1
|
Dedukh D, Maslova A, Al-Rikabi A, Padutsch N, Liehr T, Krasikova A. Karyotypes of water frogs from the Pelophylax esculentus complex: results of cross-species chromosomal painting. Chromosoma 2023; 132:329-342. [PMID: 38001396 DOI: 10.1007/s00412-023-00812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Amphibian species have the largest genome size enriched with repetitive sequences and relatively similar karyotypes. Moreover, many amphibian species frequently hybridize causing nuclear and mitochondrial genome introgressions. In addition, hybridization in some amphibian species may lead to clonality and polyploidization. All such events were found in water frogs from the genus Pelophylax. Among the species within the genus Pelophylax, P. esculentus complex is the most widely distributed and well-studied. This complex includes two parental species, P. ridibundus and P. lessonae, and their hybrids, P. esculentus, reproducing hemiclonally. Parental species and their hybrids have similar but slightly polymorphic karyotypes, so their precise identification is still required. Here, we have developed a complete set of 13 chromosome painting probes for two parental species allowing the precise identification of all chromosomes. Applying chromosomal painting, we identified homologous chromosomes in both parental species and orthologous chromosomes in their diploid hemiclonal hybrids. Comparative painting did not reveal interchromosomal exchanges between the studied water frog species and their hybrids. Using cross-specific chromosome painting, we detected unequal distribution of the signals along chromosomes suggesting the presence of species-specific tandem repeats. Application of chromosomal paints to the karyotypes of hybrids revealed differences in the intensity of staining for P. ridibundus and P. lessonae chromosomes. Thus, both parental genomes have a divergence in unique sequences. Obtained chromosome probes may serve as a powerful tool to unravel chromosomal evolution in phylogenetically related species, identify individual chromosomes in different cell types, and investigate the elimination of chromosomes in hybrid water frogs.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Cell Nucleus Structure and Dynamics, Saint-Petersburg State University, Saint-Petersburg, Russia
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Antonina Maslova
- Laboratory of Cell Nucleus Structure and Dynamics, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ahmed Al-Rikabi
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Jena, Germany
| | - Niklas Padutsch
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Jena, Germany
| | - Alla Krasikova
- Laboratory of Cell Nucleus Structure and Dynamics, Saint-Petersburg State University, Saint-Petersburg, Russia.
| |
Collapse
|
2
|
Alisawi O, Richert-Pöggeler KR, Heslop-Harrison J(P, Schwarzacher T. The nature and organization of satellite DNAs in Petunia hybrida, related, and ancestral genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1232588. [PMID: 37868307 PMCID: PMC10587573 DOI: 10.3389/fpls.2023.1232588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
Introduction The garden petunia, Petunia hybrida (Solanaceae) is a fertile, diploid, annual hybrid species (2n=14) originating from P. axillaris and P. inflata 200 years ago. To understand the recent evolution of the P. hybrida genome, we examined tandemly repeated or satellite sequences using bioinformatic and molecular cytogenetic analysis. Methods Raw reads from available genomic assemblies and survey sequences of P. axillaris N (PaxiN), P. inflata S6, (PinfS6), P. hybrida (PhybR27) and the here sequenced P. parodii S7 (PparS7) were used for graph and k-mer based cluster analysis of TAREAN and RepeatExplorer. Analysis of repeat specific monomer lengths and sequence heterogeneity of the major tandem repeat families with more than 0.01% genome proportion were complemented by fluorescent in situ hybridization (FISH) using consensus sequences as probes to chromosomes of all four species. Results Seven repeat families, PSAT1, PSAT3, PSAT4, PSAT5 PSAT6, PSAT7 and PSAT8, shared high consensus sequence similarity and organisation between the four genomes. Additionally, many degenerate copies were present. FISH in P. hybrida and in the three wild petunias confirmed the bioinformatics data and gave corresponding signals on all or some chromosomes. PSAT1 is located at the ends of all chromosomes except the 45S rDNA bearing short arms of chromosomes II and III, and we classify it as a telomere associated sequence (TAS). It is the most abundant satellite repeat with over 300,000 copies, 0.2% of the genomes. PSAT3 and the variant PSAT7 are located adjacent to the centromere or mid-arm of one to three chromosome pairs. PSAT5 has a strong signal at the end of the short arm of chromosome III in P. axillaris and P.inflata, while in P. hybrida additional interstitial sites were present. PSAT6 is located at the centromeres of chromosomes II and III. PSAT4 and PSAT8 were found with only short arrays. Discussion These results demonstrate that (i) repeat families occupy distinct niches within chromosomes, (ii) they differ in the copy number, cluster organization and homogenization events, and that (iii) the recent genome hybridization in breeding P. hybrida preserved the chromosomal position of repeats but affected the copy number of repetitive DNA.
Collapse
Affiliation(s)
- Osamah Alisawi
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf, Iraq
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
| | - Katja R. Richert-Pöggeler
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - J.S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Sokolova DA, Halych TV, Zhuk VV, Kravets AP. Relationship of radiation-induced genomic instability and antioxidant production in the chamomile plant. Int J Radiat Biol 2023; 99:1631-1638. [PMID: 36881557 DOI: 10.1080/09553002.2023.2188934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE To verify the hypothesis about the preservation of signs of radiation-induced genomic instability at the flowering stage of the chamomile plant after pre-sowing seed irradiation, the interaction of dose-dependent changes in the level of DNA damage and stimulation of antioxidant production. MATERIALS AND METHODS The study was carried out on two genotypes of chamomile, Perlyna Lisostepu variety and its mutant, using pre-sowing seed radiation exposure at dose levels 5-15 Gy. Studies of the rearrangement of the primary DNA structure of under different doses were studied on plant tissues at the flowering stage using - ISSR and RAPD DNA markers. Dose-dependent changes relative to the control of the amplicons' spectra were analyzed using the Jacquard similarity index. Antioxidants such as flavonoids and phenols were isolated from pharmaceutical raw materials (inflorescences) using traditional methods. RESULTS Preservation of multiple DNA damages at the stage of plant flowering under pre-sowing seed irradiation at low doses was confirmed. It was found that the largest rearrangements of the primary DNA structure of both genotypes, manifested in reduced similarity with the control spectra of amplicons, were observed under irradiation dose levels 5-10 Gy. There was a tendency to approach this indicator to the control under 15 Gy dose, which means increasing efficiency of the reparative processes. The relationship between the polymorphism of the primary structure of DNA by ISSR-RAPD-markers in different genotypes and the nature of its rearrangement under radiation exposure was shown. Dose dependences of changes in the specific content of antioxidants were non-monotonic with a maximum at 5-10 Gy. CONCLUSIONS Comparison of dose dependences of changes in the coefficient of similarity of the spectrum of amplicons between irradiated and control variants with nonmonotonic dose curves in the specific content of antioxidants allowed to suggest that there was the antioxidant protection stimulation under the doses corresponding to low efficiency of repair processes. The decrease in the specific content of antioxidants followed the restoration of the genetic material normal state. The interpretation of the identified phenomenon has been based on both known connection between the effects of genomic instability and the increasing yield of the reactive oxygen species and general principles of antioxidant protection.
Collapse
Affiliation(s)
- Daryna A Sokolova
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Taras V Halych
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vladyslav V Zhuk
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alexandra P Kravets
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Zhang F, Chen F, Schwarzacher T, Heslop-Harrison JS, Teng N. The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes. ANNALS OF BOTANY 2023; 131:215-228. [PMID: 35639931 PMCID: PMC9904347 DOI: 10.1093/aob/mcac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Tandemly repeated DNA and transposable elements represent most of the DNA in higher plant genomes. High-throughput sequencing allows a survey of the DNA in a genome, but whole-genome assembly can miss a substantial fraction of highly repeated sequence motifs. Chrysanthemum nankingense (2n = 2x = 18; genome size = 3.07 Gb; Asteraceae), a diploid reference for the many auto- and allopolyploids in the genus, was considered as an ancestral species and serves as an ornamental plant and high-value food. We aimed to characterize the major repetitive DNA motifs, understand their structure and identify key features that are shaped by genome and sequence evolution. METHODS Graph-based clustering with RepeatExplorer was used to identify and classify repetitive motifs in 2.14 millions of 250-bp paired-end Illumina reads from total genomic DNA of C. nankingense. Independently, the frequency of all canonical motifs k-bases long was counted in the raw read data and abundant k-mers (16, 21, 32, 64 and 128) were extracted and assembled to generate longer contigs for repetitive motif identification. For comparison, long terminal repeat retrotransposons were checked in the published C. nankingense reference genome. Fluorescent in situ hybridization was performed to show the chromosomal distribution of the main types of repetitive motifs. KEY RESULTS Apart from rDNA (0.86 % of the total genome), a few microsatellites (0.16 %), and telomeric sequences, no highly abundant tandem repeats were identified. There were many transposable elements: 40 % of the genome had sequences with recognizable domains related to transposable elements. Long terminal repeat retrotransposons showed widespread distribution over chromosomes, although different sequence families had characteristic features such as abundance at or exclusion from centromeric or subtelomeric regions. Another group of very abundant repetitive motifs, including those most identified as low-complexity sequences (9.07 %) in the genome, showed no similarity to known sequence motifs or tandemly repeated elements. CONCLUSIONS The Chrysanthemum genome has an unusual structure with a very low proportion of tandemly repeated sequences (~1.02 %) in the genome, and a high proportion of low-complexity sequences, most likely degenerated remains of transposable elements. Identifying the presence, nature and genomic organization of major genome fractions enables inference of the evolutionary history of sequences, including degeneration and loss, critical to understanding biodiversity and diversification processes in the genomes of diploid and polyploid Chrysanthemum, Asteraceae and plants more widely.
Collapse
Affiliation(s)
- Fengjiao Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | | |
Collapse
|
5
|
Kroupin PY, Badaeva ED, Sokolova VM, Chikida NN, Belousova MK, Surzhikov SA, Nikitina EA, Kocheshkova AA, Ulyanov DS, Ermolaev AS, Khuat TML, Razumova OV, Yurkina AI, Karlov GI, Divashuk MG. Aegilops crassa Boiss. repeatome characterized using low-coverage NGS as a source of new FISH markers: Application in phylogenetic studies of the Triticeae. FRONTIERS IN PLANT SCIENCE 2022; 13:980764. [PMID: 36325551 PMCID: PMC9621091 DOI: 10.3389/fpls.2022.980764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 06/13/2023]
Abstract
Aegilops crassa Boiss. is polyploid grass species that grows in the eastern part of the Fertile Crescent, Afghanistan, and Middle Asia. It consists of tetraploid (4x) and hexaploid (6x) cytotypes (2n = 4x = 28, D1D (Abdolmalaki et al., 2019) XcrXcr and 2n = 6x = 42, D1D (Abdolmalaki et al., 2019) XcrXcrD2D (Adams and Wendel, 2005), respectively) that are similar morphologically. Although many Aegilops species were used in wheat breeding, the genetic potential of Ae. crassa has not yet been exploited due to its uncertain origin and significant genome modifications. Tetraploid Ae. crassa is thought to be the oldest polyploid Aegilops species, the subgenomes of which still retain some features of its ancient diploid progenitors. The D1 and D2 subgenomes of Ae. crassa were contributed by Aegilops tauschii (2n = 2x = 14, DD), while the Xcr subgenome donor is still unknown. Owing to its ancient origin, Ae. crassa can serve as model for studying genome evolution. Despite this, Ae. crassa is poorly studied genetically and no genome sequences were available for this species. We performed low-coverage genome sequencing of 4x and 6x cytotypes of Ae. crassa, and four Ae. tauschii accessions belonging to different subspecies; diploid wheatgrass Thinopyrum bessarabicum (Jb genome), which is phylogenetically close to D (sub)genome species, was taken as an outgroup. Subsequent data analysis using the pipeline RepeatExplorer2 allowed us to characterize the repeatomes of these species and identify several satellite sequences. Some of these sequences are novel, while others are found to be homologous to already known satellite sequences of Triticeae species. The copy number of satellite repeats in genomes of different species and their subgenome (D1 or Xcr) affinity in Ae. crassa were assessed by means of comparative bioinformatic analysis combined with quantitative PCR (qPCR). Fluorescence in situ hybridization (FISH) was performed to map newly identified satellite repeats on chromosomes of common wheat, Triticum aestivum, 4x and 6x Ae. crassa, Ae. tauschii, and Th. bessarabicum. The new FISH markers can be used in phylogenetic analyses of the Triticeae for chromosome identification and the assessment of their subgenome affinities and for evaluation of genome/chromosome constitution of wide hybrids or polyploid species.
Collapse
Affiliation(s)
- Pavel Yu. Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Ekaterina D. Badaeva
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victoria M. Sokolova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Nadezhda N. Chikida
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Maria Kh. Belousova
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Nikitina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Alina A. Kocheshkova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Daniil S. Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Aleksey S. Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Thi Mai Luong Khuat
- Agricultural Genetics Institute, Department of Molecular Biology, Hanoi, Vietnam
| | - Olga V. Razumova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Anna I. Yurkina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| |
Collapse
|
6
|
Integration of Repeatomic and Cytogenetic Data on Satellite DNA for the Genome Analysis in the Genus Salvia (Lamiaceae). PLANTS 2022; 11:plants11172244. [PMID: 36079625 PMCID: PMC9460151 DOI: 10.3390/plants11172244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Within the complicated and controversial taxonomy of cosmopolitan genus Salvia L. (Lamiaceae) are valuable species Salvia officinalis L. and Salvia sclarea L., which are important for the pharmaceutical, ornamental horticulture, food, and perfume industries. Genome organization and chromosome structure of these essential oil species remain insufficiently studied. For the first time, the comparative repeatome analysis of S. officinalis and S. sclarea was performed using the obtained NGS data, RepeatExplorer/TAREAN pipelines and FISH-based chromosome mapping of the revealed satellite DNA families (satDNAs). In repeatomes of these species, LTR retrotransposons made up the majority of their repetitive DNA. Interspecific variations in genome abundance of Class I and Class II transposable elements, ribosomal DNA, and satellite DNA were revealed. Four (S. sclarea) and twelve (S. officinalis) putative satDNAs were identified. Based on patterns of chromosomal distribution of 45S rDNA; 5S rDNA and the revealed satDNAs, karyograms of S. officinalis and S. sclarea were constructed. Promising satDNAs which can be further used as chromosome markers to assess inter- and intraspecific chromosome variability in Salvia karyotypes were determined. The specific localization of homologous satDNA and 45S rDNA on chromosomes of the studied Salvia species confirmed their common origin, which is consistent with previously reported molecular phylogenetic data.
Collapse
|
7
|
Amosova AV, Yurkevich OY, Bolsheva NL, Samatadze TE, Zoshchuk SA, Muravenko OV. Repeatome Analyses and Satellite DNA Chromosome Patterns in Deschampsia sukatschewii, D. cespitosa, and D. antarctica (Poaceae). Genes (Basel) 2022; 13:genes13050762. [PMID: 35627148 PMCID: PMC9141916 DOI: 10.3390/genes13050762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Subpolar and polar ecotypes of Deschampsia sukatschewii (Popl.) Roshev, D. cespitosa (L.) P. Beauv, and D. antarctica E. Desv. are well adapted to stressful environmental conditions, which make them useful model plants for genetic research and breeding. For the first time, the comparative repeatome analyses of subpolar and polar D. sukatschewii, D. cespitosa, and D. antarctica was performed using RepeatExplorer/TAREAN pipelines and FISH-based chromosomal mapping of the identified satellite DNA families (satDNAs). In the studied species, mobile genetic elements of class 1 made up the majority of their repetitive DNA; interspecific variations in the total amount of Ty3/Gypsy and Ty1/Copia retroelements, DNA transposons, ribosomal, and satellite DNA were revealed; 12–18 high confident and 7–9 low confident putative satDNAs were identified. According to BLAST, most D. sukatschewii satDNAs demonstrated sequence similarity with satDNAs of D. antarctica and D. cespitosa indicating their common origin. Chromosomal mapping of 45S rDNA, 5S rDNA, and satDNAs of D. sukatschewii allowed us to construct the species karyograms and detect new molecular chromosome markers important for Deschampsia species. Our findings confirmed that genomes of D. sukatschewii and D. cespitosa were more closely related compared to D. antarctica according to repeatome composition and patterns of satDNA chromosomal distribution.
Collapse
|
8
|
Hemleben V, Grierson D, Borisjuk N, Volkov RA, Kovarik A. Personal Perspectives on Plant Ribosomal RNA Genes Research: From Precursor-rRNA to Molecular Evolution. FRONTIERS IN PLANT SCIENCE 2021; 12:797348. [PMID: 34992624 PMCID: PMC8724763 DOI: 10.3389/fpls.2021.797348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
The history of rDNA research started almost 90 years ago when the geneticist, Barbara McClintock observed that in interphase nuclei of maize the nucleolus was formed in association with a specific region normally located near the end of a chromosome, which she called the nucleolar organizer region (NOR). Cytologists in the twentieth century recognized the nucleolus as a common structure in all eukaryotic cells, using both light and electron microscopy and biochemical and genetic studies identified ribosomes as the subcellular sites of protein synthesis. In the mid- to late 1960s, the synthesis of nuclear-encoded rRNA was the only system in multicellular organisms where transcripts of known function could be isolated, and their synthesis and processing could be studied. Cytogenetic observations of NOR regions with altered structure in plant interspecific hybrids and detailed knowledge of structure and function of rDNA were prerequisites for studies of nucleolar dominance, epistatic interactions of rDNA loci, and epigenetic silencing. In this article, we focus on the early rDNA research in plants, performed mainly at the dawn of molecular biology in the 60 to 80-ties of the last century which presented a prequel to the modern genomic era. We discuss - from a personal view - the topics such as synthesis of rRNA precursor (35S pre-rRNA in plants), processing, and the organization of 35S and 5S rDNA. Cloning and sequencing led to the observation that the transcribed and processed regions of the rRNA genes vary enormously, even between populations and species, in comparison with the more conserved regions coding for the mature rRNAs. Epigenetic phenomena and the impact of hybridization and allopolyploidy on rDNA expression and homogenization are discussed. This historical view of scientific progress and achievements sets the scene for the other articles highlighting the immense progress in rDNA research published in this special issue of Frontiers in Plant Science on "Molecular organization, evolution, and function of ribosomal DNA."
Collapse
Affiliation(s)
- Vera Hemleben
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Nikolai Borisjuk
- School of Life Sciences, Huaiyin Normal University, Huai'an, China
| | - Roman A. Volkov
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Ales Kovarik
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| |
Collapse
|
9
|
Oliveira MAS, Nunes T, Dos Santos MA, Ferreira Gomes D, Costa I, Van-Lume B, Marques Da Silva SS, Oliveira RS, Simon MF, Lima GSA, Gissi DS, Almeida CCDS, Souza G, Marques A. High-Throughput Genomic Data Reveal Complex Phylogenetic Relationships in Stylosanthes Sw (Leguminosae). Front Genet 2021; 12:727314. [PMID: 34630521 PMCID: PMC8495327 DOI: 10.3389/fgene.2021.727314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Allopolyploidy is widely present across plant lineages. Though estimating the correct phylogenetic relationships and origin of allopolyploids may sometimes become a hard task. In the genus Stylosanthes Sw. (Leguminosae), an important legume crop, allopolyploidy is a key speciation force. This makes difficult adequate species recognition and breeding efforts on the genus. Based on comparative analysis of nine high-throughput sequencing (HTS) samples, including three allopolyploids (S. capitata Vogel cv. “Campo Grande,” S. capitata “RS024” and S. scabra Vogel) and six diploids (S. hamata Taub, S. viscosa (L.) Sw., S. macrocephala M. B. Ferreira and Sousa Costa, S. guianensis (Aubl.) Sw., S. pilosa M. B. Ferreira and Sousa Costa and S. seabrana B. L. Maass & 't Mannetje) we provide a working pipeline to identify organelle and nuclear genome signatures that allowed us to trace the origin and parental genome recognition of allopolyploids. First, organelle genomes were de novo assembled and used to identify maternal genome donors by alignment-based phylogenies and synteny analysis. Second, nuclear-derived reads were subjected to repetitive DNA identification with RepeatExplorer2. Identified repeats were compared based on abundance and presence on diploids in relation to allopolyploids by comparative repeat analysis. Third, reads were extracted and grouped based on the following groups: chloroplast, mitochondrial, satellite DNA, ribosomal DNA, repeat clustered- and total genomic reads. These sets of reads were then subjected to alignment and assembly free phylogenetic analyses and were compared to classical alignment-based phylogenetic methods. Comparative analysis of shared and unique satellite repeats also allowed the tracing of allopolyploid origin in Stylosanthes, especially those with high abundance such as the StyloSat1 in the Scabra complex. This satellite was in situ mapped in the proximal region of the chromosomes and made it possible to identify its previously proposed parents. Hence, with simple genome skimming data we were able to provide evidence for the recognition of parental genomes and understand genome evolution of two Stylosanthes allopolyploids.
Collapse
Affiliation(s)
| | - Tomáz Nunes
- Laboratory of Genetic Resources, Federal University of Alagoas, Arapiraca, Brazil
| | | | | | - Iara Costa
- Laboratory of Genetic Resources, Federal University of Alagoas, Arapiraca, Brazil
| | - Brena Van-Lume
- Laboratory of Plant Cytogenetics and Evolution, Federal University of Pernambuco, Recife, Brazil
| | | | - Ronaldo Simão Oliveira
- Campus Xique Xique, Federal Institute of Education, Science and Technology of Bahia, Xique-Xique, Brazil
| | | | - Gaus S A Lima
- Center of Agronomic Sciences, Federal University of Alagoas, Rio Largo, Brazil
| | - Danilo Soares Gissi
- Department of Biostatistics, Institute of Biosciences-IBB, Plant Biology, Parasitology and Zoology, São Paulo State University-UNESP, Botucatu, Brazil
| | | | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Federal University of Pernambuco, Recife, Brazil
| | - André Marques
- Laboratory of Genetic Resources, Federal University of Alagoas, Arapiraca, Brazil.,Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
10
|
González ML, Chiapella JO, Urdampilleta JD. Chromosomal Differentiation of Deschampsia (Poaceae) Based on Four Satellite DNA Families. Front Genet 2021; 12:728664. [PMID: 34621294 PMCID: PMC8490763 DOI: 10.3389/fgene.2021.728664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
Diverse families of satellite DNA (satDNA) were detected in heterochromatin regions of Deschampsia. This kind of repetitive DNA consists of tandem repeat sequences forming big arrays in genomes, and can contribute to lineages differentiation. The differentiation between types of satDNA is related to their sequence identity, the size and number of monomers forming the array, and their chromosomal location. In this work, four families of satDNA (D2, D3, D12, D13), previously isolated by genomic analysis, were studied on chromosomal preparations of 12 species of Deschampsia (D. airiformis, D. antarctica, D. cespitosa, D. cordillerarum, D. elongata, D. kingii, D. laxa, D. mendocina, D. parvula, D. patula, D. venustula, and Deschampsia sp) and one of Deyeuxia (D. eminens). Despite the number of satDNA loci showing interspecific variation, the general distribution pattern of each satDNA family is maintained. The four satDNA families are AT-rich and associated with DAPI + heterochromatin regions. D2, D3, and D12 have mainly subterminal distribution, while D13 is distributed in intercalary regions. Such conservation of satDNA patterns suggests a not random distribution in genomes, where the variation between species is mainly associated with the array size and the loci number. The presence of satDNA in all species studied suggests a low genetic differentiation of sequences. On the other hand, the variation of the distribution pattern of satDNA has no clear association with phylogeny. This may be related to high differential amplification and contraction of sequences between lineages, as explained by the library model.
Collapse
Affiliation(s)
- María Laura González
- Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Jorge Oscar Chiapella
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional Del Comahue), Bariloche, Argentina
| | - Juan Domingo Urdampilleta
- Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Córdoba), Córdoba, Argentina
| |
Collapse
|
11
|
Heitkam T, Schulte L, Weber B, Liedtke S, Breitenbach S, Kögler A, Morgenstern K, Brückner M, Tröber U, Wolf H, Krabel D, Schmidt T. Comparative Repeat Profiling of Two Closely Related Conifers ( Larix decidua and Larix kaempferi) Reveals High Genome Similarity With Only Few Fast-Evolving Satellite DNAs. Front Genet 2021; 12:683668. [PMID: 34322154 PMCID: PMC8312256 DOI: 10.3389/fgene.2021.683668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
In eukaryotic genomes, cycles of repeat expansion and removal lead to large-scale genomic changes and propel organisms forward in evolution. However, in conifers, active repeat removal is thought to be limited, leading to expansions of their genomes, mostly exceeding 10 giga base pairs. As a result, conifer genomes are largely littered with fragmented and decayed repeats. Here, we aim to investigate how the repeat landscapes of two related conifers have diverged, given the conifers' accumulative genome evolution mode. For this, we applied low-coverage sequencing and read clustering to the genomes of European and Japanese larch, Larix decidua (Lamb.) Carrière and Larix kaempferi (Mill.), that arose from a common ancestor, but are now geographically isolated. We found that both Larix species harbored largely similar repeat landscapes, especially regarding the transposable element content. To pin down possible genomic changes, we focused on the repeat class with the fastest sequence turnover: satellite DNAs (satDNAs). Using comparative bioinformatics, Southern, and fluorescent in situ hybridization, we reveal the satDNAs' organizational patterns, their abundances, and chromosomal locations. Four out of the five identified satDNAs are widespread in the Larix genus, with two even present in the more distantly related Pseudotsuga and Abies genera. Unexpectedly, the EulaSat3 family was restricted to L. decidua and absent from L. kaempferi, indicating its evolutionarily young age. Taken together, our results exemplify how the accumulative genome evolution of conifers may limit the overall divergence of repeats after speciation, producing only few repeat-induced genomic novelties.
Collapse
Affiliation(s)
- Tony Heitkam
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Luise Schulte
- Institute of Botany, Technische Universität Dresden, Dresden, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Susan Liedtke
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Sarah Breitenbach
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Anja Kögler
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Kristin Morgenstern
- Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, Tharandt, Germany
| | | | - Ute Tröber
- Staatsbetrieb Sachsenforst, Pirna, Germany
| | - Heino Wolf
- Staatsbetrieb Sachsenforst, Pirna, Germany
| | - Doris Krabel
- Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, Tharandt, Germany
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Sader M, Vaio M, Cauz-Santos LA, Dornelas MC, Vieira MLC, Melo N, Pedrosa-Harand A. Large vs small genomes in Passiflora: the influence of the mobilome and the satellitome. PLANTA 2021; 253:86. [PMID: 33792791 DOI: 10.1007/s00425-021-03598-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/18/2021] [Indexed: 05/22/2023]
Abstract
While two lineages of retrotransposons were more abundant in larger Passiflora genomes, the satellitome was more diverse and abundant in the smallest genome analysed. Repetitive sequences are ubiquitous and fast-evolving elements responsible for size variation and large-scale organization of plant genomes. Within Passiflora genus, a tenfold variation in genome size, not attributed to polyploidy, is known. Here, we applied a combined in silico and cytological approach to study the organization and diversification of repetitive elements in three species of this genus representing its known range in genome size variation. Sequences were classified in terms of type and repetitiveness and the most abundant were mapped to chromosomes. We identified long terminal repeat (LTR) retrotransposons as the most abundant elements in the three genomes, showing a considerable variation among species. Satellite DNAs (satDNAs) were less representative, but highly diverse between subgenera. Our results clearly confirm that the largest genome species (Passiflora quadrangularis) presents a higher accumulation of repetitive DNA sequences, specially Angela and Tekay elements, making up most of its genome. Passiflora cincinnata, with intermediate genome and from the same subgenus, showed similarity with P. quadrangularis regarding the families of repetitive DNA sequences, but in different proportions. On the other hand, Passiflora organensis, the smallest genome, from a different subgenus, presented greater diversity and the highest proportion of satDNA. Altogether, our data indicates that while large genomes evolved by an accumulation of retrotransposons, the smallest genome known for the genus has evolved by diversification of different repeat types, particularly satDNAs.
Collapse
Affiliation(s)
- Mariela Sader
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Magdalena Vaio
- Laboratory of Plant Genome Evolution and Domestication, Department of Plant Biology, Faculty of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Luiz Augusto Cauz-Santos
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Maria Lucia Carneiro Vieira
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Natoniel Melo
- Laboratory of Biotechnology, Embrapa Semiarid, Petrolina, Pernambuco, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
13
|
Wei L, Liu B, Zhang C, Yu Y, Yang X, Dou Q, Dong Q. Identification and characterization of satellite DNAs in Poa L. Mol Cytogenet 2020; 13:47. [PMID: 33292401 PMCID: PMC7670724 DOI: 10.1186/s13039-020-00518-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Poa L. is a large genus of grass in Gramineae, among which P. pratensis is widely cultivated as turf and forage. Satellite DNA is the main components of the plant genome. Information of satellites will helpful for dissection the genome composition and definition of the phylogeny relationship of these species. However, the knowledge about the satellites in genus Poa is still limited. RESULTS Four satellite DNAs were identified using the Repeat Explorer pipeline in HiSeq Illumina reads from diploid plants in P. malaca (2n = 26). Two satellites showed high similarity with the previously identified PpTr-1 and PpTr-3, whereas two others are newly identified with the monomer of 326 bp (Poa-326) and 353 bp (Poa-353) respectively. The clone DNAs of PpTr-1 and PpTr-3, and oligonucleotides designed representing satellites Poa-326 and Poa-353 were probed to test on chromosomes across 13 Poa speceis with different polyploidy level by fluorescent in situ hybridization (FISH). PpTr-1, PpTr-3, and Poa-362 were stably positioned in the subtelomeric regions in nearly all species with the variation of hybridization sites number. However, Poa-353 showed different FISH patterns of multiple regions with the variation of hybridization intensity and distribution sites across species. In addition, 5S rDNA and 45S rDNA were used to characterize the genome of the Poa species. Four rDNA FISH patterns were revealed in the tested species. CONCLUSION Four identified satellite were high conservable across Poa species. Genome distribution of these satellites can be characterized by FISH. The variation of satellite DNAs and rDNA chromosomal distributions between species provide useful information for phylogenetic analysis in genus Poa.
Collapse
Affiliation(s)
- Linna Wei
- State Key Laboratory of Plateau Ecology and Agriculture in the Three River Head Waters Region, Qinghai Academy of Animal and Veterinary Science, Xining, 810001, Qinghai Province, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, No. 1 of Weier Road in Shengwuyuan District of Xining City, Xining, 810016, Qinghai Province, China
| | - Bo Liu
- Key Laboratory of Crop Molecular Breeding Qinghai Province, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, 810008, Qinghai Province, China
| | - Chunping Zhang
- State Key Laboratory of Plateau Ecology and Agriculture in the Three River Head Waters Region, Qinghai Academy of Animal and Veterinary Science, Xining, 810001, Qinghai Province, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, No. 1 of Weier Road in Shengwuyuan District of Xining City, Xining, 810016, Qinghai Province, China
| | - Yang Yu
- State Key Laboratory of Plateau Ecology and Agriculture in the Three River Head Waters Region, Qinghai Academy of Animal and Veterinary Science, Xining, 810001, Qinghai Province, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, No. 1 of Weier Road in Shengwuyuan District of Xining City, Xining, 810016, Qinghai Province, China
| | - Xiaoxia Yang
- State Key Laboratory of Plateau Ecology and Agriculture in the Three River Head Waters Region, Qinghai Academy of Animal and Veterinary Science, Xining, 810001, Qinghai Province, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, No. 1 of Weier Road in Shengwuyuan District of Xining City, Xining, 810016, Qinghai Province, China
| | - Quanwen Dou
- Key Laboratory of Crop Molecular Breeding Qinghai Province, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, 810008, Qinghai Province, China.
| | - Quanmin Dong
- State Key Laboratory of Plateau Ecology and Agriculture in the Three River Head Waters Region, Qinghai Academy of Animal and Veterinary Science, Xining, 810001, Qinghai Province, China.
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, No. 1 of Weier Road in Shengwuyuan District of Xining City, Xining, 810016, Qinghai Province, China.
| |
Collapse
|
14
|
Zagorski D, Hartmann M, Bertrand YJK, Paštová L, Slavíková R, Josefiová J, Fehrer J. Characterization and Dynamics of Repeatomes in Closely Related Species of Hieracium (Asteraceae) and Their Synthetic and Apomictic Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:591053. [PMID: 33224172 PMCID: PMC7667050 DOI: 10.3389/fpls.2020.591053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 05/05/2023]
Abstract
The repetitive content of the plant genome (repeatome) often represents its largest fraction and is frequently correlated with its size. Transposable elements (TEs), the main component of the repeatome, are an important driver in the genome diversification due to their fast-evolving nature. Hybridization and polyploidization events are hypothesized to induce massive bursts of TEs resulting, among other effects, in an increase of copy number and genome size. Little is known about the repeatome dynamics following hybridization and polyploidization in plants that reproduce by apomixis (asexual reproduction via seeds). To address this, we analyzed the repeatomes of two diploid parental species, Hieracium intybaceum and H. prenanthoides (sexual), their diploid F1 synthetic and their natural triploid hybrids (H. pallidiflorum and H. picroides, apomictic). Using low-coverage next-generation sequencing (NGS) and a graph-based clustering approach, we detected high overall similarity across all major repeatome categories between the parental species, despite their large phylogenetic distance. Medium and highly abundant repetitive elements comprise ∼70% of Hieracium genomes; most prevalent were Ty3/Gypsy chromovirus Tekay and Ty1/Copia Maximus-SIRE elements. No TE bursts were detected, neither in synthetic nor in natural hybrids, as TE abundance generally followed theoretical expectations based on parental genome dosage. Slight over- and under-representation of TE cluster abundances reflected individual differences in genome size. However, in comparative analyses, apomicts displayed an overabundance of pararetrovirus clusters not observed in synthetic hybrids. Substantial deviations were detected in rDNAs and satellite repeats, but these patterns were sample specific. rDNA and satellite repeats (three of them were newly developed as cytogenetic markers) were localized on chromosomes by fluorescence in situ hybridization (FISH). In a few cases, low-abundant repeats (5S rDNA and certain satellites) showed some discrepancy between NGS data and FISH results, which is due partly to the bias of low-coverage sequencing and partly to low amounts of the satellite repeats or their sequence divergence. Overall, satellite DNA (including rDNA) was markedly affected by hybridization, but independent of the ploidy or reproductive mode of the progeny, whereas bursts of TEs did not play an important role in the evolutionary history of Hieracium.
Collapse
|
15
|
Heitkam T, Weber B, Walter I, Liedtke S, Ost C, Schmidt T. Satellite DNA landscapes after allotetraploidization of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:32-52. [PMID: 31981259 DOI: 10.1111/tpj.14705] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/10/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
If two related plant species hybridize, their genomes may be combined and duplicated within a single nucleus, thereby forming an allotetraploid. How the emerging plant balances two co-evolved genomes is still a matter of ongoing research. Here, we focus on satellite DNA (satDNA), the fastest turn-over sequence class in eukaryotes, aiming to trace its emergence, amplification, and loss during plant speciation and allopolyploidization. As a model, we used Chenopodium quinoa Willd. (quinoa), an allopolyploid crop with 2n = 4x = 36 chromosomes. Quinoa originated by hybridization of an unknown female American Chenopodium diploid (AA genome) with an unknown male Old World diploid species (BB genome), dating back 3.3-6.3 million years. Applying short read clustering to quinoa (AABB), C. pallidicaule (AA), and C. suecicum (BB) whole genome shotgun sequences, we classified their repetitive fractions, and identified and characterized seven satDNA families, together with the 5S rDNA model repeat. We show unequal satDNA amplification (two families) and exclusive occurrence (four families) in the AA and BB diploids by read mapping as well as Southern, genomic, and fluorescent in situ hybridization. Whereas the satDNA distributions support C. suecicum as possible parental species, we were able to exclude C. pallidicaule as progenitor due to unique repeat profiles. Using quinoa long reads and scaffolds, we detected only limited evidence of intergenomic homogenization of satDNA after allopolyploidization, but were able to exclude dispersal of 5S rRNA genes between subgenomes. Our results exemplify the complex route of tandem repeat evolution through Chenopodium speciation and allopolyploidization, and may provide sequence targets for the identification of quinoa's progenitors.
Collapse
Affiliation(s)
- Tony Heitkam
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ines Walter
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Susan Liedtke
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Charlotte Ost
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
- Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
16
|
Marta A, Dedukh D, Bartoš O, Majtánová Z, Janko K. Cytogenetic Characterization of Seven Novel satDNA Markers in Two Species of Spined Loaches ( Cobitis) and Their Clonal Hybrids. Genes (Basel) 2020; 11:genes11060617. [PMID: 32512717 PMCID: PMC7348982 DOI: 10.3390/genes11060617] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 01/11/2023] Open
Abstract
Interspecific hybridization is a powerful evolutionary force. However, the investigation of hybrids requires the application of methodologies that provide efficient and indubitable identification of both parental subgenomes in hybrid individuals. Repetitive DNA, and especially the satellite DNA sequences (satDNA), can rapidly diverge even between closely related species, hence providing a useful tool for cytogenetic investigations of hybrids. Recent progress in whole-genome sequencing (WGS) offers unprecedented possibilities for the development of new tools for species determination, including identification of species-specific satDNA markers. In this study, we focused on spined loaches (Cobitis, Teleostei), a group of fishes with frequent interspecific hybridization. Using the WGS of one species, C. elongatoides, we identified seven satDNA markers, which were mapped by fluorescence in situ hybridization on mitotic and lampbrush chromosomes of C. elongatoides, C. taenia and their triploid hybrids (C. elongatoides × 2C. taenia). Two of these markers were chromosome-specific in both species, one had centromeric localization in multiple chromosomes and four had variable patterns between tested species. Our study provided a novel set of cytogenetic markers for Cobitis species and demonstrated that NGS-based development of satDNA cytogenetic markers may provide a very efficient and easy tool for the investigation of hybrid genomes, cell ploidy, and karyotype evolution.
Collapse
Affiliation(s)
- Anatolie Marta
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
- Institute of Zoology, Academy of Science of Moldova, MD-2028, Academiei 1, 2001 Chisinau, Moldova
- Correspondence:
| | - Dmitry Dedukh
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
| | - Oldřich Bartoš
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
| | - Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
17
|
Lunerová J, Herklotz V, Laudien M, Vozárová R, Groth M, Kovařík A, Ritz CM. Asymmetrical canina meiosis is accompanied by the expansion of a pericentromeric satellite in non-recombining univalent chromosomes in the genus Rosa. ANNALS OF BOTANY 2020; 125:1025-1038. [PMID: 32095807 PMCID: PMC7262465 DOI: 10.1093/aob/mcaa028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/24/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Despite their abundant odd-ploidy (2n = 5x = 35), dogroses (Rosa sect. Caninae) are capable of sexual reproduction due to their unique meiosis. During canina meiosis, two sets of chromosomes form bivalents and are transmitted by male and female gametes, whereas the remaining chromosomes form univalents and are exclusively transmitted by the egg cells. Thus, the evolution of chromosomes is expected to be driven by their behaviour during meiosis. METHODS To gain insight into differential chromosome evolution, fluorescence in situ hybridization was conducted for mitotic and meiotic chromosomes in four dogroses (two subsections) using satellite and ribosomal DNA probes. By exploiting high-throughput sequencing data, we determined the abundance and diversity of the satellite repeats in the genus Rosa by analysing 20 pentaploid, tetraploid and diploid species in total. KEY RESULTS A pericentromeric satellite repeat, CANR4, was found in all members of the genus Rosa, including the basal subgenera Hulthemia and Hesperhodos. The satellite was distributed across multiple chromosomes (5-20 sites per mitotic cell), and its genomic abundance was higher in pentaploid dogroses (2.3 %) than in non-dogrose species (1.3 %). In dogrose meiosis, univalent chromosomes were markedly enriched in CANR4 repeats based on both the number and the intensity of the signals compared to bivalent-forming chromosomes. Single-nucleotide polymorphisms and cluster analysis revealed high intragenomic homogeneity of the satellite in dogrose genomes. CONCLUSIONS The CANR4 satellite arose early in the evolution of the genus Rosa. Its high content and extraordinary homogeneity in dogrose genomes is explained by its recent amplification in non-recombining chromosomes. We hypothesize that satellite DNA expansion may contribute to the divergence of univalent chromosomes in Rosa species with non-symmetrical meiosis.
Collapse
Affiliation(s)
- Jana Lunerová
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Veit Herklotz
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| | - Melanie Laudien
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
- Technical University Dresden, International Institute Zittau (IHI), Chair of Biodiversity of Higher Plants, Zittau, Germany
| | - Radka Vozárová
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
- Masaryk University, Faculty of Science, Brno, Czech Republic
| | - Marco Groth
- Leibniz Institute on Ageing – Fritz Lipmann Institute, Jena, Germany
| | - Aleš Kovařík
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Christiane M Ritz
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| |
Collapse
|
18
|
Báez M, Vaio M, Dreissig S, Schubert V, Houben A, Pedrosa-Harand A. Together But Different: The Subgenomes of the Bimodal Eleutherine Karyotypes Are Differentially Organized. FRONTIERS IN PLANT SCIENCE 2019; 10:1170. [PMID: 31649686 PMCID: PMC6791338 DOI: 10.3389/fpls.2019.01170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Bimodal karyotypes are characterized by the presence of two sets of chromosomes of contrasting size. Eleutherine bulbosa (2n = 12) presents a bimodal karyotype with a large chromosome pair, which has a pericentric inversion in permanent heterozygosity with suppressed recombination, and five pairs of three to four times smaller chromosomes. Aiming to understand whether high copy number sequence composition differs between both chromosome sets, we investigated the repetitive DNA fraction of E. bulbosa and compared it to the chromosomal organization of the related Eleutherine latifolia species, not containing the pericentric inversion. We also compared the repetitive sequence proportions between the heteromorphic large chromosomes of E. bulbosa and between E. bulbosa and E. latifolia to understand the influence of the chromosome inversion on the dynamics of repetitive sequences. The most abundant repetitive families of the genome showed a similar chromosomal distribution in both homologs of the large pair and in both species, apparently not influenced by the species-specific inversions. The repeat families Ebusat1 and Ebusat4 are localized interstitially only on the large chromosome pair, while Ebusat2 is located in the centromeric region of all chromosomes. The four most abundant retrotransposon lineages are accumulated in the large chromosome pair. Replication timing and distribution of epigenetic and transcriptional marks differ between large and small chromosomes. The differential distribution of retroelements appears to be related to the bimodal condition and is not influenced by the nonrecombining chromosome inversions in these species. Thus, the large and small chromosome subgenomes of the bimodal Eleutherine karyotype are differentially organized and probably evolved by repetitive sequences accumulation on the large chromosome set.
Collapse
Affiliation(s)
- Mariana Báez
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Magdalena Vaio
- Laboratory of Genetics, Department of Plant Biology, College of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Steven Dreissig
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Veit Schubert
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Houben
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
19
|
Schmidt T, Heitkam T, Liedtke S, Schubert V, Menzel G. Adding color to a century-old enigma: multi-color chromosome identification unravels the autotriploid nature of saffron (Crocus sativus) as a hybrid of wild Crocus cartwrightianus cytotypes. THE NEW PHYTOLOGIST 2019; 222:1965-1980. [PMID: 30690735 DOI: 10.1111/nph.15715] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/20/2019] [Indexed: 05/25/2023]
Abstract
Saffron crocus (Crocus sativus) is the source of the most expensive spice of the world, produced from manually harvested stigmas, thus serving as a cash crop for rural communities. However, despite its economic importance, its genome and chromosomes are poorly studied. C. sativus is a sterile triploid species harboring eight chromosome triplets, and propagated only as a clonal lineage by corms. Saffron's evolutionary origin, parental species and allo- or autotriploidy has been a matter of discussion for almost a century. We performed a survey sequencing of the saffron genome and selected cytogenetic landmark sequences consisting of major tandem repeats, which we used as probes in comparative multicolor fluorescent in situ hybridization (FISH). We tagged 92 chromosomal positions and resolved the chromosomal composition of saffron triplets. By comparative FISH of six Crocus species from 11 accessions, we demonstrate that C. sativus is an autotriploid hybrid derived from heterogeneous Crocus cartwrightianus cytotypes. The FISH reference karyotype of saffron is crucial for integrating genome sequencing data with chromosomes and for investigating the relationship among Crocus species. We provide an evolutionary model of the saffron emergence; the knowledge of the parental origin offers a route towards the resynthesis of C. sativus from C. cartwrightianus to broaden saffron's gene pool.
Collapse
Affiliation(s)
- Thomas Schmidt
- Faculty of Biology, Technische Universität Dresden, Dresden, D-01062, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, Dresden, D-01062, Germany
| | - Susan Liedtke
- Faculty of Biology, Technische Universität Dresden, Dresden, D-01062, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Seeland, D-06466, Germany
| | - Gerhard Menzel
- Faculty of Biology, Technische Universität Dresden, Dresden, D-01062, Germany
| |
Collapse
|
20
|
Samoluk SS, Chalup LMI, Chavarro C, Robledo G, Bertioli DJ, Jackson SA, Seijo G. Heterochromatin evolution in Arachis investigated through genome-wide analysis of repetitive DNA. PLANTA 2019; 249:1405-1415. [PMID: 30680457 DOI: 10.1007/s00425-019-03096-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/18/2019] [Indexed: 05/21/2023]
Abstract
The most conspicuous difference among chromosomes and genomes in Arachis species, the patterns of heterochromatin, was mainly modeled by differential amplification of different members of one superfamily of satellite DNAs. Divergence in repetitive DNA is a primary driving force for genome and chromosome evolution. Section Arachis is karyotypically diverse and has six different genomes. Arachis glandulifera (D genome) has the most asymmetric karyotype and the highest reproductive isolation compared to the well-known A and B genome species. These features make A. glandulifera an interesting model species for studying the main repetitive components that accompanied the genome and chromosome diversification in the section. Here, we performed a genome-wide analysis of repetitive sequences in A. glandulifera and investigated the chromosome distribution of the identified satellite DNA sequences (satDNAs). LTR retroelements, mainly the Ty3-gypsy families "Fidel/Feral" and "Pipoka/Pipa", were the most represented. Comparative analyses with the A and B genomes showed that many of the previously described transposable elements (TEs) were differently represented in the D genome, and that this variation accompanied changes in DNA content. In addition, four major satDNAs were characterized. Agla_CL8sat was the major component of pericentromeric heterochromatin, while Agla_CL39sat, Agla_CL69sat, and Agla_CL122sat were found in heterochromatic and/or euchromatic regions. Even though Agla_CL8sat belong to a different family than that of the major satDNA (ATR-2) found in the heterochromatin of the A, K, and F genomes, both satDNAs are members of the same superfamily. This finding suggests that closely related satDNAs of an ancestral library were differentially amplified leading to the major changes in the heterochromatin patterns that accompanied the karyotype and genome differentiation in Arachis.
Collapse
Affiliation(s)
- Sergio S Samoluk
- Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina.
| | - Laura M I Chalup
- Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Germán Robledo
- Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - David J Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Guillermo Seijo
- Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| |
Collapse
|
21
|
Kroupin P, Kuznetsova V, Romanov D, Kocheshkova A, Karlov G, Dang TX, Khuat TML, Kirov I, Alexandrov O, Polkhovskiy A, Razumova O, Divashuk M. Pipeline for the Rapid Development of Cytogenetic Markers Using Genomic Data of Related Species. Genes (Basel) 2019; 10:E113. [PMID: 30717300 PMCID: PMC6409974 DOI: 10.3390/genes10020113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 11/19/2022] Open
Abstract
Repetitive DNA including tandem repeats (TRs) is a significant part of most eukaryotic genomes. TRs include rapidly evolving satellite DNA (satDNA) that can be shared by closely related species, their abundance may be associated with evolutionary divergence, and they have been widely used for chromosome karyotyping using fluorescence in situ hybridization (FISH). The recent progress in the development of whole-genome sequencing and bioinformatics tools enables rapid and cost-effective searches for TRs including satDNA that can be converted into molecular cytogenetic markers. In the case of closely related taxa, the genome sequence of one species (donor) can be used as a base for the development of chromosome markers for related species or genomes (target). Here, we present a pipeline for rapid and high-throughput screening for new satDNA TRs in whole-genome sequencing of the donor genome and the development of chromosome markers based on them that can be applied in the target genome. One of the main peculiarities of the developed pipeline is that preliminary estimation of TR abundance using qPCR and ranking found TRs according to their copy number in the target genome; it facilitates the selection of the most prospective (most abundant) TRs that can be converted into cytogenetic markers. Another feature of our pipeline is the probe preparation for FISH using PCR with primers designed on the aligned TR unit sequences and the genomic DNA of a target species as a template that enables amplification of a whole pool of monomers inherent in the chromosomes of the target species. We demonstrate the efficiency of the developed pipeline by the example of FISH probes developed for A, B, and R subgenome chromosomes of hexaploid triticale (BBAARR) based on a bioinformatics analysis of the D genome of Aegilops tauschii (DD) whole-genome sequence. Our pipeline can be used to develop chromosome markers in closely related species for comparative cytogenetics in evolutionary and breeding studies.
Collapse
Affiliation(s)
- Pavel Kroupin
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia.
| | - Victoria Kuznetsova
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia.
| | - Dmitry Romanov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
| | - Alina Kocheshkova
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia.
| | - Gennady Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
| | - Thi Xuan Dang
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia.
| | - Thi Mai L Khuat
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia.
| | - Ilya Kirov
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
| | - Oleg Alexandrov
- Laboratory of Plant Cell Engineering, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
| | - Alexander Polkhovskiy
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia.
| | - Olga Razumova
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
| | - Mikhail Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia.
| |
Collapse
|
22
|
Orzechowska M, Majka M, Weiss-Schneeweiss H, Kovařík A, Borowska-Zuchowska N, Kolano B. Organization and evolution of two repetitive sequences, 18-24J and 12-13P, in the genome of Chenopodium (Amaranthaceae). Genome 2018; 61:643-652. [PMID: 30067084 DOI: 10.1139/gen-2018-0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The abundance and chromosomal organization of two repetitive sequences named 12-13P and 18-24J were analyzed in 24 diploid and nine polyploid species of Chenopodium s.l., with special attention to Chenopodium s.s. Both sequences were predominantly present in species of Chenopodium s.s.; however, differences in the amplification levels were observed among the species. The 12-13P repeat was highly amplified in all of the analyzed Eurasian species, whereas the American diploids showed a marked variation in the amplification levels. The 12-13P repeat contains a tandemly arranged 40 bp minisatellite element forming a large proportion of the genome of Chenopodium (up to 3.5%). FISH revealed its localization to the pericentromeric regions of the chromosomes. The chromosomal distribution of 12-13P delivered additional chromosomal marker for B-genome diploids. The 18-24J repeat showed a dispersed organization in all of the chromosomes of the analyzed diploid species and the Eurasian tetraploids. In the American allotetraploids (C. quinoa, C. berlandieri) and Eurasian allohexaploids (e.g., C. album) very intense hybridization signals of 18-24J were observed only on 18 chromosomes that belong to the B subgenome of these polyploids. Combined cytogenetic and molecular analyses suggests that reorganization of these two repeats accompanied the diversification and speciation of diploid (especially A genome) and polyploid species of Chenopodium s.s.
Collapse
Affiliation(s)
- Maja Orzechowska
- a Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28,40-032 Katowice, Poland
| | - Maciej Majka
- a Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28,40-032 Katowice, Poland
| | - Hanna Weiss-Schneeweiss
- b Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, Austria
| | - Ales Kovařík
- c Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Natalia Borowska-Zuchowska
- a Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28,40-032 Katowice, Poland
| | - Bozena Kolano
- a Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28,40-032 Katowice, Poland
| |
Collapse
|
23
|
Ávila Robledillo L, Koblížková A, Novák P, Böttinger K, Vrbová I, Neumann P, Schubert I, Macas J. Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci Rep 2018; 8:5838. [PMID: 29643436 PMCID: PMC5895790 DOI: 10.1038/s41598-018-24196-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/28/2018] [Indexed: 11/17/2022] Open
Abstract
Satellite DNA, a class of repetitive sequences forming long arrays of tandemly repeated units, represents substantial portions of many plant genomes yet remains poorly characterized due to various methodological obstacles. Here we show that the genome of the field bean (Vicia faba, 2n = 12), a long-established model for cytogenetic studies in plants, contains a diverse set of satellite repeats, most of which remained concealed until their present investigation. Using next-generation sequencing combined with novel bioinformatics tools, we reconstructed consensus sequences of 23 novel satellite repeats representing 0.008–2.700% of the genome and mapped their distribution on chromosomes. We found that in addition to typical satellites with monomers hundreds of nucleotides long, V. faba contains a large number of satellite repeats with unusually long monomers (687–2033 bp), which are predominantly localized in pericentromeric regions. Using chromatin immunoprecipitation with CenH3 antibody, we revealed an extraordinary diversity of centromeric satellites, consisting of seven repeats with chromosome-specific distribution. We also found that in spite of their different nucleotide sequences, all centromeric repeats are replicated during mid-S phase, while most other satellites are replicated in the first part of late S phase, followed by a single family of FokI repeats representing the latest replicating chromatin.
Collapse
Affiliation(s)
- Laura Ávila Robledillo
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic.,University of South Bohemia, Faculty of Science, České Budějovice, 37005, Czech Republic
| | - Andrea Koblížková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Petr Novák
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Katharina Böttinger
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic.,University of South Bohemia, Faculty of Science, České Budějovice, 37005, Czech Republic
| | - Iva Vrbová
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Pavel Neumann
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Jiří Macas
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic.
| |
Collapse
|
24
|
|
25
|
Novák P, Ávila Robledillo L, Koblížková A, Vrbová I, Neumann P, Macas J. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res 2017; 45:e111. [PMID: 28402514 PMCID: PMC5499541 DOI: 10.1093/nar/gkx257] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/23/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022] Open
Abstract
Satellite DNA is one of the major classes of repetitive DNA, characterized by tandemly arranged repeat copies that form contiguous arrays up to megabases in length. This type of genomic organization makes satellite DNA difficult to assemble, which hampers characterization of satellite sequences by computational analysis of genomic contigs. Here, we present tandem repeat analyzer (TAREAN), a novel computational pipeline that circumvents this problem by detecting satellite repeats directly from unassembled short reads. The pipeline first employs graph-based sequence clustering to identify groups of reads that represent repetitive elements. Putative satellite repeats are subsequently detected by the presence of circular structures in their cluster graphs. Consensus sequences of repeat monomers are then reconstructed from the most frequent k-mers obtained by decomposing read sequences from corresponding clusters. The pipeline performance was successfully validated by analyzing low-pass genome sequencing data from five plant species where satellite DNA was previously experimentally characterized. Moreover, novel satellite repeats were predicted for the genome of Vicia faba and three of these repeats were verified by detecting their sequences on metaphase chromosomes using fluorescence in situ hybridization.
Collapse
Affiliation(s)
- Petr Novák
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Laura Ávila Robledillo
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Andrea Koblížková
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Iva Vrbová
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Pavel Neumann
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Jirí Macas
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| |
Collapse
|
26
|
Ribeiro T, Dos Santos KGB, Richard MMS, Sévignac M, Thareau V, Geffroy V, Pedrosa-Harand A. Evolutionary dynamics of satellite DNA repeats from Phaseolus beans. PROTOPLASMA 2017; 254:791-801. [PMID: 27335007 DOI: 10.1007/s00709-016-0993-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Common bean (Phaseolus vulgaris) subtelomeres are highly enriched for khipu, the main satellite DNA identified so far in this genome. Here, we comparatively investigate khipu genomic organization in Phaseolus species from different clades. Additionally, we identified and characterized another satellite repeat, named jumper, associated to khipu. A mixture of P. vulgaris khipu clones hybridized in situ confirmed the presence of khipu-like sequences on subterminal chromosome regions in all Phaseolus species, with differences in the number and intensity of signals between species and when species-specific clones were used. Khipu is present as multimers of ∼500 bp and sequence analyses of cloned fragments revealed close relationship among khipu repeats. The new repeat, named jumper, is a 170-bp satellite sequence present in all Phaseolus species and inserted into the nontranscribed spacer (NTS) of the 5S rDNA in the P. vulgaris genome. Nevertheless, jumper was found as a high-copy repeat at subtelomeres and/or pericentromeres in the Phaseolus microcarpus lineage only. Our data argue for khipu as an important subtelomeric satellite DNA in the genus and for a complex satellite repeat composition of P. microcarpus subtelomeres, which also contain jumper. Furthermore, the differential amplification of these repeats in subtelomeres or pericentromeres reinforces the presence of a dynamic satellite DNA library in Phaseolus.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Karla G B Dos Santos
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Manon M S Richard
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Mireille Sévignac
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
27
|
Kirov IV, Kiseleva AV, Van Laere K, Van Roy N, Khrustaleva LI. Tandem repeats of Allium fistulosum associated with major chromosomal landmarks. Mol Genet Genomics 2017; 292:453-464. [PMID: 28150039 DOI: 10.1007/s00438-016-1286-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 12/30/2016] [Indexed: 01/22/2023]
Abstract
Tandem repeats are often associated with important chromosomal landmarks, such as centromeres, telomeres, subtelomeric, and other heterochromatic regions, and can be good candidates for molecular cytogenetic markers. Tandem repeats present in many plant species demonstrate dramatic differences in unit length, proportion in the genome, and chromosomal organization. Members of genus Allium with their large genomes represent a challenging task for current genetics. Using the next generation sequencing data, molecular, and cytogenetic methods, we discovered two tandemly organized repeats in the Allium fistulosum genome (2n = 2C = 16), HAT58 and CAT36. Together, these repeats comprise 0.25% of the bunching onion genome with 160,000 copies/1 C of HAT58 and 93,000 copies/1 C of CAT36. Fluorescent in situ hybridization (FISH) and C-banding showed that HAT58 and CAT36 associated with the interstitial and pericentromeric heterochromatin of the A. fistulosum chromosomes 5, 6, 7, and 8. FISH with HAT58 and CAT36 performed on A. cepa (2n = 2C = 16) and A. wakegi (2n = 2C = 16), a natural allodiploid hybrid between A. fistulosum and A. cepa, revealed that these repeats are species specific and produced specific hybridization patterns only on A. fistulosum chromosomes. Thus, the markers can be used in interspecific breeding programs for monitoring of alien genetic material. We applied Non-denaturing FISH that allowed detection of the repeat bearing chromosomes within 3 h. A polymorphism of the HAT58 chromosome location was observed. This finding suggests that the rapid evolution of the HAT58 repeat is still ongoing.
Collapse
Affiliation(s)
- Ilya V Kirov
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia. .,Department of Genetics, Biotechnology and Plant Breeding, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia. .,Plant Sciences Unit, Applied Genetics and Breeding, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium.
| | - Anna V Kiseleva
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia.,Department of Genetics, Biotechnology and Plant Breeding, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Katrijn Van Laere
- Plant Sciences Unit, Applied Genetics and Breeding, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
| | - Nadine Van Roy
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Ludmila I Khrustaleva
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia. .,Department of Genetics, Biotechnology and Plant Breeding, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia.
| |
Collapse
|
28
|
Zakrzewski F, Schmidt T. Epigenetic Characterization of Satellite DNA in Sugar Beet (Beta vulgaris). PLANT EPIGENETICS 2017. [DOI: 10.1007/978-3-319-55520-1_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Gaiero P, van de Belt J, Vilaró F, Schranz ME, Speranza P, de Jong H. Collinearity between potato (Solanum tuberosum L.) and wild relatives assessed by comparative cytogenetic mapping. Genome 2016; 60:228-240. [PMID: 28169563 DOI: 10.1139/gen-2016-0150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major bottleneck to introgressive hybridization is the lack of genome collinearity between the donor (alien) genome and the recipient crop genome. Structural differences between the homeologs may create unbalanced segregation of chromosomes or cause linkage drag. To assess large-scale collinearity between potato and two of its wild relatives (Solanum commersonii and Solanum chacoense), we used BAC-FISH mapping of sequences with known positions on the RH potato map. BAC probes could successfully be hybridized to the S. commersonii and S. chachoense pachytene chromosomes, confirming their correspondence with linkage groups in RH potato. Our study shows that the order of BAC signals is conserved. Distances between BAC signals were quantified and compared; some differences found suggest either small-scale rearrangements or reduction/amplification of repeats. We conclude that S. commersonii and S. chacoense are collinear with cultivated Solanum tuberosum on the whole chromosome scale, making these amenable species for efficient introgressive hybridization breeding.
Collapse
Affiliation(s)
- Paola Gaiero
- a Department of Plant Biology, Facultad de Agronomía, Universidad de la República, Garzón 780, PC 12900, Montevideo, Uruguay.,b Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, P.O. Box 16, 6708 PB, Wageningen, the Netherlands
| | - José van de Belt
- b Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, P.O. Box 16, 6708 PB, Wageningen, the Netherlands
| | - Francisco Vilaró
- c Horticulture Unit, National Institute for Agricultural Research, Ruta 48 km 10, Las Brujas, Uruguay
| | - M Eric Schranz
- d Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | - Pablo Speranza
- a Department of Plant Biology, Facultad de Agronomía, Universidad de la República, Garzón 780, PC 12900, Montevideo, Uruguay
| | - Hans de Jong
- b Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, P.O. Box 16, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
30
|
Ribeiro T, Marques A, Novák P, Schubert V, Vanzela ALL, Macas J, Houben A, Pedrosa-Harand A. Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species. Chromosoma 2016; 126:325-335. [DOI: 10.1007/s00412-016-0616-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022]
|
31
|
Macas J, Novák P, Pellicer J, Čížková J, Koblížková A, Neumann P, Fuková I, Doležel J, Kelly LJ, Leitch IJ. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS One 2015; 10:e0143424. [PMID: 26606051 PMCID: PMC4659654 DOI: 10.1371/journal.pone.0143424] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/04/2015] [Indexed: 01/30/2023] Open
Abstract
The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55–83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.
Collapse
Affiliation(s)
- Jiří Macas
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
- * E-mail:
| | - Petr Novák
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Jaume Pellicer
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Jana Čížková
- Institute of Experimental Botany, Olomouc, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Andrea Koblížková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Pavel Neumann
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Iva Fuková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Olomouc, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Laura J. Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Ilia J. Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| |
Collapse
|
32
|
Heitkam T, Petrasch S, Zakrzewski F, Kögler A, Wenke T, Wanke S, Schmidt T. Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe’s oldest Camellia japonica. Chromosome Res 2015; 23:791-806. [DOI: 10.1007/s10577-015-9500-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/30/2022]
|
33
|
Roa F, Guerra M. Non-Random Distribution of 5S rDNA Sites and Its Association with 45S rDNA in Plant Chromosomes. Cytogenet Genome Res 2015; 146:243-9. [PMID: 26489031 DOI: 10.1159/000440930] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
5S and 45S rDNA sites are the best mapped chromosome regions in eukaryotic chromosomes. In this work, a database was built gathering information about the position and number of 5S rDNA sites in 784 plant species, aiming to identify patterns of distribution along the chromosomes and its correlation with the position of 45S rDNA sites. Data revealed that in most karyotypes (54.5%, including polyploids) two 5S rDNA sites (a single pair) are present, with 58.7% of all sites occurring in the short arm, mainly in the proximal region. In karyotypes of angiosperms with only 1 pair of sites (single sites) they are mostly found in the proximal region (52.0%), whereas in karyotypes with multiple sites the location varies according to the average chromosome size. Karyotypes with multiple sites and small chromosomes (<3 µm) often display proximal sites, while medium-sized (between 3 and 6 µm) and large chromosomes (>6 µm) more commonly show terminal or interstitial sites. In species with holokinetic chromosomes, the modal value of sites per karyotype was also 2, but they were found mainly in a terminal position. Adjacent 5S and 45S rDNA sites were often found in the short arm, reflecting the preferential distribution of both sites in this arm. The high frequency of genera with at least 1 species with adjacent 5S and 45S sites reveals that this association appeared several times during angiosperm evolution, but it has been maintained only rarely as the dominant array in plant genera.
Collapse
|
34
|
Emadzade K, Jang TS, Macas J, Kovařík A, Novák P, Parker J, Weiss-Schneeweiss H. Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). ANNALS OF BOTANY 2014; 114:1597-608. [PMID: 25169019 PMCID: PMC4273535 DOI: 10.1093/aob/mcu178] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Chromosomal evolution, including numerical and structural changes, is a major force in plant diversification and speciation. This study addresses genomic changes associated with the extensive chromosomal variation of the Mediterranean Prospero autumnale complex (Hyacinthaceae), which includes four diploid cytotypes each with a unique combination of chromosome number (x = 5, 6, 7), rDNA loci and genome size. METHODS A new satellite repeat PaB6 has previously been identified, and monomers were reconstructed from next-generation sequencing (NGS) data of P. autumnale cytotype B(6)B(6) (2n = 12). Monomers of all other Prospero cytotypes and species were sequenced to check for lineage-specific mutations. Copy number, restriction patterns and methylation levels of PaB6 were analysed using Southern blotting. PaB6 was localized on chromosomes using fluorescence in situ hybridization (FISH). KEY RESULTS The monomer of PaB6 is 249 bp long, contains several intact and truncated vertebrate-type telomeric repeats and is highly methylated. PaB6 is exceptional because of its high copy number and unprecedented variation among diploid cytotypes, ranging from 10(4) to 10(6) copies per 1C. PaB6 is always located in pericentromeric regions of several to all chromosomes. Additionally, two lineages of cytotype B(7)B(7) (x = 7), possessing either a single or duplicated 5S rDNA locus, differ in PaB6 copy number; the ancestral condition of a single locus is associated with higher PaB6 copy numbers. CONCLUSIONS Although present in all Prospero species, PaB6 has undergone differential amplification only in chromosomally variable P. autumnale, particularly in cytotypes B(6)B(6) and B(5)B(5). These arose via independent chromosomal fusions from x = 7 to x = 6 and 5, respectively, accompanied by genome size increases. The copy numbers of satellite DNA PaB6 are among the highest in angiosperms, and changes of PaB6 are exceptionally dynamic in this group of closely related cytotypes of a single species. The evolution of the PaB6 copy numbers is discussed, and it is suggested that PaB6 represents a recent and highly dynamic system originating from a small pool of ancestral repeats.
Collapse
Affiliation(s)
- Khatere Emadzade
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Tae-Soo Jang
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Jiří Macas
- Czech Academy of Sciences, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic
| | - Ales Kovařík
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic
| | - Petr Novák
- Czech Academy of Sciences, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic
| | - John Parker
- Cambridge University Botanic Garden, Cambridge CB2 1JF, UK
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
35
|
Chromosomal organizations of major repeat families on potato (Solanum tuberosum) and further exploring in its sequenced genome. Mol Genet Genomics 2014; 289:1307-19. [PMID: 25106953 DOI: 10.1007/s00438-014-0891-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
One of the most powerful technologies in unraveling the organization of a eukaryotic plant genome is high-resolution Fluorescent in situ hybridization of repeats and single copy DNA sequences on pachytene chromosomes. This technology allows the integration of physical mapping information with chromosomal positions, including centromeres, telomeres, nucleolar-organizing region, and euchromatin and heterochromatin. In this report, we established chromosomal positions of different repeat fractions of the potato genomic DNA (Cot100, Cot500 and Cot1000) on the chromosomes. We also analysed various repeat elements that are unique to potato including the moderately repetitive P5 and REP2 elements, where the REP2 is part of a larger Gypsy-type LTR retrotransposon and cover most chromosome regions, with some brighter fluorescing spots in the heterochromatin. The most abundant tandem repeat is the potato genomic repeat 1 that covers subtelomeric regions of most chromosome arms. Extensive multiple alignments of these repetitive sequences in the assembled RH89-039-16 potato BACs and the draft assembly of the DM1-3 516 R44 genome shed light on the conservation of these repeats within the potato genome. The consensus sequences thus obtained revealed the native complete transposable elements from which they were derived.
Collapse
|
36
|
Schmidt M, Hense S, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T, Zakrzewski F. Cytosine methylation of an ancient satellite family in the wild beet Beta procumbens. Cytogenet Genome Res 2014; 143:157-67. [PMID: 24994030 DOI: 10.1159/000363485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA methylation is an essential epigenetic feature for the regulation and maintenance of heterochromatin. Satellite DNA is a repetitive sequence component that often occurs in large arrays in heterochromatin of subtelomeric, intercalary and centromeric regions. Knowledge about the methylation status of satellite DNA is important for understanding the role of repetitive DNA in heterochromatization. In this study, we investigated the cytosine methylation of the ancient satellite family pEV in the wild beet Beta procumbens. The pEV satellite is widespread in species-specific pEV subfamilies in the genus Beta and most likely originated before the radiation of the Betoideae and Chenopodioideae. In B. procumbens, the pEV subfamily occurs abundantly and spans intercalary and centromeric regions. To uncover its cytosine methylation, we performed chromosome-wide immunostaining and bisulfite sequencing of pEV satellite repeats. We found that CG and CHG sites are highly methylated while CHH sites show only low levels of methylation. As a consequence of the low frequency of CG and CHG sites and the preferential occurrence of most cytosines in the CHH motif in pEV monomers, this satellite family displays only low levels of total cytosine methylation.
Collapse
Affiliation(s)
- Martin Schmidt
- Department of Plant Cell and Molecular Biology, TU Dresden, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Zakrzewski F, Schubert V, Viehoever P, Minoche AE, Dohm JC, Himmelbauer H, Weisshaar B, Schmidt T. The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:937-50. [PMID: 24661787 DOI: 10.1111/tpj.12519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 05/03/2023]
Abstract
Methylation of DNA is important for the epigenetic silencing of repetitive DNA in plant genomes. Knowledge about the cytosine methylation status of satellite DNAs, a major class of repetitive DNA, is scarce. One reason for this is that arrays of tandemly arranged sequences are usually collapsed in next-generation sequencing assemblies. We applied strategies to overcome this limitation and quantified the level of cytosine methylation and its pattern in three satellite families of sugar beet (Beta vulgaris) which differ in their abundance, chromosomal localization and monomer size. We visualized methylation levels along pachytene chromosomes with respect to small satellite loci at maximum resolution using chromosome-wide fluorescent in situ hybridization complemented with immunostaining and super-resolution microscopy. Only reduced methylation of many satellite arrays was obtained. To investigate methylation at the nucleotide level we performed bisulfite sequencing of 1569 satellite sequences. We found that the level of methylation of cytosine strongly depends on the sequence context: cytosines in the CHH motif show lower methylation (44-52%), while CG and CHG motifs are more strongly methylated. This affects the overall methylation of satellite sequences because CHH occurs frequently while CG and CHG are rare or even absent in the satellite arrays investigated. Evidently, CHH is the major target for modulation of the cytosine methylation level of adjacent monomers within individual arrays and contributes to their epigenetic function. This strongly indicates that asymmetric cytosine methylation plays a role in the epigenetic modification of satellite repeats in plant genomes.
Collapse
Affiliation(s)
- Falk Zakrzewski
- Department of Plant Cell and Molecular Biology, TU Dresden, D-01062, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Matyášek R, Fulneček J, Kovařík A. Evaluation of DNA bending models in their capacity to predict electrophoretic migration anomalies of satellite DNA sequences. Electrophoresis 2013; 34:2511-21. [PMID: 23784748 DOI: 10.1002/elps.201300227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/05/2023]
Abstract
DNA containing a sequence that generates a local curvature exhibits a pronounced retardation in electrophoretic mobility. Various theoretical models have been proposed to explain relationship between DNA structural features and migration anomaly. Here, we studied the capacity of 15 static wedge-bending models to predict electrophoretic behavior of 69 satellite monomers derived from four divergent families. All monomers exhibited retarded mobility in PAGE corresponding to retardation factors ranging 1.02-1.54. The curvature varied both within and across the groups and correlated with the number, position, and lengths of A-tracts. Two dinucleotide models provided strong correlation between gel mobility and curvature prediction; two trinucleotide models were satisfactory while remaining dinucleotide models provided intermediate results with reliable prediction for subsets of sequences only. In some cases, similarly shaped molecules exhibited relatively large differences in mobility and vice versa. Generally less accurate predictions were obtained in groups containing less homogeneous sequences possessing distinct structural features. In conclusion, relatively universal theoretical models were identified suitable for the analysis of natural sequences known to harbor relatively moderate curvature. These models could be potentially applied to genome wide studies. However, in silico predictions should be viewed in context of experimental measurement of intrinsic DNA curvature.
Collapse
Affiliation(s)
- Roman Matyášek
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i, Brno, Czech Republic.
| | | | | |
Collapse
|
39
|
Begum R, Zakrzewski F, Menzel G, Weber B, Alam SS, Schmidt T. Comparative molecular cytogenetic analyses of a major tandemly repeated DNA family and retrotransposon sequences in cultivated jute Corchorus species (Malvaceae). ANNALS OF BOTANY 2013; 112:123-34. [PMID: 23666888 PMCID: PMC3690992 DOI: 10.1093/aob/mct103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The cultivated jute species Corchorus olitorius and Corchorus capsularis are important fibre crops. The analysis of repetitive DNA sequences, comprising a major part of plant genomes, has not been carried out in jute but is useful to investigate the long-range organization of chromosomes. The aim of this study was the identification of repetitive DNA sequences to facilitate comparative molecular and cytogenetic studies of two jute cultivars and to develop a fluorescent in situ hybridization (FISH) karyotype for chromosome identification. METHODS A plasmid library was generated from C. olitorius and C. capsularis with genomic restriction fragments of 100-500 bp, which was complemented by targeted cloning of satellite DNA by PCR. The diversity of the repetitive DNA families was analysed comparatively. The genomic abundance and chromosomal localization of different repeat classes were investigated by Southern analysis and FISH, respectively. The cytosine methylation of satellite arrays was studied by immunolabelling. KEY RESULTS Major satellite repeats and retrotransposons have been identified from C. olitorius and C. capsularis. The satellite family CoSat I forms two undermethylated species-specific subfamilies, while the long terminal repeat (LTR) retrotransposons CoRetro I and CoRetro II show similarity to the Metaviridea of plant retroelements. FISH karyotypes were developed by multicolour FISH using these repetitive DNA sequences in combination with 5S and 18S-5·8S-25S rRNA genes which enable the unequivocal chromosome discrimination in both jute species. CONCLUSIONS The analysis of the structure and diversity of the repeated DNA is crucial for genome sequence annotation. The reference karyotypes will be useful for breeding of jute and provide the basis for karyotyping homeologous chromosomes of wild jute species to reveal the genetic and evolutionary relationship between cultivated and wild Corchorus species.
Collapse
Affiliation(s)
- Rabeya Begum
- Department of Botany, University of Dhaka, Dhaka 1000, Bangladesh
| | - Falk Zakrzewski
- Institute of Botany, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Gerhard Menzel
- Institute of Botany, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, D-01062 Dresden, Germany
| | | | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, D-01062 Dresden, Germany
- For correspondence. E-mail
| |
Collapse
|
40
|
Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, Garcia JF, DeRisi JL, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan SWL. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 2013; 14:R10. [PMID: 23363705 PMCID: PMC4053949 DOI: 10.1186/gb-2013-14-1-r10] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/30/2013] [Indexed: 01/01/2023] Open
Abstract
Background Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Results Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. Conclusions While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.
Collapse
|
41
|
Rosato M, Galián JA, Rosselló JA. Amplification, contraction and genomic spread of a satellite DNA family (E180) in Medicago (Fabaceae) and allied genera. ANNALS OF BOTANY 2012; 109:773-82. [PMID: 22186276 PMCID: PMC3286279 DOI: 10.1093/aob/mcr309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Satellite DNA is a genomic component present in virtually all eukaryotic organisms. The turnover of highly repetitive satellite DNA is an important element in genome organization and evolution in plants. Here we assess the presence and physical distribution of the repetitive DNA E180 family in Medicago and allied genera. Our goals were to gain insight into the karyotype evolution of Medicago using satellite DNA markers, and to evaluate the taxonomic and phylogenetic signal of a satellite DNA family in a genus hypothesized to have a complex evolutionary history. METHODS Seventy accessions from Medicago, Trigonella, Melilotus and Trifolium were analysed by PCR to assess the presence of the repetitive E180 family, and fluorescence in situ hybridization (FISH) was used for physical mapping in somatic chromosomes. KEY RESULTS The E180 repeat unit was PCR-amplified in 37 of 40 taxa in Medicago, eight of 12 species of Trigonella, six of seven species of Melilotus and in two of 11 Trifolium species. Examination of the mitotic chromosomes revealed that only 13 Medicago and two Trigonella species showed FISH signals using the E180 probe. Stronger hybridization signals were observed in subtelomeric and interstitial loci than in the pericentromeric loci, suggesting this satellite family has a preferential genomic location. Not all 13 Medicago species that showed FISH localization of the E180 repeat were phylogenetically related. However, nine of these species belong to the phylogenetically derived clade including the M. sativa and M. arborea complexes. CONCLUSIONS The use of the E180 family as a phylogenetic marker in Medicago should be viewed with caution. Its amplification appears to have been produced through recurrent and independent evolutionary episodes in both annual and perennial Medicago species as well as in basal and derived clades.
Collapse
Affiliation(s)
- Marcela Rosato
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008, Valencia, Spain
| | - José A. Galián
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008, Valencia, Spain
| | - Josep A. Rosselló
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008, Valencia, Spain
- Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300 Blanes, Catalonia, Spain
- For correspondence. E-mail
| |
Collapse
|
42
|
Ribeiro T, dos Santos KGB, Fonsêca A, Pedrosa-Harand A. Isolation and characterization of a new repetitive DNA family recently amplified in the Mesoamerican gene pool of the common bean (Phaseolus vulgaris L., Fabaceae). Genetica 2011; 139:1135-42. [PMID: 22086374 DOI: 10.1007/s10709-011-9615-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 11/07/2011] [Indexed: 12/21/2022]
Abstract
The common bean (Phaseolus vulgaris) is one of the most important crop plants. About 50% of its genome is composed of repetitive sequences, but only a little fraction was isolated and characterized so far. In this paper, a new repetitive DNA family from the species, named PvMeso, was isolated and characterized in both gene pools of P. vulgaris (Andean and Mesoamerican) and related species. Two fragments, 1.7 and 2.3 kb long, were cloned from BAC 255F18, which has previously shown a repetitive pattern. The subclone PvMeso-31 showed a terminal block in chromosome 7. This subclone contains a 1,705 bp long, AT-rich repeat with small internal repeats and shares a 1.2 kb region with PvMeso-47, derived from the 2.3 kb fragment. The presence of this repetitive block was restricted to Mesoamerican accessions of the common bean. In P. acutifolius, P. leptostachyus and Andean P. vulgaris, only a faint, 2.3 kb fragment was visualized in Southern experiments. Moreover, in Mesoamerican accessions, two other fragments (1.7 kb and 3.4 kb) were strongly labelled as well. Taken together, our results indicate that PvMeso is a recently emerged, repeat family initially duplicated in chromosome 11, on ancestral Mesoamerican accession, and later amplified in chromosome 7, after the split of the two major gene pools of the common bean.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Department of Botany, Laboratory of Plant Cytogenetics, Federal University of Pernambuco, Recife, PE 50670-420, Brazil
| | | | | | | |
Collapse
|
43
|
Matyasek R, Fulnecek J, Leitch AR, Kovarik A. Analysis of two abundant, highly related satellites in the allotetraploid Nicotiana arentsii using double-strand conformation polymorphism analysis and sequencing. THE NEW PHYTOLOGIST 2011; 192:747-59. [PMID: 21777247 DOI: 10.1111/j.1469-8137.2011.03827.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
• Allopolyploidy, a driving force in plant evolution, can induce rapid structural changes in parental subgenomes. Here, we examined the fate of homologous subtelomeric satellites in intrasection allotetraploid Nicotiana arentsii formed from N. undulata and N. wigandioides progenitors < 200,000 yr ago. • We cloned and sequenced a number of monomers from progenitors and the allotetraploid. Structural features of both cloned and genomic monomers were studied using double-strand conformation polymorphism analysis. • Two homologous satellites were isolated from N. undulata (called NUNSSP) and N. wigandioides (NWISSP). While the NUNSSP monomers were highly homogeneous in nucleotide sequences, the NWISSP monomers formed two separate clades. Likewise, the genomic NUNSSP monomers showed less DNA conformation heterogeneity than NWISSP monomers, with distinct conformations. While both satellites predominantly occupy subtelomeric positions, a fraction of the NWISSP repeats was found in an intercalary location, supporting the hypothesis that dispersion prevents the repeats becoming homogeneous. Sequence, structural and chromosomal features of the parental satellites were faithfully inherited by N. arentsii. • Our study revealed that intergenomic homogenization of subtelomeric satellite repeats does not occur in N. arentsii allotetraploid. We propose that the sequence and structural divergence of subtelomeric satellites may render allopolyploid chromosomes less vulnerable to intergenomic exchanges.
Collapse
Affiliation(s)
- Roman Matyasek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, vvi, Brno, Czech Republic.
| | | | | | | |
Collapse
|
44
|
Mendes S, Moraes AP, Mirkov TE, Pedrosa-Harand A. Chromosome homeologies and high variation in heterochromatin distribution between Citrus L. and Poncirus Raf. as evidenced by comparative cytogenetic mapping. Chromosome Res 2011; 19:521-30. [DOI: 10.1007/s10577-011-9203-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
|
45
|
Hao D, Yang L, Xiao P. The first insight into the Taxus genome via fosmid library construction and end sequencing. Mol Genet Genomics 2011; 285:197-205. [PMID: 21207064 DOI: 10.1007/s00438-010-0598-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 12/13/2010] [Indexed: 11/26/2022]
Abstract
Taxus mairei is a critically endangered and commercially important cultured medicinal gymnosperm in China and forms an important medicinal resource, but the research of its genome is absent. In this study, we constructed a T. mairei fosmid library and analyzed the fosmid end sequences to provide a preliminary assessment of the genome. The library consists of one million clones with an average insert size of about 39 kb, amounting to 3.9 genome equivalents. Fosmid stability assays indicate that T. mairei DNA was stable during propagation in the fosmid system. End sequencing of both 5' and 3' ends of 968 individual clones generated 1,923 sequences after trimming, with an average sequence length of 839 bp. BLASTN searches of the nr and EST databases of GenBank and BLASTX searches of the nr database resulted in 560 (29.1%) significant hits (E < e(-5)). Repetitive sequences analysis revealed that 20.8% of end sequences are repetitive elements, which were composed of retroelements, DNA transposons, satellites, simple repeats, and low complexity sequences. The distribution pattern of various repeat types was found to be more similar to the gymnosperm Pinus and Picea than to the monocot and dicot. The satellites of T. mairei were significantly longer than those of P. taeda and P. glauca. The tetra-nucleotide repeats of T. mairei were much longer than those of P. glauca and P. taeda. The fosmid library and the fosmid end sequences, for the first time, will serve as a useful resource for large-scale genome sequencing, physical mapping, SSR marker development and positional cloning, and provide a better understanding of the Taxus genome.
Collapse
Affiliation(s)
- DaCheng Hao
- Biotechnology Institute, Dalian Jiaotong University, Dalian 116028, China.
| | | | | |
Collapse
|
46
|
Jo SH, Park HM, Kim SM, Kim HH, Hur CG, Choi D. Unraveling the sequence dynamics of the formation of genus-specific satellite DNAs in the family solanaceae. Heredity (Edinb) 2010; 106:876-85. [PMID: 21063436 DOI: 10.1038/hdy.2010.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tandemly repeated DNAs, referred to as satellite DNAs, often occur in a genome in a genus-specific manner. However, the mechanisms for generation and evolution for these sequences are largely unknown because of the uncertain origins of the satellite DNAs. We found highly divergent genus-specific satellite DNAs that showed sequence similarity with genus-specific intergenic spacers (IGSs) in the family Solanaceae, which includes the genera Nicotiana, Solanum and Capsicum. The conserved position of the IGS between 25S and 18S rDNA facilitates comparison of IGS sequences across genera, even in the presence of very low sequence similarity. Sequence comparison of IGS may elucidate the procedure of the genesis of complex monomer units of the satellite DNAs. Within the IGS of Capsicum species, base substitutions and copy number variation of subrepeat monomers were causes of monomer divergence in IGS sequences. At the level of inter-generic IGS sequences of the family Solanaceae, however, genus-specific motif selection, motif shuffling between subrepeats and differential amplification among motifs were involved in formation of genus-specific IGS. Therefore, the genus-specific satellite DNAs in Solanaceae plants can be generated from differentially organized repeat monomers of the IGS rather than by accumulation of mutations from pre-existent satellite DNAs.
Collapse
Affiliation(s)
- S-H Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
47
|
The evolution of CMA bands in Citrus and related genera. Chromosome Res 2010; 18:503-14. [DOI: 10.1007/s10577-010-9130-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/25/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
|
48
|
Koukalova B, Moraes AP, Renny-Byfield S, Matyasek R, Leitch AR, Kovarik A. Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. THE NEW PHYTOLOGIST 2010; 186:148-60. [PMID: 19968801 DOI: 10.1111/j.1469-8137.2009.03101.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Allopolyploids represent natural experiments in which DNA sequences from different species are combined into a single nucleus and then coevolve, enabling us to follow the parental genomes, their interactions and evolution over time. Here, we examine the fate of satellite DNA over 5 million yr of divergence in plant genus Nicotiana (family Solanaceae). We isolated subtelomeric, tandemly repeated satellite DNA from Nicotiana diploid and allopolyploid species and analysed patterns of inheritance and divergence by sequence analysis, Southern blot hybridization and fluorescent in situ hybridization (FISH). We observed that parental satellite sequences redistribute around the genome in allopolyploids of Nicotiana section Polydicliae, formed c. 1 million yr ago (Mya), and that new satellite repeats evolved and amplified in section Repandae, which was formed c. 5 Mya. In some cases that process involved the complete replacement of parental satellite sequences. The rate of satellite repeat replacement is faster than theoretical predictions assuming the mechanism involved is unequal recombination and crossing-over. Instead we propose that this mechanism occurs with the deletion of large chromatin blocks and reamplification, perhaps via rolling circle replication.
Collapse
Affiliation(s)
- Blazena Koukalova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-612 65 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
49
|
Kotseruba V, Pistrick K, Blattner FR, Kumke K, Weiss O, Rutten T, Fuchs J, Endo T, Nasuda S, Ghukasyan A, Houben A. The evolution of the hexaploid grass Zingeriakochii (Mez) Tzvel. (2n=12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA. Mol Phylogenet Evol 2010; 56:146-55. [PMID: 20060916 DOI: 10.1016/j.ympev.2010.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/16/2009] [Accepted: 01/03/2010] [Indexed: 10/20/2022]
Abstract
In the grass tribe Poeae a small group of taxa occur with an exceptionally low chromosome number of 2n=2x=4 belonging to the closely related genera Colpodium and Zingeria. To understand the formation of polyploids in this group we analyzed the evolution of allohexaploid Zingeriakochii (2n=12) and its presumable ancestral species. Genomic insitu hybridization demonstrated that Z.kochii evolved from an interspecific hybrid involving species closely related to contemporary Z.biebersteiniana (2n=4) and Colpodiumversicolor (2n=4) and a third unknown species. Following allopolyploidization of Z.kochii the biebersteiniana-like parental chromosomes underwent loss of ribosomal DNA. No interlocus homogenization of 45S rDNA took place in Z.kochii and phylogenetic analysis showed that C.versicolor contributed its genome to Z.kochii relatively recently. Insitu hybridization was particularly effective in understanding the allopolyploid evolution in Zingeria while the analysis of ITS sequences alone would have resulted in a wrong interpretation of the allopolyploid history of the genus.
Collapse
|
50
|
Zakrzewski F, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T. Analysis of a c0t-1 library enables the targeted identification of minisatellite and satellite families in Beta vulgaris. BMC PLANT BIOLOGY 2010; 10:8. [PMID: 20064260 PMCID: PMC2820488 DOI: 10.1186/1471-2229-10-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 01/11/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND Repetitive DNA is a major fraction of eukaryotic genomes and occurs particularly often in plants. Currently, the sequencing of the sugar beet (Beta vulgaris) genome is under way and knowledge of repetitive DNA sequences is critical for the genome annotation. We generated a c0t-1 library, representing highly to moderately repetitive sequences, for the characterization of the major B. vulgaris repeat families. While highly abundant satellites are well-described, minisatellites are only poorly investigated in plants. Therefore, we focused on the identification and characterization of these tandemly repeated sequences. RESULTS Analysis of 1763 c0t-1 DNA fragments, providing 442 kb sequence data, shows that the satellites pBV and pEV are the most abundant repeat families in the B. vulgaris genome while other previously described repeats show lower copy numbers. We isolated 517 novel repetitive sequences and used this fraction for the identification of minisatellite and novel satellite families. Bioinformatic analysis and Southern hybridization revealed that minisatellites are moderately to highly amplified in B. vulgaris. FISH showed a dispersed localization along most chromosomes clustering in arrays of variable size and number with exclusion and depletion in distinct regions. CONCLUSION The c0t-1 library represents major repeat families of the B. vulgaris genome, and analysis of the c0t-1 DNA was proven to be an efficient method for identification of minisatellites. We established, so far, the broadest analysis of minisatellites in plants and observed their chromosomal localization providing a background for the annotation of the sugar beet genome and for the understanding of the evolution of minisatellites in plant genomes.
Collapse
Affiliation(s)
- Falk Zakrzewski
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Torsten Wenke
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Daniela Holtgräwe
- Institute of Genome Research, University of Bielefeld, D-33594 Bielefeld, Germany
| | - Bernd Weisshaar
- Institute of Genome Research, University of Bielefeld, D-33594 Bielefeld, Germany
| | - Thomas Schmidt
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| |
Collapse
|