1
|
Dagher D, Malaeb D, Dabbous M, Sakr F, El Khatib S, Hallit R, Fekih-Romdhane F, Obeid S, Hallit S. The moderating effect of resilience in the association between insomnia severity and PTSD symptoms in Lebanese adolescents in the aftermath of the 2023 earthquake. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:878-889. [PMID: 38944752 DOI: 10.1080/09603123.2024.2373997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
The interplay between insomnia and PTSD symptoms remains misunderstood, and seems to be influenced by other factors like individual resilience. Our study examined the moderating role of resilience in the relationship between insomnia and PTSD symptoms among a sample of Lebanese adolescents, in the aftermath of the 2023 earthquake. This cross sectional study, conducted in April, 2 months after the earthquake, enrolled 546 Lebanese adolescents. We used the Sleep Self Report, the Resilience Scale for Adolescents and the 13-item Children's Impact of Event Scale. The interaction insomnia severity by resilience was significantly associated with PTSD scores. At low, moderate and high resilience levels, higher insomnia severity was significantly associated with lower PTSD. Resilience moderated the relationship between insomnia and PTSD, mitigating the detrimental impact of disrupted sleep on PTSD symptoms. This data can guide healthcare administrators and psychiatric caregivers in classifying risk factors and implementing interventions to predict PTSD development.
Collapse
Affiliation(s)
- Dina Dagher
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Diana Malaeb
- College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Mariam Dabbous
- School of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Fouad Sakr
- School of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Sami El Khatib
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology (GUST), Hawally, Kuwait
| | - Rabih Hallit
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
- Department of Infectious Disease, Bellevue Medical Center, Mansourieh, Lebanon
- Department of Infectious Disease, Notre Dame des Secours University Hospital, Byblos, Lebanon
| | - Feten Fekih-Romdhane
- The Tunisian Center of Early Intervention in Psychosis, Department of Psychiatry "Ibn Omrane", Razi Hospital, Manouba, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Sahar Obeid
- School of Arts and Sciences, Social and Education Sciences Department, Lebanese American University, Jbeil, Lebanon
| | - Souheil Hallit
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
- Department of Psychology, College of Humanities, Effat University, Jeddah, Saudi Arabia
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| |
Collapse
|
2
|
Banushi B, Collova J, Milroy H. Epigenetic Echoes: Bridging Nature, Nurture, and Healing Across Generations. Int J Mol Sci 2025; 26:3075. [PMID: 40243774 PMCID: PMC11989090 DOI: 10.3390/ijms26073075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Trauma can impact individuals within a generation (intragenerational) and future generations (transgenerational) through a complex interplay of biological and environmental factors. This review explores the epigenetic mechanisms that have been correlated with the effects of trauma across generations, including DNA methylation, histone modifications, and non-coding RNAs. These mechanisms can regulate the expression of stress-related genes (such as the glucocorticoid receptor (NR3C1) and FK506 binding protein 5 (FKBP5) gene), linking trauma to biological pathways that may affect long-term stress regulation and health outcomes. Although research using model organisms has elucidated potential epigenetic mechanisms underlying the intergenerational effects of trauma, applying these findings to human populations remains challenging due to confounding variables, methodological limitations, and ethical considerations. This complexity is compounded by difficulties in establishing causality and in disentangling epigenetic influences from shared environmental factors. Emerging therapies, such as psychedelic-assisted treatments and mind-body interventions, offer promising avenues to address both the psychological and potential epigenetic aspects of trauma. However, translating these findings into effective interventions will require interdisciplinary methods and culturally sensitive approaches. Enriched environments, cultural reconnection, and psychosocial interventions have shown the potential to mitigate trauma's impacts within and across generations. By integrating biological, social, and cultural perspectives, this review highlights the critical importance of interdisciplinary frameworks in breaking cycles of trauma, fostering resilience, and advancing comprehensive healing across generations.
Collapse
Affiliation(s)
- Blerida Banushi
- School of Indigenous Studies, The University of Western Australia, Crawley, WA 6009, Australia; (J.C.); (H.M.)
| | | | | |
Collapse
|
3
|
Amiri M, Mikal ZM, Sadeghi E, Khosravi A. The prevalence of posttraumatic stress disorder and its correlation with health beliefs among medical students. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2025; 14:25. [PMID: 40104344 PMCID: PMC11918283 DOI: 10.4103/jehp.jehp_1625_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 03/20/2025]
Abstract
BACKGROUND Prolonged exposure to chronic stressors, such as the ongoing COVID-19 pandemic, heightens the likelihood of experiencing various physical and mental health complications, including developing posttraumatic stress disorder (PTSD). The objective of the current study was to assess the prevalence of PTSD and examine its association with health beliefs among students enrolled in the Shahroud University of Medical Sciences. MATERIALS AND METHODS This cross-sectional study was conducted in 2022 and involved 350 students from diverse medical sciences. The participants were selected using a multistage stratified random sampling method. The study utilized health belief and PTSD questionnaires to collect data. The data were analyzed using analysis of variance (ANOVA), Chi-square, and multiple regression models. RESULTS The average PTSD score among students was 43.3 ± 13.1. It was shown that 81 (23.8%) individuals had a lower score of PTSD. Furthermore, 161 (47.3%) were determined to have moderate levels of PTSD, while 99 (29%) had severe levels of PTSD. The average health beliefs score was 97.4 ± 15.0 out of 184, indicating moderate health views. The findings show a correlation between more outstanding total scores on health behaviors and a lower average score on PTSD. Regarding variables, it was discovered that Ph.D. and professional doctorate students had higher PTSD ratings than undergraduate students. Individuals with weaker economic means had a 4.6-point higher average PTSD score than those with a monthly income exceeding $300. Furthermore, people with moderate to high anxiety levels due to COVID-19 had a considerably higher average PTSD score, roughly 13.3 higher, than those who experienced lower stress levels. CONCLUSION The findings indicate a negative correlation between the total score of health behaviors and the average score of PTSD. Furthermore, the variables of educational level, impoverished economic status, and anxiety induced by the COVID-19 pandemic emerged as significant predictors of elevated scores on the PTSD scale. In order to increase psychological health and reduce PTSD in students, this research suggests teaching health principles in the context of COVID-19.
Collapse
Affiliation(s)
- Mohammad Amiri
- Department of Public Health, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zahra Mehmannavaz Mikal
- Student Research Committee, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Elham Sadeghi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Khosravi
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
4
|
Minshall BL, Skipper RA, Riddle CA, Wasylyshyn CF, Claflin DI, Quinn JJ. Sex differences in acute early life stress-enhanced fear learning in adult rats. Dev Psychobiol 2024; 66:e22511. [PMID: 38837722 DOI: 10.1002/dev.22511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Patients diagnosed with posttraumatic stress disorder (PTSD) present with a spectrum of debilitating anxiety symptoms resulting from exposure to trauma. Women are twice as likely to be diagnosed with anxiety and PTSD compared to men; however, the reason for this vulnerability remains unknown. We conducted four experiments where we first demonstrated a female vulnerability to stress-enhanced fear learning (SEFL) with a moderate, acute early life stress (aELS) exposure (4 footshocks in a single session), compared to a more intense aELS exposure (15 footshocks in a single session) where males and females demonstrated comparable SEFL. Next, we demonstrated that this female vulnerability does not result from differences in footshock reactivity or contextual fear conditioning during the aELS exposure. Finally, using gonadectomy or sham surgeries in adult male and female rats, we showed that circulating levels of gonadal steroid hormones at the time of adult fear conditioning do not explain the female vulnerability to SEFL. Additional research is needed to determine whether this vulnerability can be explained by organizational effects of gonadal steroid hormones or differences in sex chromosome gene expression. Doing so is critical for a better understanding of increased female vulnerability to certain psychiatric diseases.
Collapse
Affiliation(s)
- Brianna L Minshall
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Rachel A Skipper
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Collin A Riddle
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Catherine F Wasylyshyn
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Dragana I Claflin
- Department of Psychology, Wright State University, Dayton, Ohio, USA
| | - Jennifer J Quinn
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| |
Collapse
|
5
|
Chen HW, Zhou R, Cao BF, Liu K, Zhong Q, Huang YN, Liu HM, Zhao JQ, Wu XB. The predictive, preventive, and personalized medicine of insomnia: gut microbiota and inflammation. EPMA J 2023; 14:571-583. [PMID: 38094575 PMCID: PMC10713890 DOI: 10.1007/s13167-023-00345-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/21/2023] [Indexed: 12/05/2024]
Abstract
Background The human gut microbiota (GM) has been recognized as a significant factor in the development of insomnia, primarily through inflammatory pathways, making it a promising target for therapeutic interventions. Considering the principles of primary prediction, targeted prevention, and personalized treatment medicine (PPPM), identifying specific gut microbiota associated with insomnia and exploring the underlying mechanisms comprehensively are crucial steps towards achieving primary prediction, targeted prevention, and personalized treatment of insomnia. Working hypothesis and methodology We hypothesized that alterations in the composition of specific GM could induce insomnia through an inflammatory response, which postulates the existence of a GM-inflammation-insomnia pathway. Mendelian randomization (MR) analyses were employed to examine this pathway and explore the mediative effects of inflammation. We utilized genetic proxies representing GM, insomnia, and inflammatory indicators (including 41 circulating cytokines and C-reactive protein (CRP)), specifically identified from European ancestry. The primary method used to identify insomnia-related GM and examine the medicative effect of inflammation was the inverse variance weighted method, supplemented by the MR-Egger and weighted median methods. Our findings have the potential to identify individuals at risk of insomnia through screening for GM imbalances, leading to the development of targeted prevention and personalized treatment strategies for the condition. Results Nine genera and three circulating cytokines were identified to be associated with insomnia; only the associations of Clostridium (innocuum group) and β-NGF on insomnia remained significant after the FDR test, OR = 1.08 (95% CI = 1.04-1.12, P = 1.45 × 10-4, q = 0.02) and OR = 1.06 (95% CI = 1.02-1.10, P = 1.06 × 10-3, q = 0.04), respectively. CRP was associated with an increased risk of insomnia, OR = 1.05 (95% CI = 1.01-1.10, P = 6.42 × 10-3). CRP mediated the association of Coprococcus 1, Holdemania, and Rikenellaceae (RC9gut group) with insomnia. No heterogeneity or pleiotropy were detected. Conclusions Our study highlights the role of specific GM alterations in the development of insomnia and provides insights into the mediating effects of inflammation. Targeting these specific GM alterations presents a promising avenue for advancing the transition from reactive medicine to PPPM in managing insomnia, potentially leading to significant clinical benefits. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00345-1.
Collapse
Affiliation(s)
- Hao-Wen Chen
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| | - Rui Zhou
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| | - Bi-Fei Cao
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| | - Kuan Liu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| | - Qi Zhong
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| | - Yi-Ning Huang
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| | - Hua-Min Liu
- Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin-Qing Zhao
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| | - Xian-Bo Wu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| |
Collapse
|
6
|
EKMEKCİ HS, MUFTAREVİÇ S. Epigenetic Effects of Social Stress and Epigenetic Inheritance. PSIKIYATRIDE GUNCEL YAKLASIMLAR - CURRENT APPROACHES IN PSYCHIATRY 2023. [DOI: 10.18863/pgy.1059315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Social events that cause stress can cause epigenetic changes on living things. The study of the effects of social events experienced by an individual on epigenetic marks on the genome has created the field of social epigenetics. Social epigenetics examines the effects of psychosocial stress factors such as poverty, war trauma and childhood abuse on epigenetic mechanisms. Epigenetic mechanisms alter chemical markers in the genome structure without changing the DNA sequence. Among these mechanisms, DNA methylation in particular may have different phenotypic effects in response to stressors that may occur in the psychosocial environment. Post-traumatic stress disorder is one of the most significant proofs of the effects of epigenetic expressions altered due to traumatic events on the phenotype. The field of epigenetic inheritance has shown that epigenetic changes triggered by environmental influences can, in some cases, be transmitted through generations. This field provides a better understanding of the basis of many psychological disorders. This review provides an overview of social epigenetics, PTSD, and epigenetic inheritance.
Collapse
|
7
|
Fritz M, Soravia SM, Dudeck M, Malli L, Fakhoury M. Neurobiology of Aggression-Review of Recent Findings and Relationship with Alcohol and Trauma. BIOLOGY 2023; 12:biology12030469. [PMID: 36979161 PMCID: PMC10044835 DOI: 10.3390/biology12030469] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aggression can be conceptualized as any behavior, physical or verbal, that involves attacking another person or animal with the intent of causing harm, pain or injury. Because of its high prevalence worldwide, aggression has remained a central clinical and public safety issue. Aggression can be caused by several risk factors, including biological and psychological, such as genetics and mental health disorders, and socioeconomic such as education, employment, financial status, and neighborhood. Research over the past few decades has also proposed a link between alcohol consumption and aggressive behaviors. Alcohol consumption can escalate aggressive behavior in humans, often leading to domestic violence or serious crimes. Converging lines of evidence have also shown that trauma and posttraumatic stress disorder (PTSD) could have a tremendous impact on behavior associated with both alcohol use problems and violence. However, although the link between trauma, alcohol, and aggression is well documented, the underlying neurobiological mechanisms and their impact on behavior have not been properly discussed. This article provides an overview of recent advances in understanding the translational neurobiological basis of aggression and its intricate links to alcoholism and trauma, focusing on behavior. It does so by shedding light from several perspectives, including in vivo imaging, genes, receptors, and neurotransmitters and their influence on human and animal behavior.
Collapse
Affiliation(s)
- Michael Fritz
- School of Health and Social Sciences, AKAD University of Applied Sciences, 70191 Stuttgart, Germany
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Sarah-Maria Soravia
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Manuela Dudeck
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Layal Malli
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| |
Collapse
|
8
|
Liu MN, Tian XY, Fang T, Wu N, Li H, Li J. Insights into the Involvement and Therapeutic Target Potential of the Dopamine System in the Posttraumatic Stress Disorder. Mol Neurobiol 2023; 60:3708-3723. [PMID: 36933147 DOI: 10.1007/s12035-023-03312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a neuropsychiatric disease closely related to life-threatening events and psychological stress. Re-experiencing, hyperarousal, avoidance, and numbness are the hallmark symptoms of PTSD, but their underlying neurological processes have not been clearly elucidated. Therefore, the identification and development of drugs for PTSD that targets brain neuronal activities have stalled. Considering that the persistent fear memory induced by traumatic stimulation causes high alertness, high arousal, and cognitive impairment of PTSD symptoms. While the midbrain dopamine system can affect physiological processes such as aversive fear memory learning, consolidation, persistence, and extinction, by altering the functions of the dopaminergic neurons, our viewpoint is that the dopamine system plays a considerable role in the PTSD occurrence and acts as a potential therapeutic target of the disorder. This paper reviews recent findings on the structural and functional connections between ventral tegmental area neurons and the core synaptic circuits involved in PTSD, gene polymorphisms related to the dopamine system that confer susceptibility to clinical PTSD. Moreover, the progress of research on medications that target the dopamine system as PTSD therapies is also discussed. Our goal is to offer some hints for early detection and assist in identifying novel, efficient approaches for treating PTSD.
Collapse
Affiliation(s)
- Meng-Nan Liu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Xiao-Yu Tian
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.,Medical School of Chinese PLA, Beijing, 100853, China
| | - Ting Fang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Hong Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
9
|
Al Jowf GI, Ahmed ZT, Reijnders RA, de Nijs L, Eijssen LMT. To Predict, Prevent, and Manage Post-Traumatic Stress Disorder (PTSD): A Review of Pathophysiology, Treatment, and Biomarkers. Int J Mol Sci 2023; 24:ijms24065238. [PMID: 36982313 PMCID: PMC10049301 DOI: 10.3390/ijms24065238] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) can become a chronic and severely disabling condition resulting in a reduced quality of life and increased economic burden. The disorder is directly related to exposure to a traumatic event, e.g., a real or threatened injury, death, or sexual assault. Extensive research has been done on the neurobiological alterations underlying the disorder and its related phenotypes, revealing brain circuit disruption, neurotransmitter dysregulation, and hypothalamic–pituitary–adrenal (HPA) axis dysfunction. Psychotherapy remains the first-line treatment option for PTSD given its good efficacy, although pharmacotherapy can also be used as a stand-alone or in combination with psychotherapy. In order to reduce the prevalence and burden of the disorder, multilevel models of prevention have been developed to detect the disorder as early as possible and to reduce morbidity in those with established diseases. Despite the clinical grounds of diagnosis, attention is increasing to the discovery of reliable biomarkers that can predict susceptibility, aid diagnosis, or monitor treatment. Several potential biomarkers have been linked with pathophysiological changes related to PTSD, encouraging further research to identify actionable targets. This review highlights the current literature regarding the pathophysiology, disease development models, treatment modalities, and preventive models from a public health perspective, and discusses the current state of biomarker research.
Collapse
Affiliation(s)
- Ghazi I. Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: (G.I.A.J.); (L.M.T.E.)
| | - Ziyad T. Ahmed
- College of Medicine, Sulaiman Al Rajhi University, Al-Bukairyah 52726, Saudi Arabia
| | - Rick A. Reijnders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Lars M. T. Eijssen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Bioinformatics—BiGCaT, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: (G.I.A.J.); (L.M.T.E.)
| |
Collapse
|
10
|
Johnson AM, Teoh D, Jewett P, Darst BF, Mattson J, Hoffmann C, Brown K, Makaram A, Keller C, Blaes AH, Everson-Rose SA, Vogel RI. Genetic variants associated with post-traumatic stress symptoms in patients with gynecologic cancer. Gynecol Oncol 2023; 170:102-107. [PMID: 36681010 PMCID: PMC10023401 DOI: 10.1016/j.ygyno.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Patients with cancer experience symptoms of post-traumatic stress disorder (PTSD) more commonly than the general population. The objective of this study was to identify single nucleotide polymorphisms (SNPs) associated with increased risk of post-traumatic stress disorder (PTSD) in patients with gynecologic cancer. METHODS A prospective cohort study recruited 181 gynecologic cancer survivors receiving care at the University of Minnesota between 2017 and 2020 who completed PTSD DSM-V surveys to self-report their symptoms of PTSD and provided saliva samples. DNA samples were genotyped for 11 SNPs in 9 genes involved in dopaminergic, serotonergic, and opioidergic systems previously associated with risk of PTSD in populations without cancer. RESULTS Most participants had either ovarian (42.5%) or endometrial (46.4%) cancer; fewer had cervical (7.7%) or vaginal/vulvar (3.3%) cancer. Two SNPS were identified as statistically significantly associated with higher PTSD scores: rs622337 in HTR2A and rs510769 in OPRM1. CONCLUSIONS Genetic variation likely plays a role in development of PTSD. HTR2A is involved in the serotonin pathway, and OPRM1 is involved in the opioid receptor pathway. This information can be used by oncologic providers to identify patients at greater risk of developing PTSD and may facilitate referral to appropriate consultants and resources early in their treatment.
Collapse
Affiliation(s)
- Andrea M Johnson
- University of Minnesota, Department of Obstetrics, Gynecology and Women's Health, Minneapolis, MN, United States of America
| | - Deanna Teoh
- University of Minnesota, Department of Obstetrics, Gynecology and Women's Health, Minneapolis, MN, United States of America
| | - Patricia Jewett
- University of Minnesota, Department of Obstetrics, Gynecology and Women's Health, Minneapolis, MN, United States of America; University of Minnesota, Division of Hematology and Oncology, Minneapolis, MN, United States of America
| | - Burcu F Darst
- Fred Hutchinson Cancer Center, Public Health Sciences, Seattle, WA, United States of America
| | - Jordan Mattson
- University of Minnesota, Department of Obstetrics, Gynecology and Women's Health, Minneapolis, MN, United States of America
| | - Cody Hoffmann
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Katherine Brown
- University of Minnesota, Department of Obstetrics, Gynecology and Women's Health, Minneapolis, MN, United States of America
| | - Aditi Makaram
- University of Minnesota, College of Biological Sciences, Minneapolis, MN, United States of America
| | - Ciana Keller
- University of Minnesota, Medical School, Minneapolis, MN, United States of America
| | - Anne H Blaes
- University of Minnesota, Division of Hematology and Oncology, Minneapolis, MN, United States of America
| | - Susan A Everson-Rose
- University of Minnesota, Division of Geriatrics, Palliative and Primary Care, Minneapolis, MN, United States of America
| | - Rachel I Vogel
- University of Minnesota, Department of Obstetrics, Gynecology and Women's Health, Minneapolis, MN, United States of America.
| |
Collapse
|
11
|
Bally K. [Trauma Disorders - A Relevant Health Problem]. PRAXIS 2023; 112:87-91. [PMID: 36722115 DOI: 10.1024/1661-8157/a004000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Trauma Disorders - A Relevant Health Problem Abstract. In medical practice traumatic stress disorders are underdiagnosed. Post-traumatic stress disorder (PTSD) must be considered in case of pronounced need for control, severe anxiety and restlessness, jumpiness, mental torpor, dissociative disorders, social withdrawal, distrust or vegetative over-arousal. Simple screening instruments such as the "Primary Care PTSD Screen" are suitable for an initial assessment. As long as symptoms are not serious and long-lasting and there are no risk factors for the development of severe PTSD, it is a matter of creating external and internal security, informing about possible support, acknowledging the suffering and establishing secure interpersonal relationships. In the case of a pronounced PTSD with considerable psychological strain, a referral for further psychiatric or psychotherapeutic clarification and treatment is appropriate.
Collapse
Affiliation(s)
- Klaus Bally
- Universitäres Zentrum für Hausarztmedizin beider Basel/uniham-bb, Kantonsspital Baselland, Liestal, Schweiz
| |
Collapse
|
12
|
Ballaz S, Bourin M. Anti-Inflammatory Therapy as a Promising Target in Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:459-486. [PMID: 36949322 DOI: 10.1007/978-981-19-7376-5_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
This chapter analyzes the therapeutic potential of current anti-inflammatory drugs in treating psychiatric diseases from a neuro-immunological perspective. Based on the bidirectional brain-immune system relationship, the rationale is that a dysregulated inflammation contributes to the pathogenesis of psychiatric and neurological disorders, while the immunology function is associated with psychological variables like stress, affective disorders, and psychosis. Under certain social, psychological, and environmental conditions and biological factors, a healthy inflammatory response and the associated "sickness behavior," which are aimed to resolve a physical injury and microbial threat, become harmful to the central nervous system. The features and mechanisms of the inflammatory response are described across the main mental illnesses with a special emphasis on the profile of cytokines and the function of the HPA axis. Next, it is reviewed the potential clinical utility of immunotherapy (cytokine agonists and antagonists), glucocorticoids, unconventional anti-inflammatory agents (statins, minocycline, statins, and polyunsaturated fatty acids (PUFAs)), the nonsteroidal anti-inflammatory drugs (NSAIDs), and particularly celecoxib, a selective cyclooxygenase-2 (Cox-2) inhibitor, as adjuvants of conventional psychiatric medications. The implementation of anti-inflammatory therapies holds great promise in psychiatry. Because the inflammatory background may account for the etiology and/or progression of psychiatric disorders only in a subset of patients, there is a need to elucidate the immune underpinnings of the mental illness progression, relapse, and remission. The identification of immune-related bio-signatures will ideally assist in the stratification of the psychiatric patient to predict the risk of mental disease, the prognosis, and the response to anti-inflammatory therapy.
Collapse
Affiliation(s)
- Santiago Ballaz
- School of Biological Science and Engineering, Yachay Tech University, Urcuquí, Ecuador
- Medical School, Universidad Espíritu Santo, Samborondón, Ecuador
| | - Michel Bourin
- Neurobiology of Anxiety and Mood Disorders, University of Nantes, Nantes, France.
| |
Collapse
|
13
|
Cannon-Albright LA, Romesser J, Teerlink CC, Thomas A, Meyer LJ. Evidence for excess familial clustering of Post Traumatic Stress Disorder in the US Veterans Genealogy resource. J Psychiatr Res 2022; 150:332-337. [PMID: 34953562 DOI: 10.1016/j.jpsychires.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
A genealogy of the United States has been record-linked to National Veteran's Health Administration (VHA) patient data to allow non-identifiable analysis of familial clustering. This genealogy, including over 70 million individuals linked to over 1 million VHA patients, is the largest such combined resource reported. Analysis of familial clustering among VHA patients diagnosed with Post Traumatic Stress Disorder (PTSD) allowed a test of the hypothesis of an inherited contribution to PTSD. PTSD is associated strongly with military service and extended familial clustering data have not previously been presented. PTSD-affected VHA patients with genealogy data were identified by presence of an ICD diagnosis code in the VHA medical record in at least 2 different years. The Genealogical Index of Familiality (GIF) method was used to compare the average relatedness of VHA patients diagnosed with PTSD with their expected average relatedness, estimated from randomly selected sets of matched linked VHA patient controls. Relative risks for PTSD were estimated in first-, second-, and third-degree relatives of PTSD patients who were also VHA patients, using sex and age-matched rates for PTSD estimated from all linked VHA patients. Significant excess pairwise relatedness, and significantly elevated risk for PTSD in first-, second-, and third-degree relatives was observed; multiple high-risk extended PTSD pedigrees were identified. The analysis provides evidence for excess familial clustering of PTSD and identified high-risk PTSD pedigrees. These results support an inherited contribution to PTSD predisposition and identify a powerful resource of high-risk PTSD pedigrees for predisposition gene identification.
Collapse
Affiliation(s)
- Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA; Huntsman Cancer Institute, Salt Lake City, UT, USA.
| | - Jennifer Romesser
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Craig C Teerlink
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Alun Thomas
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Lawrence J Meyer
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Al Jowf GI, Ahmed ZT, An N, Reijnders RA, Ambrosino E, Rutten BPF, de Nijs L, Eijssen LMT. A Public Health Perspective of Post-Traumatic Stress Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6474. [PMID: 35682057 PMCID: PMC9180718 DOI: 10.3390/ijerph19116474] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
Abstract
Trauma exposure is one of the most important and prevalent risk factors for mental and physical ill-health. Prolonged or excessive stress exposure increases the risk of a wide variety of mental and physical symptoms, resulting in a condition known as post-traumatic stress disorder (PTSD). The diagnosis might be challenging due to the complex pathophysiology and co-existence with other mental disorders. The prime factor for PTSD development is exposure to a stressor, which variably, along with peritraumatic conditions, affects disease progression and severity. Additionally, many factors are thought to influence the response to the stressor, and hence reshape the natural history and course of the disease. With sufficient knowledge about the disease, preventive and intervenient methods can be implemented to improve the quality of life of the patients and to limit both the medical and economic burden of the disease. This literature review provides a highlight of up-to-date literature on traumatic stress, with a focus on causes or triggers of stress, factors that influence response to stress, disease burden, and the application of the social-ecological public health model of disease prevention. In addition, it addresses therapeutic aspects, ethnic differences in traumatic stress, and future perspectives, including potential biomarkers.
Collapse
Affiliation(s)
- Ghazi I. Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (N.A.); (R.A.R.); (B.P.F.R.); (L.d.N.)
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Ziyad T. Ahmed
- College of Medicine, Sulaiman Al Rajhi University, Al-Bukairyah 52726, Saudi Arabia;
| | - Ning An
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (N.A.); (R.A.R.); (B.P.F.R.); (L.d.N.)
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Rick A. Reijnders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (N.A.); (R.A.R.); (B.P.F.R.); (L.d.N.)
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Elena Ambrosino
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, Research School GROW (School for Oncology and Reproduction), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Bart P. F. Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (N.A.); (R.A.R.); (B.P.F.R.); (L.d.N.)
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (N.A.); (R.A.R.); (B.P.F.R.); (L.d.N.)
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Lars M. T. Eijssen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (N.A.); (R.A.R.); (B.P.F.R.); (L.d.N.)
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Bioinformatics—BiGCaT, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
15
|
The Molecular Biology of Susceptibility to Post-Traumatic Stress Disorder: Highlights of Epigenetics and Epigenomics. Int J Mol Sci 2021; 22:ijms221910743. [PMID: 34639084 PMCID: PMC8509551 DOI: 10.3390/ijms221910743] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure to trauma is one of the most important and prevalent risk factors for mental and physical ill-health. Excessive or prolonged stress exposure increases the risk of a wide variety of mental and physical symptoms. However, people differ strikingly in their susceptibility to develop signs and symptoms of mental illness after traumatic stress. Post-traumatic stress disorder (PTSD) is a debilitating disorder affecting approximately 8% of the world’s population during their lifetime, and typically develops after exposure to a traumatic event. Despite that exposure to potentially traumatizing events occurs in a large proportion of the general population, about 80–90% of trauma-exposed individuals do not develop PTSD, suggesting an inter-individual difference in vulnerability to PTSD. While the biological mechanisms underlying this differential susceptibility are unknown, epigenetic changes have been proposed to underlie the relationship between exposure to traumatic stress and the susceptibility to develop PTSD. Epigenetic mechanisms refer to environmentally sensitive modifications to DNA and RNA molecules that regulate gene transcription without altering the genetic sequence itself. In this review, we provide an overview of various molecular biological, biochemical and physiological alterations in PTSD, focusing on changes at the genomic and epigenomic level. Finally, we will discuss how current knowledge may aid us in early detection and improved management of PTSD patients.
Collapse
|
16
|
Richter-Levin G, Sandi C. Title: "Labels Matter: Is it stress or is it Trauma?". Transl Psychiatry 2021; 11:385. [PMID: 34247187 PMCID: PMC8272714 DOI: 10.1038/s41398-021-01514-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
In neuroscience, the term 'Stress' has a negative connotation because of its potential to trigger or exacerbate psychopathologies. Yet in the face of exposure to stress, the more common reaction to stress is resilience, indicating that resilience is the rule and stress-related pathology the exception. This is critical because neural mechanisms associated with stress-related psychopathology are expected to differ significantly from those associated with resilience.Research labels and terminology affect research directions, conclusions drawn from the results, and the way we think about a topic, while choice of labels is often influenced by biases and hidden assumptions. It is therefore important to adopt a terminology that differentiates between stress conditions, leading to different outcomes.Here, we propose to conceptually associate the term 'stress'/'stressful experience' with 'stress resilience', while restricting the use of the term 'trauma' only in reference to exposures that lead to pathology. We acknowledge that there are as yet no ideal ways for addressing the murkiness of the border between stressful and traumatic experiences. Yet ignoring these differences hampers our ability to elucidate the mechanisms of trauma-related pathologies on the one hand, and of stress resilience on the other. Accordingly, we discuss how to translate such conceptual terminology into research practice.
Collapse
Affiliation(s)
- Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.
- Psychology Department, University of Haifa, Haifa, Israel.
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel.
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
17
|
Bainomugisa CK, Sutherland HG, Parker R, Mcrae AF, Haupt LM, Griffiths LR, Heath A, Nelson EC, Wright MJ, Hickie IB, Martin NG, Nyholt DR, Mehta D. Using Monozygotic Twins to Dissect Common Genes in Posttraumatic Stress Disorder and Migraine. Front Neurosci 2021; 15:678350. [PMID: 34239411 PMCID: PMC8258453 DOI: 10.3389/fnins.2021.678350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/31/2021] [Indexed: 01/03/2023] Open
Abstract
Epigenetic mechanisms have been associated with genes involved in Posttraumatic stress disorder (PTSD). PTSD often co-occurs with other health conditions such as depression, cardiovascular disorder and respiratory illnesses. PTSD and migraine have previously been reported to be symptomatically positively correlated with each other, but little is known about the genes involved. The aim of this study was to understand the comorbidity between PTSD and migraine using a monozygotic twin disease discordant study design in six pairs of monozygotic twins discordant for PTSD and 15 pairs of monozygotic twins discordant for migraine. DNA from peripheral blood was run on Illumina EPIC arrays and analyzed. Multiple testing correction was performed using the Bonferroni method and 10% false discovery rate (FDR). We validated 11 candidate genes previously associated with PTSD including DOCK2, DICER1, and ADCYAP1. In the epigenome-wide scan, seven novel CpGs were significantly associated with PTSD within/near IL37, WNT3, ADNP2, HTT, SLFN11, and NQO2, with all CpGs except the IL37 CpG hypermethylated in PTSD. These results were significantly enriched for genes whose DNA methylation was previously associated with migraine (p-value = 0.036). At 10% FDR, 132 CpGs in 99 genes associated with PTSD were also associated with migraine in the migraine twin samples. Genes associated with PTSD were overrepresented in vascular smooth muscle, axon guidance and oxytocin signaling pathways, while genes associated with both PTSD and migraine were enriched for AMPK signaling and longevity regulating pathways. In conclusion, these results suggest that common genes and pathways are likely involved in PTSD and migraine, explaining at least in part the co-morbidity between the two disorders.
Collapse
Affiliation(s)
- Charlotte K Bainomugisa
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Heidi G Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Richard Parker
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Allan F Mcrae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Andrew Heath
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Ian B Hickie
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Dale R Nyholt
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Divya Mehta
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
18
|
Seo JH, Kim TY, Kim SJ, Choi JH, So HS, Kang JI. Possible Association of Polymorphisms in Ubiquitin Specific Peptidase 46 Gene With Post-traumatic Stress Disorder. Front Psychiatry 2021; 12:663647. [PMID: 34456759 PMCID: PMC8385240 DOI: 10.3389/fpsyt.2021.663647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Dynamic proteolysis, through the ubiquitin-proteasome system, has an important role in DNA transcription and cell cycle, and is considered to modulate cell stress response and synaptic plasticity. We investigated whether genetic variants in the ubiquitin carboxyl-terminal hydrolase 46 (USP46) would be associated with post-traumatic stress disorder (PTSD) in people with exposure to combat trauma using a case-control candidate gene association design. Methods: Korean male veterans exposed to the Vietnam War were grouped into those with (n = 128) and without (n = 128) PTSD. Seven tagging SNPs of USP46 were selected, and single-marker and haplotype-based association analyses were performed. All analyses were adjusted for sociodemographic factors and levels of combat exposure severity and alcohol problem. Results: One single-marker (rs2244291) showed nominal evidence of association with PTSD status and with the "re-experiencing" cluster, although the association was not significant after Bonferroni correction. No significant association with the other SNPs or the haplotypes was detected. Conclusion: The present finding suggests preliminarily that genetic vulnerability regarding the ubiquitin-proteasome system may be related to fear memory processes and the development of PTSD symptoms after trauma exposure. Further studies with a larger sample size will be needed to examine the role of the ubiquitin-proteasome system including USP46 in PTSD.
Collapse
Affiliation(s)
- Jun Ho Seo
- Institute of Behavioral Science in Medicine and Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Yong Kim
- Institute of Behavioral Science in Medicine and Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neuropsychiatry, Veterans Health Service Medical Center, Seoul, South Korea
| | - Se Joo Kim
- Institute of Behavioral Science in Medicine and Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Hee Choi
- Department of Neuropsychiatry, Veterans Health Service Medical Center, Seoul, South Korea
| | - Hyung Seok So
- Department of Neuropsychiatry, Veterans Health Service Medical Center, Seoul, South Korea
| | - Jee In Kang
- Institute of Behavioral Science in Medicine and Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
Sheerin CM, Lind MJ, Bountress KE, Marraccini ME, Amstadter AB, Bacanu SA, Nugent NR. Meta-Analysis of Associations Between Hypothalamic-Pituitary-Adrenal Axis Genes and Risk of Posttraumatic Stress Disorder. J Trauma Stress 2020; 33:688-698. [PMID: 32216170 PMCID: PMC7529653 DOI: 10.1002/jts.22484] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 01/03/2023]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis has been of interest in attempts to identify genetic vulnerability for posttraumatic stress disorder (PTSD). Although numerous HPA-axis genes have been implicated in candidate gene studies, the findings are mixed and interpretation is limited by study design and methodological inconsistencies. To address these inconsistencies in the PTSD candidate gene literature, we conducted meta-analyses of HPA-related genes from both a traditional single nucleotide polymorphism (SNP)-level analysis and a gene-level analysis, using novel methods aggregating markers in the same gene. Database searches (PubMed and PsycINFO) identified 24 unique articles examining six HPA-axis genes in PTSD; analyses were conducted on four genes (ADCYAP1R1, CRHR1, FKBP5, NR3C1) that met study eligibility criteria (original research, human subjects, main effect association study of selected genes, PTSD as an outcome, trauma-exposed control group) and had sufficient data and number of studies for use in meta-analysis, within 20 unique articles. Findings from SNP-level analyses indicated that two variants (rs9296158 in FKBP5 and rs258747 in NR3C1) were nominally associated with PTSD, ps = .001 and .001, respectively, following multiple testing correction. At the gene level, significant relations between PTSD and both NR3C1 and FKBP5 were detected and robust to sensitivity analyses. Although study limitations exist (e.g., varied outcomes, inability to test moderators), taken together, these results provide support for FKBP5 and NR3C1 in risk for PTSD. Overall, this work highlights the utility of meta-analyses in resolving discrepancies in the literature and the value of adopting gene-level approaches to investigate the etiology of PTSD.
Collapse
Affiliation(s)
- Christina M. Sheerin
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mackenzie J. Lind
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kaitlin E. Bountress
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marisa E. Marraccini
- School of Education, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ananda B. Amstadter
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Nicole R. Nugent
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA,Department of Pediatrics Alpert Medical School of Brown University, Providence, Rhode Island, USA,Bradley/Hasbro Children’s Research Center of Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
20
|
Bound Together: How Psychoanalysis Diminishes Inter-generational DNA Trauma. Am J Psychoanal 2020; 80:196-218. [PMID: 32488025 DOI: 10.1057/s11231-020-09247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of intergenerational transmission of trauma plays a fundamental role in psychoanalysis. While it is known that intergenerational trauma can be transmitted through attachment relationships, a new branch of genetics (epigenetics) has emerged to study the interaction between human behavior and changes in DNA expression. Therefore, psychoanalysis, which has proven to reduce the intergenerational transmission of trauma from a behavioral perspective, can play a positive role in regulating DNA changes caused by environmental stress. The present paper focuses on recent research suggesting a direct correlation between psychological trauma and DNA modifications. In particular, DNA changes caused by psychological trauma can be transmitted from generation to generation, validating the psychoanalytic concept of intergenerational transmission of trauma. This evidence not only supports the essential role psychoanalysis has in influencing human behavior, but also suggests that it affects not only the individuals who undergo it but their offspring, as well, via the epigenetic passage of DNA.
Collapse
|
21
|
Insomnia and posttraumatic stress symptoms: Evidence of shared etiology. Psychiatry Res 2020; 286:112548. [PMID: 31495512 DOI: 10.1016/j.psychres.2019.112548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 11/22/2022]
Abstract
Posttraumatic stress disorder (PTSD) and insomnia are comorbid clinical conditions that are thought to result from genetic and environmental effects. Though studies have established the heritability of these disorders independently, no study to date has examined the genetic contributions to the relation between insomnia and PTSD symptoms (PTSS). The present study assessed this gap in the literature using a behavioral genetics approach to symptom dimensions. The sample consisted of 242 twin pairs who endorsed lifetime trauma exposure. Insomnia symptoms were assessed with the Women's Health Initiative Survey, and intrusion and avoidance PTSS were assessed with the Impact of Events Scale. Structural equation modeling was then employed to test the relative contributions of genetic, shared environmental, and nonshared environmental components to the relations between insomnia symptoms and intrusions and avoidance. Results indicated a significant association between insomnia symptoms and intrusions (r = 0.33, p < 0.01) and insomnia symptoms and avoidance (r = 0.20, p < 0.01), and 36-44% of phenotypic variance was accounted for by genetic contributions. These findings highlight a significant role for genetic factors in the mechanisms underlying the comorbidity between insomnia and PTSS. The implications for current etiological models of PTSD and insomnia are discussed.
Collapse
|
22
|
Howie H, Rijal CM, Ressler KJ. A review of epigenetic contributions
to post-traumatic stress disorder
. DIALOGUES IN CLINICAL NEUROSCIENCE 2019; 21:417-428. [PMID: 31949409 PMCID: PMC6952751 DOI: 10.31887/dcns.2019.21.4/kressler] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a syndrome which serves as a classic example of psychiatric disorders that result from the intersection of nature and nurture, or gene and environment. By definition, PTSD requires the experience of a traumatic exposure, and yet data suggest that the risk for PTSD in the aftermath of trauma also has a heritable (genetic) component. Thus, PTSD appears to require both a biological (genetic) predisposition that differentially alters how the individual responds to or recovers from trauma exposure. Epigenetics is defined as the study of changes in organisms caused by modification of gene expression rather than alteration of the genetic code itself, and more recently it has come to refer to direct alteration of DNA regulation, but without altering the primary sequence of DNA, or the genetic code. With regards to PTSD, epigenetics provides one way for environmental exposure to be "written" upon the genome, as a direct result of gene and environment (trauma) interactions. This review provides an overview of the main currently understood types of epigenetic regulation, including DNA methylation, histone regulation of chromatin, and noncoding RNA regulation of gene expression. Furthermore, we examine recent literature related to how these methods of epigenetic regulation may be involved in differential risk and resilience for PTSD in the aftermath of trauma.
.
Collapse
Affiliation(s)
- Hunter Howie
- Aartners Healthcare, Boston, Massachusetts, US; McLean Hospital, Belmont, Massachusetts, US
| | - Chuda M Rijal
- Partners Healthcare, Boston, Massachusetts, US; McLean Hospital, Belmont, Massachusetts, US
| | - Kerry J Ressler
- Partners Healthcare, Boston, Massachusetts, US; McLean Hospital, Belmont, Massachusetts, US; Harvard Medical School, Boston, Massachusetts, US
| |
Collapse
|
23
|
Deslauriers J, Toth M, Zhou X, Risbrough VB. Heritable Differences in Catecholamine Signaling Modulate Susceptibility to Trauma and Response to Methylphenidate Treatment: Relevance for PTSD. Front Behav Neurosci 2019; 13:111. [PMID: 31164811 PMCID: PMC6534065 DOI: 10.3389/fnbeh.2019.00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 12/31/2022] Open
Abstract
Alterations in cortical catecholamine signaling pathways can modulate acute and enduring responses to trauma. Heritable variation in catecholamine signaling is produced by a common functional polymorphism in the catechol-O-methyltransferase (COMT), with Val carriers exhibiting greater degradation of catecholamines than Met carriers. Furthermore, it has recently been suggested that drugs enhancing cortical catecholamine signaling may be a new therapeutic approach for posttraumatic stress disorder (PTSD) patients. We hypothesized that heritable differences in catecholamine signaling regulate the behavioral response to trauma, and that methylphenidate (MPD), a drug that preferentially blocks catecholamine reuptake in the prefrontal cortex (PFC), exerts COMT-dependent effects on trauma-induced behaviors. We first examined the contribution of the functional mutation COMTval158met to modulate enduring behavioral responses to predator stress in a unique "humanized" COMTval158met mouse line. Animals were exposed to a predator (cat) for 10 min and enduring avoidance behaviors were examined in the open field, light-dark box, and "trauma-reminder" tests 1-2 weeks later. Second, we examined the efficacy of chronic methylphenidate to reverse predator stress effects and if these effects were modulated by COMTval158met genotype. Mice were exposed to predator stress and began treatment with either saline or methylphenidate (3 mg/kg/day) 1 week after stress until the end of the testing [avoidance behaviors, working memory, and social preference (SP)]. In males, predator stress and COMTval158met had an additive effect on enduring anxiety-like behavior, with Val stressed mice showing the strongest avoidance behavior after stress compared to Met carriers. No effect of COMT genotype was observed in females. Therefore methylphenidate effects were investigated only in males. Chronic methylphenidate treatment reversed the stress-induced avoidance behavior and increased social investigation independently of genotype. Methylphenidate effects on working memory, however, were genotype-dependent, decreasing working memory in non-stressed Met carriers, and improving stress-induced working memory deficit in Val carriers. These results suggest that heritable variance in catecholamine signaling modulates the avoidance response to an acute trauma. This work supports recent human findings that methylphenidate might be a therapeutic alternative for PTSD patients and suggests that methylphenidate effects on anxiety (generalized avoidance, social withdrawal) vs. cognitive (working memory) symptoms may be modulated through COMT-independent and dependent mechanisms, respectively.
Collapse
Affiliation(s)
- Jessica Deslauriers
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, United States
| | - Mate Toth
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Xianjin Zhou
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Victoria B Risbrough
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, United States.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
24
|
Cosentino L, Vigli D, Medici V, Flor H, Lucarelli M, Fuso A, De Filippis B. Methyl-CpG binding protein 2 functional alterations provide vulnerability to develop behavioral and molecular features of post-traumatic stress disorder in male mice. Neuropharmacology 2019; 160:107664. [PMID: 31175878 DOI: 10.1016/j.neuropharm.2019.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a mental disorder characterized by symptoms of persistent anxiety arising after exposure to traumatic events. Stress susceptibility due to a complex interplay between genetic and environmental factors plays a major role in the disease etiology, although biological underpinnings have not been clarified. We hypothesized that aberrant functionality of the methyl-CpG binding protein 2 (MECP2), a master regulator of experience-dependent epigenetic programming, confers susceptibility to develop PTSD-like symptomatology in the aftermath of traumatic events. Transgenic male mice expressing a truncated form of MeCP2 protein (MeCP2-308) were exposed at adulthood to a trauma in the form of high-intensity footshocks. The presence and duration of PTSD-like symptoms were assessed and compared to those of trauma-exposed wild type littermates and MeCP2-308 mice subjected to a mild stressor. The effects of fluoxetine, a prime pharmacological PTSD treatment, on PTSD-like symptomatology were also explored. Trauma-exposed MeCP2-308 mice showed long-lasting hyperresponsiveness to both correct and incorrect predictors of the trauma and persistent increased avoidance of trauma-related cues. Traumatized MeCP2-308 mice also displayed abnormal post-traumatic plasma levels of the stress hormone corticosterone and altered peripheral gene expression mirroring that of PTSD patients. Fluoxetine improved PTSD-like symptoms in trauma-exposed MeCP2-308 mice. These findings provide evidence that MeCP2 dysfunction results in increased susceptibility to develop PTSD-like symptoms after trauma exposure, and identify trauma-exposed MeCP2-308 mice as a new tool to investigate the underpinnings of PTSD vulnerability.
Collapse
Affiliation(s)
- Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Vanessa Medici
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
25
|
Wang Y, Karstoft KI, Nievergelt CM, Maihofer AX, Stein MB, Ursano RJ, Bybjerg-Grauholm J, Bækvad-Hansen M, Hougaard DM, Andreassen OA, Werge T, Thompson WK, Andersen SB. Post-traumatic stress following military deployment: Genetic associations and cross-disorder genetic correlations. J Affect Disord 2019; 252:350-357. [PMID: 30999091 DOI: 10.1016/j.jad.2019.04.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/22/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a complex psychiatric disorder that occurs with relatively high frequency after deployment to warzones (∼10%). While twin studies have estimated the heritability to be up to 40%, thus indicating a considerable genetic component in the etiology, the biological mechanisms underlying risk and development of PTSD remain unknown. METHODS Here, we conduct a genome-wide association study (GWAS; N = 2,481) to identify genome regions that associate with PTSD in a highly homogenous, trauma-exposed sample of Danish soldiers deployed to war and conflict zones. We perform integrated analyses of our results with gene-expression and chromatin-contact datasets to prioritized genes. We also leverage on other large GWAS (N>300,000) to investigate genetic correlations between PTSD and other psychiatric disorders and traits. RESULTS We discover, but do not replicate, one region, 4q31, close to the IL15 gene, which is genome-wide significantly associated with PTSD. We demonstrate that gene-set enrichment, polygenic risk score and genetic correlation analyses show consistent and significant genetic correlations between PTSD and depression, insomnia and schizophrenia. LIMITATIONS The limited sample size, the lack of replication, and the PTSD case definition by questionnaire are limitations to the study. CONCLUSIONS Our results suggest that genetic perturbations of inflammatory response may contribute to the risk of PTSD. In addition, shared genetic components contribute to observed correlations between PTSD and depression, insomnia and schizophrenia.
Collapse
Affiliation(s)
- Yunpeng Wang
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Boserupvej 2, DK-4000 Roskilde, Denmark; Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; Department of Psychology, University of Oslo, Harald Schelderups Hus Forskningsveien 3A 0373 Oslo
| | - Karen-Inge Karstoft
- Research and Knowledge Center, The Danish Veteran Center, Garnisonen 1, 4100 Ringsted, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, 1353 Copenhagen, Denmark.
| | - Caroline M Nievergelt
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla Village Drive 3350, 92161 La Jolla, CA, USA; Department of Psychiatry, School of Medicine, University of California San Diego, Gilman Drive 9500, 92093 La Jolla, CA, USA
| | - Adam X Maihofer
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla Village Drive 3350, 92161 La Jolla, CA, USA; Department of Psychiatry, School of Medicine, University of California San Diego, Gilman Drive 9500, 92093 La Jolla, CA, USA
| | - Murray B Stein
- Department of Psychiatry, School of Medicine, University of California San Diego, Gilman Drive 9500, 92093 La Jolla, CA, USA; Department of Family Medicine and Public Health, University of California San Diego, Gilman Drive 9500, 92093 La Jolla, CA, USA
| | - Robert J Ursano
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Jones Bridge Road 4301, 20814 Bethesda, MD, USA
| | - Jonas Bybjerg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Danish Centre for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Danish Centre for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Danish Centre for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Boserupvej 2, DK-4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Wesley K Thompson
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Boserupvej 2, DK-4000 Roskilde, Denmark; Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; Division of Biostatistics, Department of Family Medicine and Public Health, University of California, San Diego
| | - Søren B Andersen
- Research and Knowledge Center, The Danish Veteran Center, Garnisonen 1, 4100 Ringsted, Denmark
| |
Collapse
|
26
|
Trauma-informed care and practice for eating disorders: personal and professional perspectives of lived experiences. Eat Weight Disord 2019; 24:329-338. [PMID: 30565188 DOI: 10.1007/s40519-018-0628-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Learning about the life stories of patients who have experienced a severe eating disorder (ED), but also traumas that led to PTSD, dissociative disorders, and other comorbidities, has great value to clinicians in their efforts to deliver trauma-informed care (TIC). Many investigators have been researching and writing about these issues for years, and strong scientific evidence has emerged, indicating that trauma is a significant risk factor for the development of EDs, particularly in its bulimic forms. PURPOSE Peer-reviewed literature contains scarce input from people with "lived experiences". Hearing and "sitting with" such individuals are extremely useful in clinical practice and research. Further, encouraging patients to put words to their pain has recognized therapeutic effects. These lived experiences are often demonstrative of key elements of what professionals need to know about evaluating and treating patients with EDs and co-occurring trauma-related disorders. METHOD/RESULTS The principal author invited two courageous recovered ED advocates and writers (June Alexander and Jenni Schaefer), who have gone public about their ED-PTSD experiences, to recount their life stories and treatment experiences (both positive and negative). Dr. Brewerton then offers his professional perspectives on the course of their treatment experiences put in the context of ongoing relevant clinical research. CONCLUSION Their and other patients' experiences have great power to guide professionals toward trauma-informed care, more integrated practice, and theoretically improved outcomes. LEVEL OF EVIDENCE Level V.
Collapse
|
27
|
Abstract
Resilience is defined as the dynamic ability to adapt successfully in the face of adversity, trauma, or significant threat. Some of the key early studies of resilience were observational studies in children. They were followed by research in adults, studies testing interventions to promote resilience in different populations, and a recent upsurge of studies on the underlying genomic and neurobiological mechanisms. Neural and molecular studies in preclinical models of resilience are also increasingly identifying active stress adaptations in resilient animals. Knowledge gained from animal and human studies of resilience can be harnessed to develop new preventive interventions to enhance resilience in at-risk populations. Further, treatment interventions focused on enhancing potentially modifiable protective factors that are consistently linked to psychological resilience can enrich currently available treatment interventions for individuals with posttraumatic stress disorder (PTSD). Translating our expanding knowledge of the neurobiology of resilience additionally promises to yield novel therapeutic strategies for treating this disabling condition. This review summarizes the vast field of resilience research spanning genomic, psychosocial, and neurobiological levels, and discusses how findings have led and can lead to new preventive and treatment interventions for PTSD.
Collapse
|
28
|
Blacker CJ, Frye MA, Morava E, Kozicz T, Veldic M. A Review of Epigenetics of PTSD in Comorbid Psychiatric Conditions. Genes (Basel) 2019; 10:140. [PMID: 30781888 PMCID: PMC6410143 DOI: 10.3390/genes10020140] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is an acquired psychiatric disorder with functionally impairing physiological and psychological symptoms following a traumatic exposure. Genetic, epigenetic, and environmental factors act together to determine both an individual's susceptibility to PTSD and its clinical phenotype. In this literature review, we briefly review the candidate genes that have been implicated in the development and severity of the PTSD phenotype. We discuss the importance of the epigenetic regulation of these candidate genes. We review the general epigenetic mechanisms that are currently understood, with examples of each in the PTSD phenotype. Our focus then turns to studies that have examined PTSD in the context of comorbid psychiatric disorders or associated social and behavioral stressors. We examine the epigenetic variation in cases or models of PTSD with comorbid depressive disorders, anxiety disorders, psychotic disorders, and substance use disorders. We reviewed the literature that has explored epigenetic regulation in PTSD in adverse childhood experiences and suicide phenotypes. Finally, we review some of the information available from studies of the transgenerational transmission of epigenetic variation in maternal cases of PTSD. We discuss areas pertinent for future study to further elucidate the complex interactions between epigenetic modifications and this complex psychiatric disorder.
Collapse
Affiliation(s)
- Caren J Blacker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Eva Morava
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Tamas Kozicz
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
29
|
Richter-Levin G, Stork O, Schmidt MV. Animal models of PTSD: a challenge to be met. Mol Psychiatry 2019; 24:1135-1156. [PMID: 30816289 PMCID: PMC6756084 DOI: 10.1038/s41380-018-0272-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
Recent years have seen increased interest in psychopathologies related to trauma exposure. Specifically, there has been a growing awareness to posttraumatic stress disorder (PTSD) in part due to terrorism, climate change-associated natural disasters, the global refugee crisis, and increased violence in overpopulated urban areas. However, notwithstanding the increased awareness to the disorder, the increasing number of patients, and the devastating impact on the lives of patients and their families, the efficacy of available treatments remains limited and highly unsatisfactory. A major scientific effort is therefore devoted to unravel the neural mechanisms underlying PTSD with the aim of paving the way to developing novel or improved treatment approaches and drugs to treat PTSD. One of the major scientific tools used to gain insight into understanding physiological and neuronal mechanisms underlying diseases and for treatment development is the use of animal models of human diseases. While much progress has been made using these models in understanding mechanisms of conditioned fear and fear memory, the gained knowledge has not yet led to better treatment options for PTSD patients. This poor translational outcome has already led some scientists and pharmaceutical companies, who do not in general hold opinions against animal models, to propose that those models should be abandoned. Here, we critically examine aspects of animal models of PTSD that may have contributed to the relative lack of translatability, including the focus on the exposure to trauma, overlooking individual and sex differences, and the contribution of risk factors. Based on findings from recent years, we propose research-based modifications that we believe are required in order to overcome some of the shortcomings of previous practice. These modifications include the usage of animal models of PTSD which incorporate risk factors and of the behavioral profiling analysis of individuals in a sample. These modifications are aimed to address factors such as individual predisposition and resilience, thus taking into consideration the fact that only a fraction of individuals exposed to trauma develop PTSD. We suggest that with an appropriate shift of practice, animal models are not only a valuable tool to enhance our understanding of fear and memory processes, but could serve as effective platforms for understanding PTSD, for PTSD drug development and drug testing.
Collapse
Affiliation(s)
- Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel. .,The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel. .,Psychology Department, University of Haifa, Haifa, Israel.
| | - Oliver Stork
- 0000 0001 1018 4307grid.5807.aDepartment of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany ,grid.452320.2Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Mathias V. Schmidt
- 0000 0000 9497 5095grid.419548.5Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
30
|
Abstract
The measurement of Pavlovian forms of fear extinction offers a relatively simple behavioral preparation that is nonetheless tractable, from a translational perspective, as an approach to study mechanisms of exposure therapy and biological underpinnings of anxiety and trauma-related disorders such as post-traumatic stress disorder (PTSD). Deficient fear extinction is considered a robust clinical endophenotype for these disorders and, as such, has particular significance in the current "age of RDoC (research domain criteria)." Various rodent models of impaired extinction have thus been generated with the objective of approximating this clinical, relapse prone aberrant extinction learning. These models have helped to reveal neurobiological correlates of extinction circuitry failure, gene variants, and other mechanisms underlying deficient fear extinction. In addition, they are increasingly serving as tools to investigate ways to therapeutically overcome poor extinction to support long-term retention of extinction memory and thus protection against various forms of fear relapse; modeled in the laboratory by measuring spontaneous recovery, reinstatement and renewal of fear. In the current article, we review models of impaired extinction built around (1) experimentally induced brain region and neural circuit disruptions (2) spontaneously-arising and laboratory-induced genetic modifications, or (3) exposure to environmental insults, including stress, drugs of abuse, and unhealthy diet. Collectively, these models have been instrumental in advancing in our understanding of extinction failure and underlying susceptibilities at the neural, genetic, molecular, and neurochemical levels; generating renewed interest in developing novel, targeted and effective therapeutic treatments for anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| |
Collapse
|
31
|
Santi A, Bot M, Aleman A, Penninx BWJH, Aleman IT. Circulating insulin-like growth factor I modulates mood and is a biomarker of vulnerability to stress: from mouse to man. Transl Psychiatry 2018; 8:142. [PMID: 30068974 PMCID: PMC6070549 DOI: 10.1038/s41398-018-0196-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/11/2018] [Accepted: 06/08/2018] [Indexed: 12/30/2022] Open
Abstract
Individual susceptibility to anxiety disorders after maladaptive responses to stress is not well understood. We now report that while exploring stress responses in mice after traumatic brain injury (TBI), a condition associated to stress susceptibility, we observed that the anxiogenic effects of either TBI or exposure to life-threatening experiences (predator) were blocked when both stressors were combined. Because TBI increases the entrance into the brain of serum insulin-like growth factor I (IGF-I), a known modulator of anxiety with a wide range of concentrations in the human population, we then determined whether circulating IGF-I is related to anxiety measures. In mice, anxiety-like responses to predator were inversely related to circulating IGF-I levels. Other indicators of mood regulation such as sensitivity to dexamethasone suppression and expression levels of blood and brain FK506 binding protein 5 (FKBP5), a co-chaperone of the glucocorticoid receptor that regulates its activity, were also associated to circulating IGF-I. Indeed, brain FKBP5 expression in mice was stimulated by IGF-I. In addition, we observed in a large human cohort (n = 2686) a significant relationship between plasma IGF-I and exposure to recent stressful life events, while FKBP5 expression in blood cells was significantly associated to plasma IGF-I levels. Collectively, these data indicate that circulating IGF-I appears to be involved in mood homeostasis across different species. Furthermore, the data in mice allow us to indicate that IGF-I may be acting at least in part by modulating FKBP5 expression.
Collapse
Affiliation(s)
- A. Santi
- 0000 0001 2177 5516grid.419043.bCajal Institute, Madrid, Spain ,0000 0000 9314 1427grid.413448.eCiberned, Madrid, Spain
| | - M. Bot
- grid.484519.5Department of Psychiatry, VU University Medical Center and GGZ inGeest, Amsterdam Public Health Research Institute, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A. Aleman
- 0000 0000 9558 4598grid.4494.dDepartment of Neuroscience, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - B. W. J. H. Penninx
- grid.484519.5Department of Psychiatry, VU University Medical Center and GGZ inGeest, Amsterdam Public Health Research Institute, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - I. Torres Aleman
- 0000 0001 2177 5516grid.419043.bCajal Institute, Madrid, Spain ,0000 0000 9314 1427grid.413448.eCiberned, Madrid, Spain
| |
Collapse
|
32
|
Bernhard A, Martinelli A, Ackermann K, Saure D, Freitag CM. Association of trauma, Posttraumatic Stress Disorder and Conduct Disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 2018; 91:153-169. [DOI: 10.1016/j.neubiorev.2016.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 11/28/2016] [Accepted: 12/19/2016] [Indexed: 11/30/2022]
|
33
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
34
|
Thomas E, Hemmings S, Spies G, Nothling J, Seedat S. Childhood trauma but not FKBP5 gene variants associated with peritraumatic dissociation in female rape survivors. EUROPEAN JOURNAL OF TRAUMA & DISSOCIATION 2018. [DOI: 10.1016/j.ejtd.2018.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Martin C, Cho YE, Kim H, Yun S, Kanefsky R, Lee H, Mysliwiec V, Cashion A, Gill J. Altered DNA Methylation Patterns Associated With Clinically Relevant Increases in PTSD Symptoms and PTSD Symptom Profiles in Military Personnel. Biol Res Nurs 2018; 20:352-358. [PMID: 29514460 PMCID: PMC5993080 DOI: 10.1177/1099800418758951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Military personnel experience posttraumatic stress disorder (PTSD), which is associated with differential DNA methylation across the whole genome. However, the relationship between these DNA methylation patterns and clinically relevant increases in PTSD severity is not yet clearly understood. The purpose of this study was to identify differences in DNA methylation associated with PTSD symptoms and investigate DNA methylation changes related to increases in the severity of PTSD in military personnel. In this pilot study, a cross-sectional comparison was made between military personnel with PTSD (n = 8) and combat-matched controls without PTSD (n = 6). Symptom measures were obtained, and genome-wide DNA methylation was measured using methylated DNA immunoprecipitation (MeDIP-seq) from whole blood samples at baseline and 3 months later. A longitudinal comparison measured DNA methylation changes in military personnel with clinically relevant increases in PTSD symptoms between time points (PTSD onset) and compared methylation patterns to controls with no clinical changes in PTSD. In military personnel with elevated PTSD symptoms 3 months following baseline, 119 genes exhibited reduced methylation and 8 genes exhibited increased methylation. Genes with reduced methylation in the PTSD-onset group relate to the canonical pathways of netrin signaling, Wnt/Ca+ pathway, and axonal guidance signaling. These gene pathways relate to neurological disorders, and the current findings suggest that these epigenetic changes potentially relate to PTSD symptomology. This study provides some novel insights into the role of epigenetic changes in PTSD symptoms and the progression of PTSD symptoms in military personnel.
Collapse
Affiliation(s)
- Christiana Martin
- National Institute of Nursing Research (NINR),
National Institutes of Health, Bethesda, MD, USA
- Christiana Martin and Young-Eun Cho are
co-first authors
| | - Young-Eun Cho
- National Institute of Nursing Research (NINR),
National Institutes of Health, Bethesda, MD, USA
- Christiana Martin and Young-Eun Cho are
co-first authors
| | - Hyungsuk Kim
- National Institute of Nursing Research (NINR),
National Institutes of Health, Bethesda, MD, USA
| | | | - Rebekah Kanefsky
- National Institute of Nursing Research (NINR),
National Institutes of Health, Bethesda, MD, USA
| | - Hyunhwa Lee
- University of Nevada, School of Nursing, Las
Vegas, NV, USA
| | | | - Ann Cashion
- National Institute of Nursing Research (NINR),
National Institutes of Health, Bethesda, MD, USA
| | - Jessica Gill
- National Institute of Nursing Research (NINR),
National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Mota NP, Han S, Harpaz-Rotem I, Maruff P, Krystal JH, Southwick SM, Gelernter J, Pietrzak RH. Apolipoprotein E gene polymorphism, trauma burden, and posttraumatic stress symptoms in U.S. military veterans: Results from the National Health and Resilience in Veterans Study. Depress Anxiety 2018; 35:168-177. [PMID: 29172227 PMCID: PMC5794529 DOI: 10.1002/da.22698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/11/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous research examining the association between apolipoprotein E (APOE) gene polymorphism and risk for posttraumatic stress disorder (PTSD) has been inconsistent due to the use of small and select samples. This study examined the relation between APOE genotype and PTSD symptoms in two nationally representative samples of U.S. military veterans. The potential effect of cumulative trauma burden and social support in moderating this association was also evaluated. METHODS The main sample consisted of 1,386 trauma-exposed European American (EA) veterans (mean age: 62-63 years) who participated in the National Health and Resilience in Veterans Study (NHRVS) in 2011. The independent replication sample consisted of 509 trauma-exposed EA veterans from the 2013 NHRVS. RESULTS APOE ε4 allele carriers reported significantly greater severity of PTSD symptoms than noncarriers in the main, but not the replication, sample. In both samples, the interaction of APOE ε4 carrier status and cumulative trauma burden was associated with greater severity of PTSD symptoms (F range = 2.53-8.09, all P's < .01), particularly re-experiencing/intrusion symptoms (F range = 3.59-4.24, P's < .001). Greater social support was associated with lower severity of PTSD symptoms among APOE ε4 allele carriers with greater cumulative trauma burden (β range -.27 to -.60, P's < .05). CONCLUSION U.S. military veterans who are APOE ε4 allele carriers and exposed to a high number of traumas may be at increased risk for developing PTSD symptoms than ε4 noncarriers. Greater social support may moderate this association, thereby highlighting the potential importance of social support promoting interventions in mitigating the effect of ε4 × cumulative trauma burden on PTSD risk.
Collapse
Affiliation(s)
- Natalie P. Mota
- Department of Clinical Health Psychology, Max Rady College of Medicine, University of Manitoba, Canada
| | - Shizhong Han
- Department of Psychiatry, University of Iowa Carver College of Medicine,Iowa City, Iowa, USA
| | - Ilan Harpaz-Rotem
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Paul Maruff
- Florey Institute of Neuroscience and Mental Health, University of Melbourne and Cogstate, Ltd., Melbourne, Australia
| | - John H. Krystal
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Steven M. Southwick
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Joel Gelernter
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Robert H. Pietrzak
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
37
|
Deslauriers J, Acheson DT, Maihofer AX, Nievergelt CM, Baker DG, Geyer MA, Risbrough V. COMT val158met polymorphism links to altered fear conditioning and extinction are modulated by PTSD and childhood trauma. Depress Anxiety 2018; 35:32-42. [PMID: 28833952 PMCID: PMC5760328 DOI: 10.1002/da.22678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/11/2017] [Accepted: 07/21/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Risk for posttraumatic stress disorder (PTSD) is thought to be mediated by gene × environment (G × E) interactions that affect core cognitive processes such as fear learning. The catechol-O-methyltransferase (COMT) val158met polymorphism has been associated with risk for PTSD and impaired fear inhibition. We used a large, relatively homogenous population to (1) replicate previous findings of poor fear inhibition in COMT Met/Met carriers with PTSD; (2) determine if COMT association with fear inhibition is moderated by childhood trauma (CT), an environmental risk factor for PTSD; and (3) determine if COMT is associated with altered fear processes after recent exposure to combat trauma. METHODS Male Marines and Navy Corpsmen of European-American ancestry were assessed prior to (n = 714) and 4-6 months after deployment to Afghanistan (n = 452). Acquisition and extinction of fear-potentiated startle, childhood and combat trauma history, and PTSD diagnosis were assessed at both time points. RESULTS Before deployment, Met/Met genotype was associated with fear inhibition deficits in participants with current PTSD; however, this association was dependent on CT exposure. After deployment, combat trauma was associated with a modest reduction in fear extinction in Met/Met compared with Val/Val carriers. There were no associations of COMT genotype with fear extinction within healthy and non-traumatized individuals. CONCLUSIONS These findings support the hypothesis that G × E interactions underlie associations of COMT val158met with fear inhibition deficits. These studies confirm that Met/Met carriers with PTSD have poor fear inhibition, and support further research in understanding how this polymorphism might impact response to extinction-based therapies.
Collapse
Affiliation(s)
- Jessica Deslauriers
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Dean T Acheson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Mental Illness Research, Education, and Clinical Center, San Diego Veterans Affairs Healthcare System, San Diego, California
| | - Victoria Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Marine Resiliency Study Team
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
- Mental Illness Research, Education, and Clinical Center, San Diego Veterans Affairs Healthcare System, San Diego, California
| |
Collapse
|
38
|
Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder. Neuropsychopharmacology 2018; 43:80-102. [PMID: 28745306 PMCID: PMC5719095 DOI: 10.1038/npp.2017.162] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
Abstract
Exposure to stress is an undeniable, but in most cases surmountable, part of life. However, in certain individuals, exposure to severe or cumulative stressors can lead to an array of pathological conditions including posttraumatic stress disorder (PTSD), characterized by debilitating trauma-related intrusive thoughts, avoidance behaviors, hyperarousal, as well as depressed mood and anxiety. In the context of the rapidly changing political and legal landscape surrounding use of cannabis products in the USA, there has been a surge of public and research interest in the role of cannabinoids in the regulation of stress-related biological processes and in their potential therapeutic application for stress-related psychopathology. Here we review the current state of knowledge regarding the effects of cannabis and cannabinoids in PTSD and the preclinical and clinical literature on the effects of cannabinoids and endogenous cannabinoid signaling systems in the regulation of biological processes related to the pathogenesis of PTSD. Potential therapeutic implications of the reviewed literature are also discussed. Finally, we propose that a state of endocannabinoid deficiency could represent a stress susceptibility endophenotype predisposing to the development of trauma-related psychopathology and provide biologically plausible support for the self-medication hypotheses used to explain high rates of cannabis use in patients with trauma-related disorders.
Collapse
|
39
|
Heun-Johnson H, Levitt P. Differential impact of Met receptor gene interaction with early-life stress on neuronal morphology and behavior in mice. Neurobiol Stress 2017; 8:10-20. [PMID: 29255778 PMCID: PMC5723381 DOI: 10.1016/j.ynstr.2017.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 01/01/2023] Open
Abstract
Early adversity in childhood increases the risk of anxiety, mood, and post-traumatic stress disorders in adulthood, and specific gene-by-environment interactions may increase risk further. A common functional variant in the promoter region of the gene encoding the human MET receptor tyrosine kinase (rs1858830 ‘C’ allele) reduces expression of MET and is associated with altered cortical circuit function and structural connectivity. Mice with reduced Met expression exhibit changes in anxiety-like and conditioned fear behavior, precocious synaptic maturation in the hippocampus, and reduced neuronal arbor complexity and synaptogenesis. These phenotypes also can be produced independently by early adversity in wild-type mice. The present study addresses the outcome of combining early-life stress and genetic influences that alter timing of maturation on enduring functional and structural phenotypes. Using a model of reduced Met expression (Met+/−) and early-life stress from postnatal day 2–9, social, anxiety-like, and contextual fear behaviors in later life were measured. Mice that experienced early-life stress exhibited impairments in social interaction, whereas alterations in anxiety-like behavior and fear learning were driven by Met haploinsufficiency, independent of rearing condition. Early-life stress or reduced Met expression decreased arbor complexity of ventral hippocampal CA1 pyramidal neurons projecting to basolateral amygdala. Paradoxically, arbor complexity in Met+/− mice was increased following early-life stress, and thus not different from arbors in wild-type mice raised in control conditions. The changes in dendritic morphology are consistent with the hypothesis that the physiological state of maturation of CA1 neurons in Met+/− mice influences their responsiveness to early-life stress. The dissociation of behavioral and structural changes suggests that there may be phenotype-specific sensitivities to early-life stress.
Collapse
Affiliation(s)
- Hanke Heun-Johnson
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Pat Levitt
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
40
|
Mehta D, Bruenig D, Carrillo-Roa T, Lawford B, Harvey W, Morris CP, Smith AK, Binder EB, Young RM, Voisey J. Genomewide DNA methylation analysis in combat veterans reveals a novel locus for PTSD. Acta Psychiatr Scand 2017; 136:493-505. [PMID: 28795405 DOI: 10.1111/acps.12778] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Epigenetic modifications such as DNA methylation may play a key role in the aetiology and serve as biomarkers for post-traumatic stress disorder (PTSD). We performed a genomewide analysis to identify genes whose DNA methylation levels are associated with PTSD. METHOD A total of 211 individuals comprising Australian male Vietnam War veterans (n = 96) and males from a general population belonging to the Grady Trauma Project (n = 115) were included. Genomewide DNA methylation was performed from peripheral blood using the Illumina arrays. Data analysis was performed using generalized linear regression models. RESULTS Differential DNA methylation of 17 previously reported PTSD candidate genes was associated with PTSD symptom severity. Genomewide analyses revealed CpG sites spanning BRSK1, LCN8, NFG and DOCK2 genes were associated with PTSD symptom severity. We replicated the findings of DOCK2 in an independent cohort. Pathway analysis revealed that among the associated genes, genes within actin cytoskeleton and focal adhesion molecular pathways were enriched. CONCLUSION These data highlight the role of DNA methylation as biomarkers of PTSD. The results support the role of previous candidates and uncover novel genes associated with PTSD, such as DOCK2. This study contributes to our understanding of the biological underpinnings of PTSD.
Collapse
Affiliation(s)
- D Mehta
- School of Psychology and Counselling, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - D Bruenig
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - T Carrillo-Roa
- Department of Translational Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - B Lawford
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - W Harvey
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - C P Morris
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - A K Smith
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA, USA.,Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - E B Binder
- Department of Translational Research, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - R McD Young
- Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - J Voisey
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
41
|
Lind MJ, Marraccini ME, Sheerin CM, Bountress K, Bacanu SA, Amstadter AB, Nugent NR. Association of Posttraumatic Stress Disorder With rs2267735 in the ADCYAP1R1 Gene: A Meta-Analysis. J Trauma Stress 2017; 30:389-398. [PMID: 28746747 PMCID: PMC5706560 DOI: 10.1002/jts.22211] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023]
Abstract
Recent studies point to the potential role of the (pituitary) adenylate cyclase activating polypeptide receptor 1 (ADCYAP1R1) gene, which has been implicated in stress response, in posttraumatic stress disorder (PTSD). Multiple genetic association studies have examined potential PTSD risk related to this gene, with mixed results. We conducted a meta-analysis of rs2267735 in ADCYAP1R1 in PTSD. A literature search was conducted using PubMed and PsycINFO, resulting in nine studies that met criteria for inclusion in analysis. Biostat's Comprehensive Meta-Analysis was used to conduct the main meta-analysis on the combined sex sample, as well as two subanalyses examining effects separately in female and male participants. Results indicated that the C allele of rs2267735 conferred significant risk for PTSD in the combined sex data, OR = 1.210, 95% CI [1.007, 1.454], p = .042, and in the subsample of women and girls, OR = 1.328, 95% CI [1.026, 1.719], p = .031; but not in the subsample of men and boys, OR = 0.964, 95% CI [0.733, 1.269], p = .796. These results provide evidence for an association between ADCYAP1R1 and PTSD and indicate that there may indeed be sex differences. Implications of these findings, including the role of rs2267735 as one modulator of the stress system, are discussed.
Collapse
Affiliation(s)
- Mackenzie J. Lind
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marisa E. Marraccini
- Bradley/Hasbro Children’s Research Center of Rhode Island Hospital, Providence, Rhode Island, USA,Departments of Psychiatry and Human Behavior and Pediatrics, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Christina M. Sheerin
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kaitlin Bountress
- National Crime Victims Research & Treatment Center (NCVC), Medical University of South Carolina, Charleston, South Carolina, USA
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ananda B. Amstadter
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Nicole R. Nugent
- Bradley/Hasbro Children’s Research Center of Rhode Island Hospital, Providence, Rhode Island, USA,Departments of Psychiatry and Human Behavior and Pediatrics, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
42
|
Bertaina-Anglade V, O'Connor SM, Andriambeloson E. A perspective on the contribution of animal models to the pharmacological treatment of posttraumatic stress disorder. Australas Psychiatry 2017; 25:342-347. [PMID: 28747120 DOI: 10.1177/1039856217716288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Posttraumatic stress disorder (PTSD) is a prevalent, chronic, disabling disorder that may develop following exposure to a traumatic event. This review summarizes currently used animal models of PTSD and their potential role in the development of better therapeutics. Heterogeneity is one of the main characteristics of PTSD with the consequence that many pharmacological approaches are used to relieve symptoms of PTSD. To address the translational properties of the animal models, we discuss the types of stressors used, the rodent correlates of human PTSD (DSM-5) symptoms, and the efficacy of approved, recommended and off-label drugs used to treat PTSD in 'PTSD-animals'. CONCLUSIONS Currently available animal models reproduce most PTSD symptoms and are validated by existing therapeutics. However, novel therapeutics are needed for this disorder as not one drug alleviates all symptoms and many have side effects that lead to non-compliance among PTSD patients. The true translational power of animal models of PTSD will only be demonstrated when new therapeutics acting through novel mechanisms become available for clinical practice.
Collapse
Affiliation(s)
| | - Susan M O'Connor
- Vice President, Neuroscience Research, Bionomics, Thebarton, SA, Australia
| | | |
Collapse
|
43
|
Apolipoprotein E variants and genetic susceptibility to combat-related post-traumatic stress disorder. Psychiatr Genet 2017; 27:121-130. [DOI: 10.1097/ypg.0000000000000174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Park SH, Kim YJ, Park JC, Han JS, Choi SY. Intranasal Oxytocin following Uncontrollable Stress Blocks Impairments in Hippocampal Plasticity and Recognition Memory in Stressed Rats. Int J Neuropsychopharmacol 2017; 20:861-866. [PMID: 28977526 PMCID: PMC5632307 DOI: 10.1093/ijnp/pyx061] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nasal pretreatment with the neuropeptide oxytocin has been reported to prevent stress-induced impairments in hippocampal synaptic plasticity and spatial memory in rats. However, no study has asked if oxytocin application following a stress experience is effective in rescuing stress-induced impairments. METHODS Synaptic plasticity was measured in hippocampal Schaffer collateral-CA1 synapses of rats subjected to uncontrollable stress; their cognitive function was examined using an object recognition task. RESULTS Impaired induction of long-lasting, long-term potentiation by uncontrollable stress was rescued, as demonstrated both in rats and hippocampal slices. Intranasal oxytocin after experiencing uncontrollable stress blocked cognitive impairments in stressed rats and in stressed hippocampal slices treated with a perfused bath solution containing oxytocin. CONCLUSIONS These results indicated that posttreatment with oxytocin after experiencing a stressful event can keep synaptic plasticity and cognition function intact, indicating the therapeutic potential of oxytocin for stress-related disorders, including posttraumatic stress disorder.
Collapse
Affiliation(s)
- Seong-Hae Park
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (Dr Park, Ms Kim, and Dr Choi); Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (Mr Park and Dr Han)
| | - Yoon-Jung Kim
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (Dr Park, Ms Kim, and Dr Choi); Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (Mr Park and Dr Han)
| | - Jung-Cheol Park
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (Dr Park, Ms Kim, and Dr Choi); Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (Mr Park and Dr Han)
| | - Jung-Soo Han
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (Dr Park, Ms Kim, and Dr Choi); Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (Mr Park and Dr Han)
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (Dr Park, Ms Kim, and Dr Choi); Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (Mr Park and Dr Han).,Correspondence: Se-Young Choi, PhD, Department of Physiology, Seoul National University School of Dentistry, Seoul 110–749, Republic of Korea ()
| |
Collapse
|
45
|
Powerful Genetic Association Analysis for Common or Rare Variants with High-Dimensional Structured Traits. Genetics 2017. [PMID: 28642271 DOI: 10.1534/genetics.116.199646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Many genetic association studies collect a wide range of complex traits. As these traits may be correlated and share a common genetic mechanism, joint analysis can be statistically more powerful and biologically more meaningful. However, most existing tests for multiple traits cannot be used for high-dimensional and possibly structured traits, such as network-structured transcriptomic pathway expressions. To overcome potential limitations, in this article we propose the dual kernel-based association test (DKAT) for testing the association between multiple traits and multiple genetic variants, both common and rare. In DKAT, two individual kernels are used to describe the phenotypic and genotypic similarity, respectively, between pairwise subjects. Using kernels allows for capturing structure while accommodating dimensionality. Then, the association between traits and genetic variants is summarized by a coefficient which measures the association between two kernel matrices. Finally, DKAT evaluates the hypothesis of nonassociation with an analytical P-value calculation without any computationally expensive resampling procedures. By collapsing information in both traits and genetic variants using kernels, the proposed DKAT is shown to have a correct type-I error rate and higher power than other existing methods in both simulation studies and application to a study of genetic regulation of pathway gene expressions.
Collapse
|
46
|
Ross DA, Arbuckle MR, Travis MJ, Dwyer JB, van Schalkwyk GI, Ressler KJ. An Integrated Neuroscience Perspective on Formulation and Treatment Planning for Posttraumatic Stress Disorder: An Educational Review. JAMA Psychiatry 2017; 74:407-415. [PMID: 28273291 PMCID: PMC5504531 DOI: 10.1001/jamapsychiatry.2016.3325] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE Posttraumatic stress disorder (PTSD) is a common psychiatric illness, increasingly in the public spotlight in the United States due its prevalence in the soldiers returning from combat in Iraq and Afghanistan. This educational review presents a contemporary approach for how to incorporate a modern neuroscience perspective into an integrative case formulation. The article is organized around key neuroscience "themes" most relevant for PTSD. Within each theme, the article highlights how seemingly diverse biological, psychological, and social perspectives all intersect with our current understanding of neuroscience. OBSERVATIONS Any contemporary neuroscience formulation of PTSD should include an understanding of fear conditioning, dysregulated circuits, memory reconsolidation, epigenetics, and genetic factors. Fear conditioning and other elements of basic learning theory offer a framework for understanding how traumatic events can lead to a range of behaviors associated with PTSD. A circuit dysregulation framework focuses more broadly on aberrant network connectivity, including between the prefrontal cortex and limbic structures. In the process of memory reconsolidation, it is now clear that every time a memory is reactivated it becomes momentarily labile-with implications for the genesis, maintenance, and treatment of PTSD. Epigenetic changes secondary to various experiences, especially early in life, can have long-term effects, including on the regulation of the hypothalamic-pituitary-adrenal axis, thereby affecting an individual's ability to regulate the stress response. Genetic factors are surprisingly relevant: PTSD has been shown to be highly heritable despite being definitionally linked to specific experiences. The relevance of each of these themes to current clinical practice and its potential to transform future care are discussed. CONCLUSIONS AND RELEVANCE Together, these perspectives contribute to an integrative, neuroscience-informed approach to case formulation and treatment planning. This may help to bridge the gap between the traditionally distinct viewpoints of clinicians and researchers.
Collapse
Affiliation(s)
- David A. Ross
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa R. Arbuckle
- Department of Psychiatry, Columbia University Medical Center, New York, New York; New York State Psychiatric Institute, New York
| | - Michael J. Travis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jennifer B. Dwyer
- Department of Psychiatry and Child Study Center, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Gerrit I. van Schalkwyk
- Department of Psychiatry and Child Study Center, Yale School of Medicine, Yale University, New Haven, Connecticut
| | | |
Collapse
|
47
|
Genome-Wide Association Study of Post-Traumatic Stress Disorder in Two High-Risk Populations. Twin Res Hum Genet 2017; 20:197-207. [PMID: 28262088 DOI: 10.1017/thg.2017.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mexican Americans (MAs) and American Indians (AIs) constitute conspicuously understudied groups with respect to risk for post-traumatic stress disorder (PTSD), especially in light of findings showing racial/ethnic differences in trauma exposure and risk for PTSD. The purpose of this study was to examine genetic influences on PTSD in two minority cohorts. A genome-wide association study (GWAS) with sum PTSD symptoms for trauma-exposed subjects was run in each cohort. Six highly correlated variants in olfactory receptor family 11 subfamily L member 1 (OR11L1) were suggestively associated with PTSD in the MA cohort. These associations remained suggestively significant after permutation testing. A signal in a nearby olfactory receptor on chromosome 1, olfactory receptor family 2 subfamily L member 13 (OR2L13), tagged by rs151319968, was nominally associated with PTSD in the AI sample. Although no variants were significantly associated after correction for multiple testing in a meta-analysis of the two cohorts, pathway analysis of the top hits showed an enrichment cluster of terms related to sensory transduction, olfactory receptor activity, G-protein coupled receptors, and membrane. As previous studies have proposed a role for olfaction in PTSD, our results indicate this influence may be partially driven by genetic variation in the olfactory system.
Collapse
|
48
|
Banerjee SB, Morrison FG, Ressler KJ. Genetic approaches for the study of PTSD: Advances and challenges. Neurosci Lett 2017; 649:139-146. [PMID: 28242325 DOI: 10.1016/j.neulet.2017.02.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a highly debilitating stress and anxiety-related disorder that occurs in response to specific trauma or abuse. Genetic risk factors may account for up to 30-40% of the heritability of PTSD. Understanding the gene pathways that are associated with PTSD, and how those genes interact with the fear and stress circuitry to mediate risk and resilience for PTSD will enable the development of targeted therapies to prevent the occurrence of or decrease the severity of this complex multi-gene disorder. This review will summarize recent research on genetic approaches to understanding PTSD risk and resilience in human populations, including candidate genes and their epigenetic modifications, genome-wide association studies and neural imaging genetics approaches. Despite challenges faced within this field of study such as inconsistent results and replications, genetic approaches still offer exciting opportunities for the identification and development of novel therapeutic targets and therapies in the future.
Collapse
Affiliation(s)
- Sunayana B Banerjee
- Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, GA 30329, USA
| | - Filomene G Morrison
- Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, GA 30329, USA; McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Kerry J Ressler
- Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, GA 30329, USA; McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| |
Collapse
|
49
|
Bountress KE, Wei W, Sheerin C, Chung D, Amstadter AB, Mandel H, Wang Z. Relationships between GAT1 and PTSD, Depression, and Substance Use Disorder. Brain Sci 2017; 7:E6. [PMID: 28067785 PMCID: PMC5297295 DOI: 10.3390/brainsci7010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 11/16/2022] Open
Abstract
Post-traumatic stress disorder (PTSD), Major Depressive Disorder (MDD), and Substance Use Disorder (SUD) have large public health impacts. Therefore, researchers have attempted to identify those at greatest risk for these phenotypes. PTSD, MDD, and SUD are in part genetically influenced. Additionally, genes in the glutamate and gamma-aminobutyric acid (GABA) system are implicated in the encoding of emotional and fear memories, and thus may impact these phenotypes. The current study examined the associations of single nucleotide polymorphisms in GAT1 individually, and at the gene level, using a principal components (PC) approach, with PTSD, PTSD comorbid with MDD, and PTSD comorbid with SUD in 486 combat-exposed veterans. Findings indicate that several GAT1 SNPs, as well as one of the GAT1 PCs, was associated with PTSD, with and without MDD and SUD comorbidity. The present study findings provide initial insights into one pathway by which shared genetic risk influences PTSD-MDD and PTSD-SUD comorbidities, and thus identify a high-risk group (based on genotype) on whom prevention and intervention efforts should be focused.
Collapse
Affiliation(s)
- Kaitlin E Bountress
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Wei Wei
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425-8350, USA.
| | - Christina Sheerin
- Virginia Institute for Psychiatry and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23219-1534, USA.
| | - Dongjun Chung
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425-8350, USA.
| | - Ananda B Amstadter
- Virginia Institute for Psychiatry and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23219-1534, USA.
| | - Howard Mandel
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA.
| | - Zhewu Wang
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC 29425, USA.
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA.
| |
Collapse
|
50
|
Bountress KE, Bacanu SA, Tomko RL, Korte KJ, Hicks T, Sheerin C, Lind MJ, Marraccini M, Nugent N, Amstadter AB. The Effects of a BDNF Val66Met Polymorphism on Posttraumatic Stress Disorder: A Meta-Analysis. Neuropsychobiology 2017; 76:136-142. [PMID: 29874672 PMCID: PMC6057796 DOI: 10.1159/000489407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Given evidence that posttraumatic stress disorder (PTSD) is moderately heritable, a number of studies utilizing candidate gene approaches have attempted to examine the potential contributions of theoretically relevant genetic variation. Some of these studies have found sup port for a brain-derived neurotrophic factor (BDNF) variant, Val66Met, in the risk of developing PTSD, while others have failed to find this link. METHODS This study sought to reconcile these conflicting findings using a meta-analysis framework. Analyses were also used to determine whether there is significant heterogeneity in the link between this variant and PTSD. We conducted a systematic review of the literature on BDNF and PTSD from the PsycINFO and PubMed databases. A total of 11 studies were included in the analysis. RESULTS Findings indicate a marginally significant effect of the BDNF Val66Met variant on PTSD (p < 0.1). However, of the 11 studies included, only 2 suggested an effect with a non-zero confidence interval, one of which showed a z score of 3.31. We did not find any evidence for heterogeneity. CONCLUSIONS Findings from this meta-analytic investigation of the published literature provide little support for the Val66Met variant of BDNF as a predictor of PTSD. Future well-powered agnostic genome-wide association studies with more refined phenotyping are needed to clarify genetic influences on PTSD.
Collapse
Affiliation(s)
- Kaitlin E. Bountress
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| | - Rachel L. Tomko
- Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina
| | - Kristina J. Korte
- Department of Psychiatry, Division of Global Psychiatry, Massachusetts General Hospital
| | - Terrell Hicks
- Department of Psychology, Virginia Commonwealth University
| | - Christina Sheerin
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| | - Mackenzie J. Lind
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| | | | - Nicole Nugent
- Departments of Pediatrics and Psychiatry and Human Behavior at the Warren Alpert Medical School of Brown University
| | - Ananda B. Amstadter
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| |
Collapse
|