1
|
Miller ZA, Carey RM, Lee RJ. A deadly taste: linking bitter taste receptors and apoptosis. Apoptosis 2025; 30:674-692. [PMID: 39979526 PMCID: PMC11946974 DOI: 10.1007/s10495-025-02091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Humans can perceive five canonical tastes: salty, sour, umami, sweet, and bitter. These tastes are transmitted through the activation of ion channels and receptors. Bitter taste receptors (Taste Family 2 Receptors; T2Rs) are a sub-family of 25 G-protein coupled receptor (GPCR) isoforms that were first identified in type II taste bud cells. T2Rs are activated by a broad array of bitter agonists, which cause an increase in intracellular calcium (Ca2+) and a decrease in cyclic adenosine 3',5'-monophosphate (cAMP). Interestingly, T2Rs are expressed beyond the oral cavity, where they play diverse non-taste roles in cell physiology and disease. Here, we summarize the literature that explores the role of T2Rs in apoptosis. Activation of T2Rs with bitter agonists induces apoptosis in several cancers, the airway epithelia, smooth muscle, and more. In many of these tissues, T2R activation causes mitochondrial Ca2+ overload, a main driver of apoptosis. This response may be a result of T2R cellular localization, nuclear Ca2+ mobilization and/or a remnant of the established immunological roles of T2Rs in other cell types. T2R-induced apoptosis could be pharmacologically leveraged to treat diseases of altered cellular proliferation. Future work must explore additional extra-oral T2R-expressing tissues for apoptotic responses, develop methods for in-vivo studies, and discover high affinity bitter agonists for clinical application.
Collapse
Affiliation(s)
- Zoey A Miller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Wu Z, Yang W, Wu T, Liu Y, Pu Y, Hu W, Jiang Y, Zhang J, Zhu H, Li X, Feng S. Long term Coptidis Rhizoma intake induce gastrointestinal emptying inhibition and colon barrier weaken via bitter taste receptors activation in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156292. [PMID: 39631296 DOI: 10.1016/j.phymed.2024.156292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Coptidis Rhizoma, a classic bitter traditional Chinese medicine, can lead to digestive dysfunction when long-term use according to traditional experience. Bitter taste receptors have been found to regulate gastrointestinal smooth muscle contraction. Coptidis Rhizoma alkaloids are potential agonists for bitter taste receptors, but whether they can induce gastrointestinal dysfunction via bitter taste receptors is not clear. PURPOSE The purpose of this study is to elucidate whether long-term Coptidis Rhizoma decoction/berberine intake can affect gastrointestinal function via bitter taste receptors. METHODS Firstly, mice were orally administered Coptidis Rhizoma decoction (or berberine) for 8 weeks, then their appetite, gastrointestinal emptying function, colon barrier function, and gut microbiota homeostasis were evaluated. Subsequently, isolated intestine, molecular docking, calcium release, and immunofluorescence co-localization experiments were applied to explore the mechanism of Coptidis Rhizoma decoction (or berberine) inhibition effects on gastrointestinal motility. Finally, transmembrane resistance, scratch assay, tight junction and cytoskeletal protein immunofluorescence staining were conducted to verify that the bitter taste receptor is the target for Coptidis Rhizoma decoction (or berberine) to damage the colon barrier function. RESULT Long-term Coptidis Rhizoma decoction (or berberine) intake can reduce appetite, inhibit gastrointestinal contractions, disrupt bacterial balance and colon barrier function in mice. Further mechanistic studies have shown that the alkaloids of Coptidis Rhizoma are agonists for bitter taste receptors, which can promote α-gustducin binding to CHRM3 by activating bitter taste receptors, finally inhibiting gastrointestinal smooth muscle contraction. In addition, Coptidis Rhizoma decoction (or berberine) can activate bitter taste receptors and its downstream pathways PKCβ/RhoA/ROCK1/MLC-2, reshape skeletal proteins, downregulate tight junction protein expression, and ultimately disrupt colon barrier function. CONCLUSIONS Long term Coptidis Rhizoma intake induce gastrointestinal emptying inhibition and colon barrier weaken via bitter taste receptor activation in mice.
Collapse
Affiliation(s)
- Zhizhongbin Wu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Wei Yang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Tianyue Wu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Yulin Liu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Yu Pu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Weiqing Hu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Yunbin Jiang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Jifen Zhang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Huifeng Zhu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Xuegang Li
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Shan Feng
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Magdy N, Abdelkader NF, Zaki HF, Kamel AS. Potential exacerbation of polycystic ovary syndrome by saccharin sodium Via taste receptors in a letrozole rat model. Food Chem Toxicol 2024; 191:114874. [PMID: 39032681 DOI: 10.1016/j.fct.2024.114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The most common cause of anovulatory infertility is polycystic ovarian syndrome (PCOS), which is closely associated with obesity and metabolic syndrome. Artificial sweetener, notably saccharin sodium (SS), has been utilized in management of obesity in PCOS. However, accumulating evidence points towards SS deleterious effects on ovarian physiology, potentially through activation of ovarian sweet and bitter taste receptors, culminating in a phenotype reminiscent of PCOS. This research embarked on exploration of SS influence on ovarian functions within a PCOS paradigm. Rats were categorized into six groups: Control, Letrozole-model, two SS groups at 2 dose levels, and two groups receiving 2 doses of SS with Letrozole. The study underscored SS capability to potentiate PCOS-related anomalies. Elevated cystic profile with outer thin granulosa cells, were discernible. This owed to increased apoptotic markers as cleaved CASP-3, mirrored by high BAX and low BCL-2, with enhanced p38-MAPK/ERK1/2 pathway. This manifestation was accompanied by activation of taste receptors and disruption of steroidogenic factors; StAR, CYP11A1, and 17β-HSD. Thus, SS showed an escalation in testosterone, progesterone, estrogen, and LH/FSH ratio, insinuating a perturbation in endocrine regulation. It is found that there is an impact of taste receptor downstream signaling on ovarian steroidogenesis and apoptosis instigating pathophysiological milieu of PCOS.
Collapse
Affiliation(s)
- Nourhan Magdy
- Quality Assurance, National Food Safety Authority, Bab El-Louq, Cairo, Egypt
| | - Noha F Abdelkader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
4
|
Jiang J, Liu S, Qi L, Wei Q, Shi F. Activation of Ovarian Taste Receptors Inhibits Progesterone Production Potentially via NO/cGMP and Apoptotic Signaling. Endocrinology 2021; 162:6052298. [PMID: 33367902 DOI: 10.1210/endocr/bqaa240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 12/25/2022]
Abstract
Taste receptors are not only expressed in the taste buds, but also in other nongustatory tissues, including the reproductive system. Taste receptors can be activated by various tastants, thereby exerting relatively physiologic functions. The aim of this study was to investigate the effects and potential mechanisms underlying ovarian taste receptor activation on progesterone production using saccharin sodium as the receptor agonist in a pseudopregnant rat model. Taste 1 receptor member 2 (TAS1R2) and taste 2 receptor member 31 (TAS2R31) were demonstrated to be abundantly expressed in the corpora lutea of rats, and intraperitoneal injection of saccharin sodium can activate both of them and initiate their downstream signaling cascades. The activation of these ovarian taste receptors promoted nitric oxide (NO) production via endothelial nitric oxide synthase (eNOS). NO production then increased ovarian cyclic guanosine 3',5'-monophosphate (cGMP) levels, which, in turn, decreased ovarian cyclic adenosine 3',5'-monophosphate levels. In addition, the activation of ovarian taste receptors induced apoptosis, possibly through NO and mitogen-activated protein kinase signaling. As a result, the activation of ovarian taste receptors reduced the protein expression of steroidogenesis-related factors, causing the inhibition of ovarian progesterone production. In summary, our data suggest that the activation of ovarian taste receptors inhibits progesterone production in pseudopregnant rats, potentially via NO/cGMP and apoptotic signaling.
Collapse
Affiliation(s)
- Jingle Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Siyi Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lina Qi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Jiang J, Liu S, Jamal T, Ding T, Qi L, Lv Z, Yu D, Shi F. Effects of dietary sweeteners supplementation on growth performance, serum biochemicals, and jejunal physiological functions of broiler chickens. Poult Sci 2020; 99:3948-3958. [PMID: 32731982 PMCID: PMC7597925 DOI: 10.1016/j.psj.2020.03.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/11/2020] [Accepted: 03/25/2020] [Indexed: 02/08/2023] Open
Abstract
The objective of this study was to investigate the effects of dietary 3 kinds of sweeteners supplementation on growth performance, serum biochemicals, and jejunal physiological functions of broiler chickens for 21 D. A total of one hundred ninety-two 1-day-old male Ross 308 broiler chicks were randomly divided into 4 treatments with 6 replicates for each treatment. The treatments were basal diet (CON), a basal diet supplemented with 250 mg/kg stevioside (STE), a basal diet supplemented with 100 mg/kg sucralose (SUC), and a basal diet supplemented with 600 mg/kg saccharin sodium (SAC). All birds were housed in 3-level battery cages. The results showed that dietary STE supplementation increased (P < 0.05) growth performance, serum total protein, serum albumin, and jejunal antioxidant capacity of broiler chickens. Both SUC and SAC supplementation decreased (P < 0.05) serum total protein and albumin. Dietary SAC supplementation impaired the intestinal integrity, permeability, and mucus layer of the jejunum in broiler chickens. In addition, SAC supplementation elevated (P < 0.05) the transcription expression level of jejunal bitter taste receptors and induced excessive jejunal apoptosis. Our data suggest that STE could be potentially applied as a growth-promoting and antioxidant feed additive in broiler chickens. Whereas, dietary supplementation with high level SAC has side-effects on the jejunal physiological functions of broiler chickens.
Collapse
Affiliation(s)
- Jingle Jiang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Siyi Liu
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Tuniyaz Jamal
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Tengxin Ding
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Lina Qi
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zengpeng Lv
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Debing Yu
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Fangxiong Shi
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|