1
|
Ma G, Jin W, Zhang Y, Gai Y, Tang W, Guo L, Azzaz HH, Ghaffari MH, Gu Z, Mao S, Chen Y. A Meta-Analysis of Dietary Inhibitors for Reducing Methane Emissions via Modulating Rumen Microbiota in Ruminants. J Nutr 2025; 155:402-412. [PMID: 39710134 DOI: 10.1016/j.tjnut.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Rumen methane emissions (RMEs) significantly contribute to global greenhouse gas emissions, underscoring the essentials to identify effective inhibitors for RME mitigation. Despite various inhibitors shown potential in reducing RME by modulating rumen microbes, their impacts include considerable variations and inconsistency. OBJECTIVES We aimed to quantitatively assess the impacts of various methane inhibitors on RME, rumen microbial abundance, and fermentation in ruminants. Additionally, the relationships between microbial abundance and RME were examined through meta-regressions. METHODS Meta-analysis and meta-regression were conducted to assess the impacts of methane inhibitions, including 3-nitrooxypropanol, ionophores, nitrate, triglycerides, phytochemicals, and co-inhibitors, on RME and rumen microbiota in beef, dairy cattle, and sheep. RESULTS Analyses of 922 datasets from 274 experiments revealed that inhibitors, except ionophores (P = 0.43), significantly reduced RME, with co-inhibitors displaying the highest efficacy (standardized mean difference -2.1, P < 0.01). Inhibitors' effects were more pronounced in sheep relative to beef and dairy cattle. Inhibitors decreased the abundance of ciliates and methanogens, with positive correlations observed between Dasytrichidae (P = 0.05), Entodinomorphs (P ≤ 0.001), Methanobacteriale (P = 0.001), and fungi (P < 0.01) with RME. Among inhibitors, triglycerides exhibited simultaneous reduction in methanogen, ciliate, and fungal abundances. 3-Nitrooxypropanol and triglycerides increased H2 in the rumen whereas reducing the acetate-propionate ratio, especially in beef. The H2 emission was negatively correlated (P < 0.01) and acetate-to-propionate ratio was positively correlated (P < 0.001) with RME. CONCLUSIONS Microbes, including Dasytrichidae, Entodinomorphs, Methanobacteriale, and fungi, significantly attribute to RME, and co-inhibitors have the highest efficacy in limiting RME and reducing microbial abundances. This study underscores the roles of both host and microbiota in modulating the inhibitor efficacy in RME, informing the refinement of rumen additives to mitigate RME from meat and milk production.
Collapse
Affiliation(s)
- Guiling Ma
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China; National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Jin
- National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yang Gai
- National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Weixuan Tang
- National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Lu Guo
- National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Hossam H Azzaz
- Dairy Department National Research Center, Giza, Cairo, Egypt
| | - Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Zhaobing Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shengyong Mao
- National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanting Chen
- National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
2
|
Lee SS, Wi J, Kim HS, Seong PN, Lee SD, Kim J, Lee Y. Effects of Rheum palmatum Root on In Vitro and In Vivo Methane Production and Rumen Fermentation Characteristics. Animals (Basel) 2024; 14:2637. [PMID: 39335229 PMCID: PMC11428530 DOI: 10.3390/ani14182637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the impact of Rheum palmatum root (RP) for reducing methane and its impact on rumen fermentation and blood metabolites in cattle. Rumen fluid was collected from three cannulated steers (736 ± 15 kg) and mixed with buffer (1:3 ratio) for the in vitro trial. Treatments were divided into control and RP supplement groups (1%, 3%, and 5% of substrates), with each sample incubated at 39 °C for 24 and 48 hours. Methane was measured after incubation, showing a dose-dependent linear decrease after 48 hours. Quadratic changes were observed in total volatile fatty acids, acetate, and butyrate. Additionally, in vitro dry matter digestibility decreased linearly with RP inclusion. In vivo trials involved four Korean steers in a 2 × 2 crossover design over 3 weeks, with treatments including a control group and a group with 3% RP addition. Dry matter intake (DMI) tended to decrease in the RP group compared to the control. Methane emissions (g/kg DMI) were not affected by RP addition. Blood metabolites indicated higher lipase concentrations in the RP group. In conclusion, RP reduced methane production in the in vitro trial but had no effect in the in vivo trial, likely due to adaptation of ruminal bacteria to RP.
Collapse
Affiliation(s)
- Seong Shin Lee
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55368, Republic of Korea; (S.S.L.)
| | - Jisoo Wi
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55368, Republic of Korea; (S.S.L.)
| | - Hyun Sang Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55368, Republic of Korea; (S.S.L.)
| | - Pil Nam Seong
- Animal Products and Processing Division, National Institute of Animal Science, Wanju 55368, Republic of Korea
| | - Sung Dae Lee
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55368, Republic of Korea; (S.S.L.)
| | - Jungeun Kim
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Yookyung Lee
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55368, Republic of Korea; (S.S.L.)
| |
Collapse
|
3
|
Comparisons of Ramie and Corn Stover Silages: Effects on Chewing Activity, Rumen Fermentation, Microbiota and Methane Emissions in Goats. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study aimed to investigate the nutritional value of ramie (Boehmeria nivea) silage, and its consequences for chewing activity, rumen fermentation, and enteric methane (CH4) emissions in goats, by comparing it with corn stover (CS) silage. An in vitro ruminal experiment was firstly performed to investigate the substrate degradation and fermentation of CS and ramie silage. The ramie silage diet was formulated by replacing 60% of CS silage with ramie silage (dry matter (DM) basis). Eight female Xiangdong Black goats (a local breed in Southern China, 1 to 1.2 years of age) with BW of 21.0 ± 1.05 kg were used for this experiment and were randomly assigned to either one of the two dietary treatments in a cross-over design. The ramie silage had higher crude protein (CP) and ash content and lower hemicellulose content, together with decreased (p < 0.05) nutrient degradation and methane production and increased (p < 0.05) acetate molar percentage and acetate to propionate ratio through in vitro ruminal fermentation. Feeding the ramie silage diet did not alter feed intake (p > 0.05), decreased (p < 0.05) nutrient digestibility, and increased (p < 0.05) chewing activity and rumination activity, with reductions (p < 0.05) in eating activity and idle activity. Although feeding the ramie silage diet caused a greater (p < 0.05) molar percentage of acetate and lower molar percentage of propionate, it decreased the rumen-dissolved CH4 concentration and enteric CH4 emissions (p < 0.05). Feeding the ramie silage diet did not alter (p > 0.05) the population of bacteria, protozoa, and fungi; it increased the 16S rRNA gene copies of Ruminococcus flavefaciens (p < 0.05). Further 16SrRNA gene amplicon analysis indicated a distinct bacterial composition between the two treatments (p < 0.05). Feeding the ramie silage diet led to a lower abundance of genera Lawsonibacter, Sedimentibacter, Saccharofermentans, Sediminibacterium, and Bifidobacterium (p < 0.05). Ramie can be an alternative forage resource to stimulate chewing activity and reduce CH4 emissions in ruminants.
Collapse
|
4
|
Liu Z, Yan F, Mi H, Lv X, Wang K, Li B, Jin T, Chen L, Zhang G, Huang X, Zhou C, Tan Z. N-Carbamoylglutamate Supplementation on the Digestibility, Rumen Fermentation, Milk Quality, Antioxidant Parameters, and Metabolites of Jersey Cattle in High-Altitude Areas. Front Vet Sci 2022; 9:848912. [PMID: 35445104 PMCID: PMC9014120 DOI: 10.3389/fvets.2022.848912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to assess the impact of the dietary supplementation of N-carbamoylglutamate (NCG) on nutrient digestibility, rumen fermentation, milk quality, oxidative stress, and metabolites in the plasma and feces of Jersey cattle under high altitude with the hypoxic condition. A total of 14 healthy lactating Jersey dairy cows with similar body conditions were selected and randomly divided into 2 groups. The control group (CON group, N = 6 replicates) was fed with a conventional complete diet, whereas the experimental group (NCG group, N = 8 replicates) received 20 g/d per head NCG supplementation. The experiment lasted for 60 days, the adaptation period was 12 days, and the formal experiment period was 48 days. Except that the NCG group showed an upward trend in dry matter intake (DMI) (p = 0.09) and the fermentation parameters, the molar proportion of butyric acid tended to decrease (p = 0.08); the two groups had no significant differences (p > 0.05) in nutrients digestibility, plasma immunity, and antioxidant ability. However, compared with the CON group, the milk fat rate and blood oxygen saturation of the NCG group showed an upward trend (p = 0.09). For indexes associated with altitude stress, the contents of thyroxine, transferrin, and endothelin both decreased significantly (p < 0.05) in the NCG group. Meanwhile, heat shock protein (p = 0.07) and aldosterone (p = 0.06) also showed a downward trend. A total of 114 different metabolites were identified from feces and plasma, 42 metabolites were derived from plasma that mainly included 5 kinds of Super Class, and 72 metabolites were derived from feces that mainly included 9 kinds of Super Class. The significantly increased plasma differential metabolites were 2,5-dihydroxybenzoate and salicyluric acid, and the significantly increased fecal differential metabolites were Butenafine (fold change > 2). Pathway analysis showed that after applying NCG as a feed additive, the changes of the Jersey dairy cows mainly focused on amino acid metabolism and lipid metabolism. These results indicated that adding NCG to the diet can prevent the hypoxic stress state of lactating Jersey cows in high-altitude areas and has a tendency to improve milk quality.
Collapse
Affiliation(s)
- Zixin Liu
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fuyong Yan
- Hunan Jiuding Technology (Group) Co., Ltd, Changsha, China
| | - Hui Mi
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaokang Lv
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kaijun Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bin Li
- Institute of Animal Science of Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Tao Jin
- Institute of Animal Science of Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Liang Chen
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Guijie Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Ximei Huang
- Changsha Green Top Biotech Co., Ltd, Changsha, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China.,College of Animal Science and Technology, Guangxi University, Nanning, China.,Institute of Animal Science of Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China.,School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
5
|
Arshad MA, Hassan FU, Rehman MS, Huws SA, Cheng Y, Din AU. Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:883-895. [PMID: 34632119 PMCID: PMC8484983 DOI: 10.1016/j.aninu.2021.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Colonization and development of the gut microbiome is a crucial consideration for optimizing the health and performance of livestock animals. This is mainly attributed to the fact that dietary and management practices greatly influence the gut microbiota, subsequently leading to changes in nutrient utilization and immune response. A favorable microbiome can be implanted through dietary or management interventions of livestock animals, especially during early life. In this review, we explore all the possible factors (for example gestation, colostrum, and milk feeding, drinking water, starter feed, inoculation from healthy animals, prebiotics/probiotics, weaning time, essential oil and transgenesis), which can influence rumen microbiome colonization and development. We discuss the advantages and disadvantages of potential strategies used to manipulate gut development and microbial colonization to improve the production and health of newborn calves at an early age when they are most susceptible to enteric disease. Moreover, we provide insights into possible interventions and their potential effects on rumen development and microbiota establishment. Prospects of latest techniques like transgenesis and host genetics have also been discussed regarding their potential role in modulation of rumen microbiome and subsequent effects on gut development and performance in neonatal ruminants.
Collapse
Affiliation(s)
- Muhammad A Arshad
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Muhammad S Rehman
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University of Belfast, Belfast, BT9 5DL, GB-NIR, UK
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ahmad U Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
6
|
Wang R, Wang M, Lin B, Ungerfeld EM, Ma ZY, Wu TT, Wen JN, Zhang XM, Deng JP, Tan ZL. Associations of ruminal hydrogen and pH with fiber digestibility and microbiota composition induced by increasing starch intake in beef cattle. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Ran T, Jin L, Abeynayake R, Saleem AM, Zhang X, Niu D, Chen L, Yang W. Effects of brewers' spent grain protein hydrolysates on gas production, ruminal fermentation characteristics, microbial protein synthesis and microbial community in an artificial rumen fed a high grain diet. J Anim Sci Biotechnol 2021; 12:1. [PMID: 33397465 PMCID: PMC7780661 DOI: 10.1186/s40104-020-00531-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Brewers' spent grain (BSG) typically contains 20% - 29% crude protein (CP) with high concentrations of glutamine, proline and hydrophobic and non-polar amino acid, making it an ideal material for producing value-added products like bioactive peptides which have antioxidant properties. For this study, protein was extracted from BSG, hydrolyzed with 1% alcalase and flavourzyme, with the generated protein hydrolysates (AlcH and FlaH) showing antioxidant activities. This study evaluated the effects of AlcH and FlaH on gas production, ruminal fermentation characteristics, nutrient disappearance, microbial protein synthesis and microbial community using an artificial rumen system (RUSITEC) fed a high-grain diet. RESULTS As compared to the control of grain only, supplementation of FlaH decreased (P < 0.01) disappearances of dry matter (DM), organic matter (OM), CP and starch, without affecting fibre disappearances; while AlcH had no effect on nutrient disappearance. Neither AlcH nor FlaH affected gas production or VFA profiles, however they increased (P < 0.01) NH3-N and decreased (P < 0.01) H2 production. Supplementation of FlaH decreased (P < 0.01) the percentage of CH4 in total gas and dissolved-CH4 (dCH4) in dissolved gas. Addition of monensin reduced (P < 0.01) disappearance of nutrients, improved fermentation efficiency and reduced CH4 and H2 emissions. Total microbial nitrogen production was decreased (P < 0.05) but the proportion of feed particle associated (FPA) bacteria was increased with FlaH and monensin supplementation. Numbers of OTUs and Shannon diversity indices of FPA microbial community were unaffected by AlcH and FlaH; whereas both indices were reduced (P < 0.05) by monensin. Taxonomic analysis revealed no effect of AlcH and FlaH on the relative abundance (RA) of bacteria at phylum level, whereas monensin reduced (P < 0.05) the RA of Firmicutes and Bacteroidetes and enhanced Proteobacteria. Supplementation of FlaH enhanced (P < 0.05) the RA of genus Prevotella, reduced Selenomonas, Shuttleworthia, Bifidobacterium and Dialister as compared to control; monensin reduced (P < 0.05) RA of genus Prevotella but enhaced Succinivibrio. CONCLUSIONS The supplementation of FlaH in high-grain diets may potentially protect CP and starch from ruminal degradation, without adversely affecting fibre degradation and VFA profiles. It also showed promising effects on reducing CH4 production by suppressing H2 production. Protein enzymatic hydrolysates from BSG using flavourzyme showed potential application to high value-added bio-products.
Collapse
Affiliation(s)
- Tao Ran
- Agriculture and Agri-Food of Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- College of Veterinary Medicine, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Long Jin
- Agriculture and Agri-Food of Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Ranithri Abeynayake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Atef Mohamed Saleem
- Agriculture and Agri-Food of Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena, 83523, Egypt
| | - Xiumin Zhang
- Agriculture and Agri-Food of Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Dongyan Niu
- College of Veterinary Medicine, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Wenzhu Yang
- Agriculture and Agri-Food of Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada.
| |
Collapse
|
8
|
Yu S, Shi W, Yang B, Gao G, Chen H, Cao L, Yu Z, Wang J. Effects of repeated oral inoculation of artificially fed lambs with lyophilized rumen fluid on growth performance, rumen fermentation, microbial population and organ development. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Teklebrhan T, Wang R, Wang M, Wen JN, Tan LW, Zhang XM, Ma ZY, Tan ZL. Effect of dietary corn gluten inclusion on rumen fermentation, microbiota and methane emissions in goats. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|