pharmacology; Sapienza University of Rome; Italy
- Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology; University of Sussex; UK
| |
Collapse
|
14
|
Castilla-Ortega E, Ladrón de Guevara-Miranda D, Serrano A, Pavón FJ, Suárez J, Rodríguez de Fonseca F, Santín LJ. The impact of cocaine on adult hippocampal neurogenesis: Potential neurobiological mechanisms and contributions to maladaptive cognition in cocaine addiction disorder. Biochem Pharmacol 2017; 141:100-117. [DOI: 10.1016/j.bcp.2017.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
|
15
|
Chen DJ, Gao M, Gao FF, Su QX, Wu J. Brain cannabinoid receptor 2: expression, function and modulation. Acta Pharmacol Sin 2017; 38:312-316. [PMID: 28065934 PMCID: PMC5342669 DOI: 10.1038/aps.2016.149] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023]
Abstract
Cannabis sativa (marijuana) is a fibrous flowering plant that produces an abundant variety of molecules, some with psychoactive effects. At least 4% of the world's adult population uses cannabis annually, making it one of the most frequently used illicit drugs in the world. The psychoactive effects of cannabis are mediated primarily through cannabinoid receptor (CBR) subtypes. The prevailing view is that CB1Rs are mainly expressed in the central neurons, whereas CB2Rs are predominantly expressed in peripheral immune cells. However, this traditional view has been challenged by emerging strong evidence that shows CB2Rs are moderately expressed and function in specific brain areas. New evidence has demonstrated that brain CB2Rs modulate animal drug-seeking behaviors, suggesting that these receptors may exist in brain regions that regulate drug addiction. Recently, we further confirmed that functional CB2Rs are expressed in mouse ventral tegmental area (VTA) dopamine (DA) neurons and that the activation of VTA CB2Rs reduces neuronal excitability and cocaine-seeking behavior. In addition, CB2R-mediated modulation of hippocampal CA3 neuronal excitability and network synchronization has been reported. Here, we briefly summarize recent lines of evidence showing how CB2Rs modulate function and pathophysiology in the CNS.
Collapse
Affiliation(s)
- De-jie Chen
- Department of Neurology, Yunfu People's Hospital, Yunfu 527300, China
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013–4409, USA
| | - Ming Gao
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013–4409, USA
| | - Fen-fei Gao
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013–4409, USA
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Quan-xi Su
- Department of Neurology, Yunfu People's Hospital, Yunfu 527300, China
| | - Jie Wu
- Department of Neurology, Yunfu People's Hospital, Yunfu 527300, China
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013–4409, USA
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- E-mail
| |
Collapse
|
16
|
Reddy IA, Pino JA, Weikop P, Osses N, Sørensen G, Bering T, Valle C, Bluett RJ, Erreger K, Wortwein G, Reyes JG, Graham D, Stanwood GD, Hackett TA, Patel S, Fink-Jensen A, Torres GE, Galli A. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels. Transl Psychiatry 2016; 6:e809. [PMID: 27187231 PMCID: PMC5070047 DOI: 10.1038/tp.2016.86] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/19/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA.
Collapse
Affiliation(s)
- I A Reddy
- Neuroscience Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J A Pino
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - P Weikop
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Centre Copenhagen, University Hospital Copenhagen, Copenhagen, Denmark
| | - N Osses
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - G Sørensen
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Centre Copenhagen, University Hospital Copenhagen, Copenhagen, Denmark
| | - T Bering
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - C Valle
- Departamento de Ciencias Básicas, Universidad de Viña del Mar, Viña del Mar, Chile
| | - R J Bluett
- Neuroscience Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - K Erreger
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - G Wortwein
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - J G Reyes
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - D Graham
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University, Tallahassee, FL, USA
| | - G D Stanwood
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University, Tallahassee, FL, USA
| | - T A Hackett
- Neuroscience Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S Patel
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - A Fink-Jensen
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Centre Copenhagen, University Hospital Copenhagen, Copenhagen, Denmark
| | - G E Torres
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - A Galli
- Neuroscience Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Blanco E, Galeano P, Palomino A, Pavón FJ, Rivera P, Serrano A, Alen F, Rubio L, Vargas A, Castilla-Ortega E, Decara J, Bilbao A, de Fonseca FR, Suárez J. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus. Eur Neuropsychopharmacol 2016; 26:477-92. [PMID: 26811312 DOI: 10.1016/j.euroneuro.2015.12.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/15/2015] [Accepted: 12/29/2015] [Indexed: 02/02/2023]
Abstract
In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could contribute to the specifically increased GluN1 expression observed in the hippocampus of cocaine-sensitized mice.
Collapse
Affiliation(s)
- Eduardo Blanco
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain; Departament de Pedagogia i Psicologia, Facultat d׳Educació, Psicologia i Treball Social, Universitat de Lleida, Avda. de l'Estudi General 4, 25001, Lleida, Spain.
| | - Pablo Galeano
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Fundación Instituto Leloir, Avda. Patricias Argentinas 435, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ana Palomino
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Patricia Rivera
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Francisco Alen
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Leticia Rubio
- Departamento de Anatomía y Medicina Legal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain.
| | - Antonio Vargas
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Juan Decara
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Ainhoa Bilbao
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Heidelberg, Germany.
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| |
Collapse
|
18
|
Cadoni C. Fischer 344 and Lewis Rat Strains as a Model of Genetic Vulnerability to Drug Addiction. Front Neurosci 2016; 10:13. [PMID: 26903787 PMCID: PMC4746315 DOI: 10.3389/fnins.2016.00013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/11/2016] [Indexed: 01/02/2023] Open
Abstract
Today it is well acknowledged that both nature and nurture play important roles in the genesis of psychopathologies, including drug addiction. Increasing evidence suggests that genetic factors contribute for at least 40–60% of the variation in liability to drug dependence. Human genetic studies suggest that multiple genes of small effect, rather than single genes, contribute to the genesis of behavioral psychopathologies. Therefore, the use of inbred rat strains might provide a valuable tool to identify differences, linked to genotype, important in liability to addiction and related disorders. In this regard, Lewis and Fischer 344 inbred rats have been proposed as a model of genetic vulnerability to drug addiction, given their innate differences in sensitivity to the reinforcing and rewarding effects of drugs of abuse, as well their different responsiveness to stressful stimuli. This review will provide evidence in support of this model for the study of the genetic influence on addiction vulnerability, with particular emphasis on differences in mesolimbic dopamine (DA) transmission, rewarding and emotional function. It will be highlighted that Lewis and Fischer 344 rats differ not only in several indices of DA transmission and adaptive changes following repeated drug exposure, but also in hypothalamic-pituitary-adrenal (HPA) axis responsiveness, influencing not only the ability of the individual to cope with stressful events, but also interfering with rewarding and motivational processes, given the influence of corticosteroids on dopamine neuron functionality. Further differences between the two strains, as impulsivity or anxiousness, might contribute to their different proneness to addiction, and likely these features might be linked to their different DA neurotransmission plasticity. Although differences in other neurotransmitter systems might deserve further investigation, results from the reviewed studies might open new vistas in understanding aberrant deviations in reward and motivational functions.
Collapse
Affiliation(s)
- Cristina Cadoni
- Institute of Neuroscience, Cagliari Section, Department of Biomedical Sciences, National Research Council of ItalyCagliari, Italy; Centre of Excellence "Neurobiology of Dependence", University of CagliariCagliari, Italy
| |
Collapse
|
19
|
Valenza M, Picetti R, Yuferov V, Butelman ER, Kreek MJ. Strain and cocaine-induced differential opioid gene expression may predispose Lewis but not Fischer rats to escalate cocaine self-administration. Neuropharmacology 2016; 105:639-650. [PMID: 26777278 DOI: 10.1016/j.neuropharm.2016.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/11/2015] [Accepted: 01/03/2016] [Indexed: 11/24/2022]
Abstract
The aim of the present study was to investigate alterations in gene expression of opioid system components induced by extended access (18 h) cocaine self-administration and to determine the impact of genetic background in the vulnerability to escalate cocaine intake. Comparing two inbred rat strains, we previously reported that Lewis rats progressively escalated cocaine consumption compared to Fischer rats, in a new translational model of intravenous cocaine self-administration, which included 14 sessions of 18-h operant sessions in which rats were allowed to select the cocaine unit dose to self-administer. We compare here Fischer and Lewis rats in the gene expression of endogenous opioid peptides (Pomc, Penk, Pdyn) and cognate receptors (Oprm, Oprk and Oprd) in reward-related brain regions, after exposure to either cocaine self-administration or yoked-saline, in the aforementioned translational paradigm. We performed a correlation analysis between the mRNA level, found in the Dorsal Striatum (DS), Nucleus accumbens (NAcc) shell and core respectively, and individual cocaine intake. Our findings show that the gene expression of all the aforementioned opioid genes exhibit strain-dependent differences in the DS, in absence of cocaine exposure. Also, different strain-specific cocaine-induced mRNA expression of Oprm and Oprk was found in DS. Only few differences were found in the ventral parts of the striatum. Moreover, gene expression level of Pdyn, Penk, Oprk, and Oprm in the DS was significantly correlated with cocaine intake only in Fischer rats. Overall, these data shed light on potential genetic differences which may predispose of subjects to initiate and escalate cocaine consumption.
Collapse
Affiliation(s)
- Marta Valenza
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA.
| | - Roberto Picetti
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA; Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| |
Collapse
|
20
|
Abstract
Brain endocannabinoid (eCB) signalling influences the motivation for natural rewards (such as palatable food, sexual activity and social interaction) and modulates the rewarding effects of addictive drugs. Pathological forms of natural and drug-induced reward are associated with dysregulated eCB signalling that may derive from pre-existing genetic factors or from prolonged drug exposure. Impaired eCB signalling contributes to dysregulated synaptic plasticity, increased stress responsivity, negative emotional states and cravings that propel addiction. Understanding the contributions of eCB disruptions to behavioural and physiological traits provides insight into the eCB influence on addiction vulnerability.
Collapse
Affiliation(s)
- Loren H Parsons
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Yasmin L Hurd
- Friedman Brain Institute, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York City, New York 10029, USA
| |
Collapse
|
21
|
Species differences in cannabinoid receptor 2 and receptor responses to cocaine self-administration in mice and rats. Neuropsychopharmacology 2015; 40:1037-51. [PMID: 25374096 PMCID: PMC4330519 DOI: 10.1038/npp.2014.297] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 01/06/2023]
Abstract
The discovery of functional cannabinoid receptors 2 (CB2Rs) in brain suggests a potential new therapeutic target for neurological and psychiatric disorders. However, recent findings in experimental animals appear controversial. Here we report that there are significant species differences in CB2R mRNA splicing and expression, protein sequences, and receptor responses to CB2R ligands in mice and rats. Systemic administration of JWH133, a highly selective CB2R agonist, significantly and dose-dependently inhibited intravenous cocaine self-administration under a fixed ratio (FR) schedule of reinforcement in mice, but not in rats. However, under a progressive ratio (PR) schedule of reinforcement, JWH133 significantly increased breakpoint for cocaine self-administration in rats, but decreased it in mice. To explore the possible reasons for these conflicting findings, we examined CB2R gene expression and receptor structure in the brain. We found novel rat-specific CB2C and CB2D mRNA isoforms in addition to CB2A and CB2B mRNA isoforms. In situ hybridization RNAscope assays found higher levels of CB2R mRNA in different brain regions and cell types in mice than in rats. By comparing CB2R-encoding regions, we observed a premature stop codon in the mouse CB2R gene that truncated 13 amino-acid residues including a functional autophosphorylation site in the intracellular C-terminus. These findings suggest that species differences in the splicing and expression of CB2R genes and receptor structures may in part explain the different effects of CB2R-selective ligands on cocaine self-administration in mice and rats.
Collapse
|
22
|
Laricchiuta D, Petrosini L. Individual differences in response to positive and negative stimuli: endocannabinoid-based insight on approach and avoidance behaviors. Front Syst Neurosci 2014; 8:238. [PMID: 25565991 PMCID: PMC4273613 DOI: 10.3389/fnsys.2014.00238] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/28/2014] [Indexed: 01/12/2023] Open
Abstract
Approach and avoidance behaviors-the primary responses to the environmental stimuli of danger, novelty and reward-are associated with the brain structures that mediate cognitive functionality, reward sensitivity and emotional expression. Individual differences in approach and avoidance behaviors are modulated by the functioning of amygdaloid-hypothalamic-striatal and striatal-cerebellar networks implicated in action and reaction to salient stimuli. The nodes of these networks are strongly interconnected and by acting on them the endocannabinoid and dopaminergic systems increase the intensity of appetitive or defensive motivation. This review analyzes the approach and avoidance behaviors in humans and rodents, addresses neurobiological and neurochemical aspects of these behaviors, and proposes a possible synaptic plasticity mechanism, related to endocannabinoid-dependent long-term potentiation (LTP) and depression that allows responding to salient positive and negative stimuli.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- IRCCS Fondazione Santa LuciaRome, Italy
- Department of Dynamic and Clinical Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa LuciaRome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| |
Collapse
|
23
|
Blanco E, Pavón FJ, Palomino A, Luque-Rojas MJ, Serrano A, Rivera P, Bilbao A, Alen F, Vida M, Suárez J, Rodríguez de Fonseca F. Cocaine-induced behavioral sensitization is associated with changes in the expression of endocannabinoid and glutamatergic signaling systems in the mouse prefrontal cortex. Int J Neuropsychopharmacol 2014; 18:pyu024. [PMID: 25539508 PMCID: PMC4368868 DOI: 10.1093/ijnp/pyu024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Endocannabinoids modulate the glutamatergic excitatory transmission by acting as retrograde messengers. A growing body of studies has reported that both signaling systems in the mesocorticolimbic neural circuitry are involved in the neurobiological mechanisms underlying drug addiction. METHODS We investigated whether the expression of both endocannabinoid and glutamatergic systems in the prefrontal cortex (PFC) were altered by an acute and/or repeated cocaine administration schedule that resulted in behavioral sensitization. We measured the protein and mRNA expression of the main endocannabinoid metabolic enzymes and the cannabinoid receptor type 1 (CB1). We also analyzed the mRNA expression of relevant components of the glutamate-signaling system, including glutamate-synthesizing enzymes, metabotropic receptors, and ionotropic receptors. RESULTS Although acute cocaine (10 mg/kg) produced no significant changes in the endocannabinoid-related proteins, repeated cocaine administration (20 mg/kg daily) induced a pronounced increase in the CB1 receptor expression. In addition, acute cocaine administration (10 mg/kg) in cocaine-sensitized mice (referred to as cocaine priming) induced a selective increase in the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). These protein changes were accompanied by an overall decrease in the ratios of endocannabinoid synthesis/degradation, especially the N-acyl phosphatidylethanolamine phospholipase D/FAAH and diacylglycerol lipase alpha/MAGL ratios. Regarding mRNA expression, while acute cocaine administration produced a decrease in CB1 receptors and N-acyl phosphatidylethanolamine phospholipase D, repeated cocaine treatment enhanced CB1 receptor expression. Cocaine-sensitized mice that were administered priming injections of cocaine mainly displayed an increased FAAH expression. These endocannabinoid changes were associated with modifications in glutamatergic transmission-related genes. An overall decrease was observed in the mRNA expression of the glutamate-synthesizing gene kidney-type glutaminase (KGA), the metabotropic glutamate receptors (mGluR3 and GluR), and subunits of NMDA ionotropic receptors (NR1, NR2A, NR2B and NR2C) after acute cocaine administration, while mice repeatedly exposed to cocaine only displayed an increase in NR2C. However, in cocaine-sensitized mice primed with cocaine, this inhibition was reversed and a strong increase was detected in the mGluR5, NR2 subunits, and both GluR1 and GluR3. CONCLUSIONS These findings indicate that cocaine sensitization is associated with an endocannabinoid downregulation and a hyperglutamatergic state in the PFC that, overall, contribute to an enhanced glutamatergic input into PFC-projecting areas.
Collapse
Affiliation(s)
| | | | - Ana Palomino
- * These authors contributed equally as first authors
| | | | | | | | | | | | | | | | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA-Hospital Regional Universitario de Málaga, Málaga, Spain (Drs Blanco, Pavón, Palomino, Luque-Rojas, Serrano, Rivera, Alen, Vida, Suárez, and de Fonseca); Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain (Dr Blanco); Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany (Dr Bilbao).
| |
Collapse
|
24
|
Strain differences in the expression of endocannabinoid genes and in cannabinoid receptor binding in the brain of Lewis and Fischer 344 rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53:15-22. [PMID: 24607771 DOI: 10.1016/j.pnpbp.2014.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 01/27/2023]
Abstract
The Lewis (LEW) and Fischer 344 (F344) rat strains have been proposed as a model to study certain genetic influences on drug use. These strains differ in terms of the self-administration of several drugs, and in their expression of various components of the dopaminergic, glutamatergic, GABAergic and endogenous opioid neurotransmitter systems. As the endocannabinoid system is linked to these systems, we investigated whether these two strains exhibit differences in cannabinoid receptor binding and in the expression of cannabinoid-related genes. Quantitative autoradiography of [(3)H]-CP 55,940 binding levels and real-time PCR assays were used. F344 rats displayed higher levels of cannabinoid receptor binding in the lateral globus pallidus and weaker CNR1 gene expression in the prefrontal cortex (PFc) than LEW rats. Moreover, the N-acyl phosphatidylethanolamine-specific phospholipase D/fatty acid amide hydrolase ratio was greater in the PFc and NAcc of F344 rats. Our results suggest that the endocannabinoid system may be a mediator of the individual differences that exist in the susceptibility to the rewarding effects of drugs of abuse.
Collapse
|
25
|
Bystrowska B, Smaga I, Frankowska M, Filip M. Changes in endocannabinoid and N-acylethanolamine levels in rat brain structures following cocaine self-administration and extinction training. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:1-10. [PMID: 24334211 DOI: 10.1016/j.pnpbp.2013.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/25/2013] [Accepted: 12/05/2013] [Indexed: 12/14/2022]
Abstract
Preclinical investigations have demonstrated that drugs of abuse alter the levels of lipid-based signalling molecules, including endocannabinoids (eCBs) and N-acylethanolamines (NAEs), in the rodent brain. In addition, several drugs targeting eCBs and/or NAEs are implicated in reward and/or seeking behaviours related to the stimulation of dopamine systems in the brain. In our study, the brain levels of eCBs (anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and NAEs (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)) were analyzed via an LC-MS/MS method in selected brain structures of rats during cocaine self-administration and after extinction training according to the "yoked" control procedure. Repeated (14days) cocaine (0.5mg/kg/infusion) self-administration and yoked drug delivery resulted in a significant decrease (ca. 52%) in AEA levels in the cerebellum, whereas levels of 2-AG increased in the frontal cortex, the hippocampus and the cerebellum and decreased in the hippocampus and the dorsal striatum. In addition, we detected increases (>150%) in the levels of OEA and PEA in the limbic areas in both cocaine treated groups, as well as an increase in the tissue levels of OEA in the dorsal striatum in only the yoked cocaine group and increases in the tissue levels of PEA in the dorsal striatum (both cocaine groups) and the nucleus accumbens (yoked cocaine group only). Compared to the yoked saline control group, extinction training (10days) resulted in a potent reduction in AEA levels in the frontal cortex, the hippocampus and the nucleus accumbens and in 2-AG levels in the hippocampus, the dorsal striatum and the cerebellum. The decreases in the limbic and subcortical areas were more apparent for rats that self-administered cocaine. Following extinction, there was a region-specific change in the levels of NAEs in rats previously injected with cocaine; a potent increase (ca. 100%) in the levels of OEA and PEA was detected in the prefrontal cortex and the hippocampus, whilst a drop was noted in the striatal areas versus yoked saline yoked animals. Our findings support the previous pharmacological evidence that the eCB system and NAEs are involved in reinforcement and extinction of positively reinforced behaviours and that these lipid-derived molecules may represent promising targets for the development of new treatments for drug addiction.
Collapse
Affiliation(s)
- Beata Bystrowska
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Irena Smaga
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland
| | - Małgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - Małgorzata Filip
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland; Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
26
|
Palomino A, Pavón FJ, Blanco-Calvo E, Serrano A, Arrabal S, Rivera P, Alén F, Vargas A, Bilbao A, Rubio L, Rodríguez de Fonseca F, Suárez J. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum. Front Integr Neurosci 2014; 8:22. [PMID: 24634647 PMCID: PMC3943208 DOI: 10.3389/fnint.2014.00022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/17/2014] [Indexed: 12/22/2022] Open
Abstract
Growing awareness of cerebellar involvement in addiction is based on the cerebellum's intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and glutamate systems. Repeated cocaine results in normalization of glutamate receptor expression, although sustained changes in eCB is observed. We suggest that cocaine-induced alterations to cerebellar eCB should be considered when analyzing the adaptations imposed by psychostimulants that lead to addiction.
Collapse
Affiliation(s)
- Ana Palomino
- Laboratorio de Investigación (Unidad de Gestión Clínica de Salud Mental), Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Francisco-Javier Pavón
- Laboratorio de Investigación (Unidad de Gestión Clínica de Salud Mental), Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Eduardo Blanco-Calvo
- Laboratorio de Investigación (Unidad de Gestión Clínica de Salud Mental), Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain ; Departament de Pedagogia i Psicologia, Facultat de Ciències de l'Educació, Universitat de Lleida Lleida, Spain
| | - Antonia Serrano
- Laboratorio de Investigación (Unidad de Gestión Clínica de Salud Mental), Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Sergio Arrabal
- Laboratorio de Investigación (Unidad de Gestión Clínica de Salud Mental), Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Patricia Rivera
- Laboratorio de Investigación (Unidad de Gestión Clínica de Salud Mental), Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense Madrid, Spain
| | - Antonio Vargas
- Laboratorio de Investigación (Unidad de Gestión Clínica de Salud Mental), Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Ainhoa Bilbao
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg Mannheim, Germany
| | - Leticia Rubio
- Departamento de Anatomía y Medicina Legal y Forense, Facultad de Medicina, Universidad de Málaga Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Investigación (Unidad de Gestión Clínica de Salud Mental), Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Juan Suárez
- Laboratorio de Investigación (Unidad de Gestión Clínica de Salud Mental), Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| |
Collapse
|
27
|
Pavón FJ, Araos P, Pastor A, Calado M, Pedraz M, Campos-Cloute R, Ruiz JJ, Serrano A, Blanco E, Rivera P, Suárez J, Romero-Cuevas M, Pujadas M, Vergara-Moragues E, Gornemann I, Torrens M, de la Torre R, Rodríguez de Fonseca F. Evaluation of plasma-free endocannabinoids and their congeners in abstinent cocaine addicts seeking outpatient treatment: impact of psychiatric co-morbidity. Addict Biol 2013; 18:955-69. [PMID: 24283982 DOI: 10.1111/adb.12107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cocaine is associated with serious health problems including psychiatric co-morbidity. There is a need for the identification of biomarkers for the stratification of cocaine-addicted subjects. Several studies have evaluated circulating endocannabinoid-related lipids as biomarkers of inflammatory, metabolic and mental disorders. However, little is known in substance use disorders. This study characterizes both free N-acyl-ethanolamines (NAEs) and 2-acyl-glycerols in abstinent cocaine addicts from outpatient treatment programs who were diagnosed with cocaine use disorder (CUD; n = 88), and age-/gender-/body mass-matched healthy control volunteers (n = 46). Substance and mental disorders that commonly occur with substance abuse were assessed by the semi-structured interview 'Psychiatric Research Interview for Substance and Mental Diseases' according to the 'Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision' (DSM-IV-TR) and plasma-free acyl derivatives were quantified by a liquid chromatography-tandem mass spectrometry system. The results indicate that plasma acyl derivatives are altered in abstinent cocaine-addicted subjects with CUD (CUD subjects). While NAEs were found to be increased, 2-acyl-glycerols were decreased in CUD subjects compared with controls. Multivariate predictive models based on these lipids as explanatory variables were developed to distinguish CUD subjects from controls providing high discriminatory power. However, these alterations were not influenced by the DSM-IV-TR criteria for cocaine abuse and dependence as cocaine trait severity measure. In contrast, we observed that some free acyl derivatives in CUD subjects were found to be affected by the diagnosis of some co-morbid psychiatric disorders. Thus, we found that the monounsaturated NAEs were significantly elevated in CUD subjects diagnosed with mood [N-oleoyl-ethanolamine and N-palmitoleoyl-ethanolamine (POEA)] and anxiety (POEA) disorders compared with non-co-morbid CUD subjects. Interestingly, the coexistence of alcohol use disorders did not influence the circulating levels of these free acyl derivatives. In summary, we have identified plasma-free acyl derivatives that might serve as reliable biomarkers for CUD. Furthermore, we found that monounsaturated NAE levels are also enhanced by co-morbid mood and anxiety disorders in cocaine addicts. These findings open the way for the development of new strategies for cocaine addiction diagnosis and treatment.
Collapse
Affiliation(s)
- Francisco Javier Pavón
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Pedro Araos
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Antoni Pastor
- Neurosciences Programme; Institut Hospital del Mar d'Investigacions Mediques (IMIM); Spain
- Facultat de Medicina; Universitat Autonoma de Barcelona; Spain
| | - Montserrat Calado
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - María Pedraz
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | | | | | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Eduardo Blanco
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento; Facultad de Psicología; Universidad de Málaga; Spain
| | - Patricia Rivera
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Miguel Romero-Cuevas
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Mitona Pujadas
- Neurosciences Programme; Institut Hospital del Mar d'Investigacions Mediques (IMIM); Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03); CIBEROBN; Spain
| | - Esperanza Vergara-Moragues
- Grupo de Investigación de Neuropsicología y Psiconeuroinmunología Clínica; Universidad de Granada; Spain
| | - Isolde Gornemann
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Marta Torrens
- Neurosciences Programme; Institut Hospital del Mar d'Investigacions Mediques (IMIM); Spain
- Facultat de Medicina; Universitat Autonoma de Barcelona; Spain
- Institut de Neuropsiquiatria i Addiccions (INAD) del Parc de Salut MAR; Spain
| | - Rafael de la Torre
- Neurosciences Programme; Institut Hospital del Mar d'Investigacions Mediques (IMIM); Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03); CIBEROBN; Spain
- Facultat de Ciencies de la Salut i de la Vida; Universitat Pompeu Fabra (CEXS-UPF); Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03); CIBEROBN; Spain
| |
Collapse
|
28
|
Miguéns M, Kastanauskaite A, Coria SM, Selvas A, Ballesteros-Yañez I, DeFelipe J, Ambrosio E. The effects of cocaine self-administration on dendritic spine density in the rat hippocampus are dependent on genetic background. ACTA ACUST UNITED AC 2013; 25:56-65. [PMID: 23966583 DOI: 10.1093/cercor/bht200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chronic exposure to cocaine induces modifications to neurons in the brain regions involved in addiction. Hence, we evaluated cocaine-induced changes in the hippocampal CA1 field in Fischer 344 (F344) and Lewis (LEW) rats, 2 strains that have been widely used to study genetic predisposition to drug addiction, by combining intracellular Lucifer yellow injection with confocal microscopy reconstruction of labeled neurons. Specifically, we examined the effects of cocaine self-administration on the structure, size, and branching complexity of the apical dendrites of CA1 pyramidal neurons. In addition, we quantified spine density in the collaterals of the apical dendritic arbors of these neurons. We found differences between these strains in several morphological parameters. For example, CA1 apical dendrites were more branched and complex in LEW than in F344 rats, while the spine density in the collateral dendrites of the apical dendritic arbors was greater in F344 rats. Interestingly, cocaine self-administration in LEW rats augmented the spine density, an effect that was not observed in the F344 strain. These results reveal significant structural differences in CA1 pyramidal cells between these strains and indicate that cocaine self-administration has a distinct effect on neuron morphology in the hippocampus of rats with different genetic backgrounds.
Collapse
Affiliation(s)
- Miguel Miguéns
- Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, Madrid 28040, Spain Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Asta Kastanauskaite
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Santiago M Coria
- Departamento de Psicobiología, Facultad de Psicología, UNED, Madrid 28040, Spain
| | - Abraham Selvas
- Departamento de Psicobiología, Facultad de Psicología, UNED, Madrid 28040, Spain
| | | | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain Instituto Cajal (CSIC), Madrid 28002, Spain and Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, UNED, Madrid 28040, Spain
| |
Collapse
|