1
|
Zhang X, Li Y, Pei Y, Yu C, Zhang X, Cao F. Association between maternal stress patterns and neonatal meconium microbiota: A prospective cohort study. J Affect Disord 2025; 383:59-68. [PMID: 40286937 DOI: 10.1016/j.jad.2025.04.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/01/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND This study aimed to identify maternal stress patterns and investigate their associations with neonatal meconium microbiota. METHODS A total of 465 pregnant women reported their stress conditions, including depression, anxiety, pregnancy-related anxiety, perceived stress, sleep, fear of birth, life events, and adverse childhood experiences. Meconium samples were collected from 348 newborns. Latent class analysis was used to identify the patterns of maternal stress. RESULTS Three group profiles were identified: "high negative emotion," "high ACEs-low negative emotion," and "low stress." the high ACEs-low negative emotion group and low stress group had higher levels of Chao1 diversity than the high negative emotion group (B = 0.25, P < 0.001; B = 0.18, P < 0.001, respectively). The high ACEs-low negative emotion group had higher levels of Chao1 diversity than the low stress group (B = 0.08, P = 0.001). The variations were observed in the abundance of Bacteroidetes, unidentified_Muribaculaceae, unclassified_Lachnospiraceae, unclassified_Clostridiales, unidentified_Bacteroidales, Oscillospira, and Ruminococcus among different maternal stress patterns. LIMITATIONS We did not analyze maternal microbiome samples and assessed the gut microbiota at only one time point. CONCLUSIONS These findings emphasized the need for a comprehensive approach to prenatal care that extends beyond traditional medical interventions. Addressing maternal stress through targeted support and interventions may help newborns benefit from a more favorable gut microbiota landscape.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Yang Li
- School of Nursing, The University of Texas at Austin, Austin, USA
| | - Yifei Pei
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Cheng Yu
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Xiao Zhang
- School of Computer Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Fenglin Cao
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
2
|
Banchi P, Bertero A, Corrò M, Colitti B, Maniscalco L, Van Soom A, Rota A. Approaching the sterile womb theory in dogs and cats: A multi-technique investigation. Theriogenology 2025; 233:42-52. [PMID: 39577271 DOI: 10.1016/j.theriogenology.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
The study investigated whether bacterial seeding occurs in utero in dogs and cats using a multi-technique approach, including 16S rRNA gene sequencing, culture, and fluorescence in situ hybridization (FISH). Healthy pregnant bitches and queens (n = 8) undergoing ovariohysterectomy between 30 and 45 days of gestation were included. Placenta and amniotic fluid samples from two foetuses per dam, along with multiple controls (uterine serosa, sampling table, and surgeon's gloves), were collected and analysed. Bacterial sequences were detected in all foetal samples, with no significant differences in intra- and inter-sample diversity (i.e., alpha and beta diversities, respectively) based on sample type or species. However, the surgeon's gloves showed species-specific differences in bacterial composition. After removing control sequences, significant differences based on foeto-maternal units emerged. Moraxella spp. was cultured from the canine placenta with the highest bacterial load, and Burkholderia cepacia was isolated from two feline placentae. FISH showed low bacterial presence in 50 % of placentae without histological signs of inflammation. No bacterial growth was observed in amniotic fluid or control samples. A multi-technique approach, including multiple controls, is essential in studies involving low-biomass samples, as the results of the present study indicated that contamination could mask real bacterial composition of foetal samples. After decontamination, differences were observed based on the foeto-maternal unit. This study confirmed the presence of bacterial DNA in placental and amniotic fluid samples during mid-term, healthy pregnancies in dogs and cats. Bacterial DNA is not equivalent to living bacteria, hence bacterial DNA fragments in the uterus probably originate from the dam but are unlikely to indicate the presence of a resident foetal microbiome.
Collapse
Affiliation(s)
- Penelope Banchi
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium; Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy.
| | - Alessia Bertero
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Michela Corrò
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Italy
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Lorella Maniscalco
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Ada Rota
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| |
Collapse
|
3
|
Brasiel PGDA, Dutra Medeiros J, Costa de Almeida T, Teodoro de Souza C, de Cássia Ávila Alpino G, Barbosa Ferreira Machado A, Dutra Luquetti SCP. Preventive effects of kefir on colon tumor development in Wistar rats: gut microbiota critical role. J Dev Orig Health Dis 2025; 16:e5. [PMID: 39868980 DOI: 10.1017/s2040174424000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
To clarify the effects of kefir in critical periods of development in adult diseases, we study the effects of kefir intake during early life on gut microbiota and prevention of colorectal carcinogenesis in adulthood. Lactating Wistar rats were divided into three groups: control (C), kefir lactation (KL), and kefir puberty (KP) groups. The C and KP groups received 1 mL of water/day; KL dams received kefir milk daily (108 CFU/mL) during lactation. After weaning (postnatal day 21), KP pups received kefir treatment until 60 days. At 67 days old, colorectal carcinogenesis was induced through intraperitoneal injection of 1, 2-dimethylhydrazine. The gut microbiota composition were analyzed by 16S rRNA gene sequencing and DESeq2 (differential abundance method), revealing significant differences in bacterial abundances between the kefir consumption periods. Maternal kefir intake strong anticancer power, suppressed tumors in adult offspring and reduced the relative risk of offspring tumor development. The gut microbiota in cecal samples of the KL group was enriched with Lactobacillus, Romboutsia, and Blautia. In contrast, control animals were enriched with Acinetobacter. The administration of kefir during critical periods of development, with emphasis on lactation, affected the gut microbial community structure to promote host benefits. Pearson analysis indicated positive correlation between tumor number with IL-1 levels. Therefore, the probiotic fermented food intake in early life may be effective as chemopreventive potential against colon tumor development, especially in lactation period.
Collapse
Affiliation(s)
| | - Julliane Dutra Medeiros
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Thaís Costa de Almeida
- Department of Nutrition, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Claudio Teodoro de Souza
- Department of Clinical Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
4
|
Daiy K, Wiley K, Allen J, Bailey MT, Dettmer AM. Associations among rearing environment and the infant gut microbiome with early-life neurodevelopment and cognitive development in a nonhuman primate model ( Macaca mulatta). J Dev Orig Health Dis 2025; 16:e1. [PMID: 39781670 PMCID: PMC11731890 DOI: 10.1017/s2040174424000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Early gut microbiome development may impact brain and behavioral development. Using a nonhuman primate model (Macaca mulatta), we investigated the association between social environments and the gut microbiome on infant neurodevelopment and cognitive function. Infant rhesus monkeys (n = 33) were either mother-peer-reared (MPR) or nursery-reared (NR). Neurodevelopmental outcomes, namely emotional responsivity, visual orientation, and motor maturity, were assessed with the Primate Neonatal Neurobehavioral Assessment (PNNA) at 14-30 days. Cognitive development was assessed through tasks evaluating infant reward association, cognitive flexibility, and impulsivity at 6-8 months. The fecal microbiome was quantified from rectal swabs via 16S rRNA sequencing. Factor analysis was used to identify "co-abundance factors" describing patterns of microbial composition. We used multiple linear regressions with AIC Model Selection and differential abundance analysis (MaAsLin2) to evaluate relationships between co-abundance factors, microbiome diversity, and neuro-/cognitive development outcomes. At 30 days of age, a gut microbiome co-abundance factor, or pattern, with high Prevotella and Lactobacillus (β = -0.88, p = 0.04, AIC Weight = 68%) and gut microbiome alpha diversity as measured by Shannon diversity (β = -1.33, p = 0.02, AIC Weight = 80%) were both negatively associated with infant emotional responsivity. At 30 days of age, being NR was also associated with lower emotional responsivity (Factor 1 model: β = -3.13, p < 0.01; Shannon diversity model: β = -3.77, p < 0.01). The infant gut microbiome, along with early-rearing environments, may shape domains of neuro-/cognitive development related to temperament.
Collapse
Affiliation(s)
- Katherine Daiy
- Department of Anthropology, Yale University, New Haven, CT, USA
| | - Kyle Wiley
- Department of Sociology and Anthropology, University of Texas at El Paso, El Paso, TX, USA
| | - Jacob Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael T Bailey
- The Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Amanda M Dettmer
- Yale School of Medicine, Yale Child Study Center, New Haven, CT, USA
| |
Collapse
|
5
|
Manus MB, Sardaro MLS, Dada O, Davis MI, Romoff MR, Torello SG, Ubadigbo E, Wu RC, Miller ES, Amato KR. Interactions with alloparents are associated with the diversity of infant skin and fecal bacterial communities in Chicago, United States. Am J Hum Biol 2025; 37:e23972. [PMID: 37632331 PMCID: PMC11667966 DOI: 10.1002/ajhb.23972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/28/2023] Open
Abstract
INTRODUCTION Social interactions shape the infant microbiome by providing opportunities for caregivers to spread bacteria through physical contact. With most research focused on the impact of maternal-infant contact on the infant gut microbiome, it is unclear how alloparents (i.e., caregivers other than the parents) influence the bacterial communities of infant body sites that are frequently contacted during bouts of caregiving, including the skin. METHODS To begin to understand how allocare may influence the diversity of the infant microbiome, detailed questionnaire data on infant-alloparent relationships and specific allocare behaviors were coupled with skin and fecal microbiome samples (four body sites) from 48 infants living in Chicago, United States. RESULTS Data from 16S rRNA gene amplicon sequencing indicated that infant skin and fecal bacterial diversity showed strong associations (positive and negative) to having female adult alloparents. Alloparental feeding and co-sleeping displayed stronger associations to infant bacterial diversity compared to playing or holding. The associations with allocare behaviors differed in magnitude and direction across infant body sites. Bacterial relative abundances varied by infant-alloparent relationship and breastfeeding status. CONCLUSION This study provides some of the first evidence of an association between allocare and infant skin and fecal bacterial diversity. The results suggest that infants' exposure to bacteria from the social environment may vary based on infant-alloparent relationships and allocare behaviors. Since the microbiome influences immune system development, variation in allocare that impacts the diversity of infant bacterial communities may be an underexplored dimension of the social determinants of health in early life.
Collapse
Affiliation(s)
- Melissa B. Manus
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Maria Luisa Savo Sardaro
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
- Department of Human Science and Promotion of the Quality of LifeUniversity of San RaffaeleRomeItaly
| | - Omolola Dada
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Maya I. Davis
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Melissa R. Romoff
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | | | - Esther Ubadigbo
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Rebecca C. Wu
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Emily S. Miller
- Department of Obstetrics and Gynecology, Division of Maternal Fetal MedicineFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | | |
Collapse
|
6
|
Alemu BK, Wu L, Azeze GG, Lau SL, Wang Y, Wang CC. Microbiota-targeted interventions and clinical implications for maternal-offspring health: An umbrella review of systematic reviews and meta-analyses of randomised controlled trials. J Glob Health 2024; 14:04177. [PMID: 39269153 PMCID: PMC11395958 DOI: 10.7189/jogh.14.04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Background Microbes in the human body are the determinants of life-long health and disease. Microbiome acquisition starts in utero and matures during early childhood through breastfeeding. However, maternal gut dysbiosis affects the maternal-offspring microbiome interplay. Lines of evidence on dysbiosis-targeted interventions and their effect on maternal-offspring health and gut microbiome are inconsistent and inconclusive. Therefore, this study summarised studies to identify the most common microbiota-targeted intervention during pregnancy and lactation and to comprehensively evaluate its effects on maternal and offspring health. Methods This umbrella review was conducted by systematically searching databases such as PubMed and the Web of Science from inception to 2 September 2023. The quality was assessed using the Assessment of Multiple Systematic Reviews-2 checklist. The Grading of Recommendations Assessment, Development, and Evaluation was used for grading the strength and certainty of the studies. The overlap of primary studies was quantified by the corrected covered area score. Results A total of 17 systematic reviews and meta-analyses with 219 randomised controlled trials, 39 113 mothers, and 20 915 infants were included in this study. About 88% of studies had moderate and above certainty of evidence. Probiotics were the most common and effective interventions at reducing gestational diabetes risk (fasting blood glucose with the mean difference (MD) = -2.92, -0.05; I2 = 45, 98.97), fasting serum insulin (MD = -2.3, -2.06; I2 = 45, 77), glycated haemoglobin (Hb A1c) = -0.16; I2 = 0.00)), Homeostatic Model Assessment of insulin resistance (HOMA-IR) (MD = -20.55, -0.16; I2 = 0.00, 72.00), and lipid metabolism (MD = -5.47, 0.98; I2 = 0.00, 90.65). It was also effective in preventing and treating mastitis (risk ratio (RR) = 0.49; I2 = 2.00), relieving anxiety symptoms (MD = -0.99, 0.01; I2 = 0.00, 70.00), depression in lactation (MD = -0.46, -0.22; I2 = 0.00, 74.00) and reducing recto-vaginal bacterial colonisation (odds ratio (OR) = 0.62; I2 = 4.80), and with no adverse events. It also effectively remodelled the infant gut microbiome (MD = 0.89; I2 = 95.01) and prevented infant allergies. However, studies on pregnancy outcomes and preeclampsia incidences are limited. Conclusions Our findings from high-quality studies identify that probiotics are the most common microbiome interventions during pregnancy and lactation. Probiotics have a strong impact on maternal and offspring health through maintaining gut microbiome homeostasis. However, further studies are needed on the effect of microbiota-targeted interventions on maternal cardiometabolic health, pregnancy, and neonatal outcomes. Registration This umbrella review was registered with PROSPERO, CRD42023437098.
Collapse
Affiliation(s)
- Bekalu Kassie Alemu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- Department of Midwifery, College of Medicine and Health Sciences, Debre Markos University, Ethiopia
| | - Ling Wu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Getnet Gedefaw Azeze
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- Department of Midwifery, College of Medicine and Health Sciences, Injibara University, Ethiopia
| | - So Ling Lau
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yao Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- LI Ka Shing Institute of Health Sciences; Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- LI Ka Shing Institute of Health Sciences; Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
7
|
Luecke SM, Aryee G, Holman DB, Schmidt KN, King LE, Crouse MS, Ward AK, Dahlen CR, Caton JS, Amat S. Effects of dietary restriction and one-carbon metabolite supplementation during the first 63 days of gestation on the maternal gut, vaginal, and blood microbiota in cattle. Anim Microbiome 2024; 6:48. [PMID: 39210404 PMCID: PMC11360793 DOI: 10.1186/s42523-024-00335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Maternal diet quality and quantity have significant impacts on both maternal and fetal health and development. The composition and function of the maternal gut microbiome is also significantly influenced by diet; however, little is known about the impact of gestational nutrient restriction on the bovine maternal microbiome during early gestation, which is a critical stage for maternal microbiome-mediated fetal programming to take place. The objective of the present study was to evaluate the impacts of diet restriction and one-carbon metabolite (OCM) supplementation during early gestation on maternal ruminal, vaginal, and blood microbiota in cattle. Thirty-three beef heifers (approx. 14 months old) were used in a 2 × 2 factorial experiment with main factors of target gain (control [CON]; targeted 0.45 kg/d gain vs restricted [RES]; targeted - 0.23 kg/d gain), and OCM supplementation (+ OCM vs - OCM; n = 8/treatment; except n = 9 for RES-OCM). Heifers were individually fed, starting treatment at breeding (d 0) and concluding at d 63 of gestation. Ruminal fluid and vaginal swabs were collected on d - 2, d 35, and d 63 (at necropsy) and whole blood was collected on d 63 (necropsy). Bacterial microbiota was assessed using 16S rRNA gene (V3-V4) sequencing. RESULTS Overall ruminal microbiota structure was affected by gain, OCM, time, and their interactions. The RES heifers had greater microbial richness (observed ASVs) but neither Shannon nor Inverse Simpson diversity was significantly influenced by gain or OCM supplementation; however, on d 63, 34 bacterial genera showed differential abundance in the ruminal fluid, with 25 genera enriched in RES heifers as compared to CON heifers. In addition, the overall interaction network structure of the ruminal microbiota changed due to diet restriction. The vaginal microbiota community structure was influenced by gain and time. Overall microbial richness and diversity of the vaginal microbiota steadily increased as pregnancy progressed. The vaginal ecological network structure was distinctive between RES and CON heifers with genera-genera interactions being intensified in RES heifers. A relatively diverse bacterial community was detected in blood samples, and the composition of the blood microbiota differed from that of ruminal and vaginal microbiota. CONCLUSION Restricted dietary intake during early gestation induced significant alterations in the ruminal microbiota which also extended to the vaginal microbiota. The composition of these two microbial communities was largely unaffected by OCM supplementation. Blood associated microbiota was largely distinctive from the ruminal and vaginal microbiota.
Collapse
Affiliation(s)
- Sarah M Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Godson Aryee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie N Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Layla E King
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Alison K Ward
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Joel S Caton
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
8
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
9
|
Whiteoak B, Dawson SL, Callaway L, de Jersey S, Eley V, Evans J, Kothari A, Navarro S, Gallegos D. Food Insecurity Is Associated with Diet Quality in Pregnancy: A Cross-Sectional Study. Nutrients 2024; 16:1319. [PMID: 38732568 PMCID: PMC11085356 DOI: 10.3390/nu16091319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Household food insecurity (HFI) and poorer prenatal diet quality are both associated with adverse perinatal outcomes. However, research assessing the relationship between HFI and diet quality in pregnancy is limited. A cross-sectional online survey was conducted to examine the relationship between HFI and diet quality among 1540 pregnant women in Australia. Multiple linear regression models were used to examine the associations between HFI severity (marginal, low, and very low food security compared to high food security) and diet quality and variety, adjusting for age, education, equivalised household income, and relationship status. Logistic regression models were used to assess the associations between HFI and the odds of meeting fruit and vegetable recommendations, adjusting for education. Marginal, low, and very low food security were associated with poorer prenatal diet quality (adj β = -1.9, -3.6, and -5.3, respectively; p < 0.05), and very low food security was associated with a lower dietary variety (adj β = -0.5, p < 0.001). An association was also observed between HFI and lower odds of meeting fruit (adjusted odds ratio [AOR]: 0.61, 95% CI: 0.49-0.76, p < 0.001) and vegetable (AOR: 0.40, 95% CI: 0.19-0.84, p = 0.016) recommendations. Future research should seek to understand what policy and service system changes are required to reduce diet-related disparities in pregnancy.
Collapse
Affiliation(s)
- Bree Whiteoak
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), 149 Victoria Park Road, Kelvin Grove, QLD 4059, Australia;
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, QLD 4101, Australia;
- QIMR Berghofer Medical Research Institute, 300 Herston Rd., Herston, QLD 4006, Australia
| | - Samantha L. Dawson
- Food & Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia;
| | - Leonie Callaway
- Women’s and Newborns Services, Royal Brisbane and Women’s Hospital, Herston, QLD 4006, Australia;
- Faculty of Medicine, The University of Queensland, 288 Herston Rd., Herston, QLD 4006, Australia; (V.E.); (A.K.)
| | - Susan de Jersey
- Department of Dietetics and Foodservices, Royal Brisbane and Women’s Hospital, Herston, QLD 4006, Australia;
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, 288 Herston Rd., Herston, QLD 4006, Australia
| | - Victoria Eley
- Faculty of Medicine, The University of Queensland, 288 Herston Rd., Herston, QLD 4006, Australia; (V.E.); (A.K.)
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women’s Hospital, Herston, QLD 4006, Australia
| | - Joanna Evans
- Maternity Services, Caboolture Hospital, McKean Street, Caboolture, QLD 4510, Australia;
| | - Alka Kothari
- Faculty of Medicine, The University of Queensland, 288 Herston Rd., Herston, QLD 4006, Australia; (V.E.); (A.K.)
- Redcliffe Hospital, Anzac Avenue, Redcliffe, QLD 4020, Australia
| | - Severine Navarro
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, QLD 4101, Australia;
- QIMR Berghofer Medical Research Institute, 300 Herston Rd., Herston, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, 288 Herston Rd., Herston, QLD 4006, Australia; (V.E.); (A.K.)
| | - Danielle Gallegos
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), 149 Victoria Park Road, Kelvin Grove, QLD 4059, Australia;
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, QLD 4101, Australia;
| |
Collapse
|
10
|
Holani R, Littlejohn PT, Edwards K, Petersen C, Moon KM, Stacey RG, Bozorgmehr T, Gerbec ZJ, Serapio-Palacios A, Krekhno Z, Donald K, Foster LJ, Turvey SE, Finlay BB. A Murine Model of Maternal Micronutrient Deficiencies and Gut Inflammatory Host-microbe Interactions in the Offspring. Cell Mol Gastroenterol Hepatol 2024; 17:827-852. [PMID: 38307490 PMCID: PMC10973814 DOI: 10.1016/j.jcmgh.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND & AIMS Micronutrient deficiency (MND) (ie, lack of vitamins and minerals) during pregnancy is a major public health concern. Historically, studies have considered micronutrients in isolation; however, MNDs rarely occur alone. The impact of co-occurring MNDs on public health, mainly in shaping mucosal colonization by pathobionts from the Enterobacteriaceae family, remains undetermined due to lack of relevant animal models. METHODS To establish a maternal murine model of multiple MND (MMND), we customized a diet deficient in vitamins (A, B12, and B9) and minerals (iron and zinc) that most commonly affect children and women of reproductive age. Thereafter, mucosal adherence by Enterobacteriaceae, the associated inflammatory markers, and proteomic profile of intestines were determined in the offspring of MMND mothers (hereafter, low micronutrient [LM] pups) via bacterial plating, flow cytometry, and mass spectrometry, respectively. For human validation, Enterobacteriaceae abundance, assessed via 16s sequencing of 3-month-old infant fecal samples (n = 100), was correlated with micronutrient metabolites using Spearman's correlation in meconium of children from the CHILD birth cohort. RESULTS We developed an MMND model and reported an increase in colonic abundance of Enterobacteriaceae in LM pups at weaning. Findings from CHILD cohort confirmed a negative correlation between Enterobacteriaceae and micronutrient availability. Furthermore, pro-inflammatory cytokines and increased infiltration of lymphocyte antigen 6 complex high monocytes and M1-like macrophages were evident in the colons of LM pups. Mechanistically, mitochondrial dysfunction marked by reduced expression of nicotinamide adenine dinucleotide (NAD)H dehydrogenase and increased expression of NAD phosphate oxidase (Nox) 1 contributed to the Enterobacteriaceae bloom. CONCLUSION This study establishes an early life MMND link to intestinal pathobiont colonization and mucosal inflammation via damaged mitochondria in the offspring.
Collapse
Affiliation(s)
- Ravi Holani
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paula T Littlejohn
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karlie Edwards
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Charisse Petersen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard G Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tahereh Bozorgmehr
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary J Gerbec
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Antonio Serapio-Palacios
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zakhar Krekhno
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
11
|
Mohanan A, Harilal SL, Plakkot B, Pottakkat B, Kanakkaparambil R. Nutritional Epigenetics and Gut Microbiome. EPIGENETICS AND HUMAN HEALTH 2024:121-159. [DOI: 10.1007/978-3-031-54215-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
David P, Claud EC. Necrotizing Enterocolitis and the Preterm Infant Microbiome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:29-41. [PMID: 39060729 DOI: 10.1007/978-3-031-58572-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Preterm infants differ significantly from their term infant counterparts regarding bacterial colonization patterns related to maternal microbiota diversity, mode of delivery, feeding type, antibiotic exposure, and the environmental influences related to prolonged hospitalization in the neonatal intensive care unit (NICU). Necrotizing enterocolitis (NEC), a multifactorial intestinal disorder characterized by ischemic bowel disease, disproportionately impacts preterm infants and has a high disease burden. Recent studies in the basic, translational, and clinical scientific literature have advanced knowledge into this complex disease process. Despite the explosion of research into NEC, however, there is a still a great deal unknown about this devastating illness. Additionally, the disease morbidity and mortality for NEC remain high despite advances in therapy options. This chapter reviews the current literature into the preterm infant microbiome, pathogenesis of NEC, potential targets for altering preterm microbiome, influence of microbiome on other organ systems, long-term implications of microbiome dysbiosis, and future directions of study.
Collapse
Affiliation(s)
- Pyone David
- Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Erika C Claud
- Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
13
|
Hemida MBM, Vuori KA, Borgström NC, Moore R, Rosendahl S, Anturaniemi J, Estrela-Lima A, Hielm-Björkman A. Early life programming by diet can play a role in risk reduction of otitis in dogs. Front Vet Sci 2023; 10:1186131. [PMID: 38026629 PMCID: PMC10657834 DOI: 10.3389/fvets.2023.1186131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Otitis in dogs is often chronic while local treatment primarily consists of flushing, antibiotics, and/or antifungals. We were interested in finding early life variables that associate with otitis later in life, preferably some that could be modified. Methods A cross-sectional hypothesis-driven study with longitudinal data was performed to search for associations between pre- and postnatal exposures, and the incidence of owner-reported otitis in dogs at over 1 year of age. The multivariate logistic regression analysis study included data from 3,064 dogs and explored 26 different early life variables at four early life stages: prenatal, neonatal, postnatal, and puppyhood. We compared two feeding patterns, a non-processed meat-based diet (NPMD, raw) and an ultra-processed carbohydrate-based diet (UPCD, dry). Results We report that eating a NPMD diet significantly decreased the risk of otitis later in life, while eating a UPCD diet significantly increased the risk. This was seen in different life stages of mother or puppy: The maternal diet during pregnancy (p=0.011) and the puppies' diet from 2 to 6 months of age (p=0.019) were both significantly associated with otitis incidence later in life, whereas the puppies' first solid diet, was associated in the same way, but did not reach significance (p=0.072). Also, analyzing food ratios showed that when puppies were consuming >25% of their food as NPMD it significantly decreased their incidence of otitis later in life, while a ratio of >75% UPCD in their diet significantly increased their risk of otitis. Also, if the dog was born in the current family, was exposed to sunlight for more than 1 hour daily, and was raised on a dirt floor during puppyhood, there was a lower risk of otitis development later in life. Discussion The findings only suggest causality, and further studies are required. However, we propose that veterinarians, breeders, and owners can impact otitis risk by modifying factors such as diet and environment.
Collapse
Affiliation(s)
- Manal B. M. Hemida
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Kristiina A. Vuori
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Nona C. Borgström
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Robin Moore
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sarah Rosendahl
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Anturaniemi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Alessandra Estrela-Lima
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Anatomy, Pathology and Clinics, School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Xie F, Cai T, Jin B, Gan L, Cai B, Gao Y, Cao S, Lei L, Zhou L. Investigation and analysis of children's behavior and outpatient number of respiratory diseases in Shanghai before and after the COVID-19 pandemic. Heliyon 2023; 9:e19592. [PMID: 37809910 PMCID: PMC10558850 DOI: 10.1016/j.heliyon.2023.e19592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Alterations in behavioral habits of children were analyzed in Shanghai in the winters prior to and following the COVID-19 pandemic, with the aim of assisting in the prevention of children's respiratory diseases in the post-pandemic era. Method This cross-sectional survey was conducted via an offline questionnaire from January 1 to February 28, 2021. The behavioral habits of Shanghainese children in different age groups during the winter of 2019 and 2020 were statistically analyzed using the SPSS 25.0 software. The parameters surveyed and analyzed included the frequency of outdoor activities, self-protection measures (frequency of wearing masks and washing hands after going out), travel history, time to visit since symptom onset, and influenza vaccination status. Lastly, the number of cases of respiratory diseases in the pediatric outpatient department of our hospital was analyzed during the same period. Result A total of 1816 questionnaires were investigated and analyzed, and the results revealed that self-protection measures were significantly enhanced in children of all age groups after the COVID-19 pandemic breakout compared with those before the pandemic, whereas the frequency of outdoor activities and traveling were reduced. In the age group over 3 years old, the time to visit since symptom onset was shorter, and the influenza vaccination rate increased following the pandemic. During the same period, the number of cases of children with respiratory diseases in our outpatient department was significantly decreased compared with that prior to the COVID-19 pandemic. Conclusion The COVID-19 pandemic has had a significant impact on self-protection measures, outdoor activities, and other children's behaviors in all age groups in Shanghai. These changes in habits were correlated with a lower incidence and transmission of respiratory diseases in children. Overall, this study lays a theoretical basis for the prevention of childhood illnesses in the post-pandemic era.
Collapse
Affiliation(s)
| | | | - Bobo Jin
- Department of Pediatrics, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Lu Gan
- Department of Pediatrics, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Bin Cai
- Department of Pediatrics, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Yu Gao
- Department of Pediatrics, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Shiyan Cao
- Department of Pediatrics, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Lei Lei
- Department of Pediatrics, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Lin Zhou
- Department of Pediatrics, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
15
|
Holdsworth EA, Williams JE, Pace RM, Lane AA, Gartstein M, McGuire MA, McGuire MK, Meehan CL. Breastfeeding patterns are associated with human milk microbiome composition: The Mother-Infant Microbiomes, Behavior, and Ecology Study (MIMBES). PLoS One 2023; 18:e0287839. [PMID: 37556398 PMCID: PMC10411759 DOI: 10.1371/journal.pone.0287839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/14/2023] [Indexed: 08/11/2023] Open
Abstract
The human milk microbiome (HMM) is hypothesized to be seeded by multiple factors, including the infant oral microbiome during breastfeeding. However, it is not known whether breastfeeding patterns (e.g., frequency or total time) impact the composition of the HMM. As part of the Mother-Infant Microbiomes, Behavior, and Ecology Study (MIMBES), we analyzed data from naturalistic observations of 46 mother-infant dyads living in the US Pacific Northwest and analyzed milk produced by the mothers for its bacterial diversity and composition. DNA was extracted from milk and the V1-V3 region of the 16S rRNA gene was amplified and sequenced. We hypothesized that number of breastfeeding bouts (breastfeeding sessions separated by >30 seconds) and total time breastfeeding would be associated with HMM α-diversity (richness, diversity, or evenness) and differential abundance of HMM bacterial genera. Multiple linear regression was used to examine associations between HMM α-diversity and the number of breastfeeding bouts or total time breastfeeding and selected covariates (infant age, maternal work outside the home, frequency of allomother physical contact with the infant, non-household caregiving network). HMM richness was inversely associated with number of breastfeeding bouts and frequency of allomother physical contact, but not total time breastfeeding. Infants' non-household caregiving network was positively associated with HMM evenness. In two ANCOM-BC analyses, abundances of 5 of the 35 most abundant genera were differentially associated with frequency of breastfeeding bouts (Bifidobacterium, Micrococcus, Pedobacter, Acidocella, Achromobacter); 5 genera (Bifidobacterium, Agreia, Pedobacter, Rugamonas, Stenotrophomonas) were associated with total time breastfeeding. These results indicate that breastfeeding patterns and infant caregiving ecology may play a role in influencing HMM composition. Future research is needed to identify whether these relationships are consistent in other populations and if they are associated with variation in the infant's gastrointestinal (including oral) microbiome.
Collapse
Affiliation(s)
- Elizabeth A. Holdsworth
- Department of Anthropology, Washington State University, Pullman, Washington, United States of America
| | - Janet E. Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Avery A. Lane
- Department of Anthropology, Washington State University, Pullman, Washington, United States of America
| | - Maria Gartstein
- Department of Psychology, Washington State University, Pullman, Washington, United States of America
| | - Mark A. McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Courtney L. Meehan
- Department of Anthropology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
16
|
Mallott EK, Sitarik AR, Leve LD, Cioffi C, Camargo CA, Hasegawa K, Bordenstein SR. Human microbiome variation associated with race and ethnicity emerges as early as 3 months of age. PLoS Biol 2023; 21:e3002230. [PMID: 37590208 PMCID: PMC10434942 DOI: 10.1371/journal.pbio.3002230] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/03/2023] [Indexed: 08/19/2023] Open
Abstract
Human microbiome variation is linked to the incidence, prevalence, and mortality of many diseases and associates with race and ethnicity in the United States. However, the age at which microbiome variability emerges between these groups remains a central gap in knowledge. Here, we identify that gut microbiome variation associated with race and ethnicity arises after 3 months of age and persists through childhood. One-third of the bacterial taxa that vary across caregiver-identified racial categories in children are taxa reported to also vary between adults. Machine learning modeling of childhood microbiomes from 8 cohort studies (2,756 samples from 729 children) distinguishes racial and ethnic categories with 87% accuracy. Importantly, predictive genera are also among the top 30 most important taxa when childhood microbiomes are used to predict adult self-identified race and ethnicity. Our results highlight a critical developmental window at or shortly after 3 months of age when social and environmental factors drive race and ethnicity-associated microbiome variation and may contribute to adult health and health disparities.
Collapse
Affiliation(s)
- Elizabeth K. Mallott
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Alexandra R. Sitarik
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, United States of America
| | - Leslie D. Leve
- Prevention Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Camille Cioffi
- Prevention Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seth R. Bordenstein
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
- Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- The One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
17
|
Dovrolis N, Moschoviti A, Fessatou S, Karamanolis G, Kolios G, Gazouli M. Identifying Microbiome Dynamics in Pediatric IBD: More than a Family Matter. Biomedicines 2023; 11:1979. [PMID: 37509618 PMCID: PMC10377534 DOI: 10.3390/biomedicines11071979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Pediatric inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disease that affects both children and adolescents. Symptoms can significantly affect a child's growth, development, and quality of life, making early diagnosis and effective management crucial. This study focuses on treatment-naïve pediatric IBD patients and their immediate families to identify the role of the microbiome in disease onset. METHODS Nine families with pediatric IBD were recruited, comprising seven drug-naïve Crohn's disease (CD) patients and two drug-naïve ulcerative colitis (UC) patients, as well as twenty-four healthy siblings/parents. Fecal samples were collected for 16S ribosomal RNA gene sequencing and bioinformatics analysis. RESULTS We identified patterns of dysbiosis and hallmark microbial taxa among patients who shared ethnic, habitual, and dietary traits with themselves and their families. In addition, we examined the impact of the disease on specific microbial taxa and how these could serve as potential biomarkers for early detection. CONCLUSIONS Our results suggest a potential role of maternal factors in the establishment and modulation of the early life microbiome, consistent with the current literature, which may have implications for understanding the etiology and progression of IBD.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.D.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Anastasia Moschoviti
- Third Department of Pediatrics, “Attikon” General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Haidari, Greece; (A.M.); (S.F.)
| | - Smaragdi Fessatou
- Third Department of Pediatrics, “Attikon” General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Haidari, Greece; (A.M.); (S.F.)
| | - George Karamanolis
- Gastroenterology Unit, Second Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.D.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| |
Collapse
|
18
|
De Sales-Millán A, Aguirre-Garrido JF, González-Cervantes RM, Velázquez-Aragón JA. Microbiome-Gut-Mucosal-Immune-Brain Axis and Autism Spectrum Disorder (ASD): A Novel Proposal of the Role of the Gut Microbiome in ASD Aetiology. Behav Sci (Basel) 2023; 13:548. [PMID: 37503995 PMCID: PMC10376175 DOI: 10.3390/bs13070548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterised by deficits in social interaction and communication, as well as restricted and stereotyped interests. Due of the high prevalence of gastrointestinal disorders in individuals with ASD, researchers have investigated the gut microbiota as a potential contributor to its aetiology. The relationship between the microbiome, gut, and brain (microbiome-gut-brain axis) has been acknowledged as a key factor in modulating brain function and social behaviour, but its connection to the aetiology of ASD is not well understood. Recently, there has been increasing attention on the relationship between the immune system, gastrointestinal disorders and neurological issues in ASD, particularly in relation to the loss of specific species or a decrease in microbial diversity. It focuses on how gut microbiota dysbiosis can affect gut permeability, immune function and microbiota metabolites in ASD. However, a very complete study suggests that dysbiosis is a consequence of the disease and that it has practically no effect on autistic manifestations. This is a review of the relationship between the immune system, microbial diversity and the microbiome-gut-brain axis in the development of autistic symptoms severity and a proposal of a novel role of gut microbiome in ASD, where dysbiosis is a consequence of ASD-related behaviour and where dysbiosis in turn accentuates the autistic manifestations of the patients via the microbiome-gut-brain axis in a feedback circuit.
Collapse
Affiliation(s)
- Amapola De Sales-Millán
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | - Rina María González-Cervantes
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | | |
Collapse
|
19
|
Luecke SM, Holman DB, Schmidt KN, Gzyl KE, Hurlbert JL, Menezes ACB, Bochantin KA, Kirsch JD, Baumgaertner F, Sedivec KK, Swanson KC, Dahlen CR, Amat S. Whole-body microbiota of newborn calves and their response to prenatal vitamin and mineral supplementation. Front Microbiol 2023; 14:1207601. [PMID: 37434710 PMCID: PMC10331429 DOI: 10.3389/fmicb.2023.1207601] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Early life microbial colonization and factors affecting colonization patterns are gaining interest due to recent developments suggesting that early life microbiome may play a role in Developmental Origins of Health and Disease. In cattle, limited information exists on the early microbial colonization of anatomical sites involved in bovine health beyond the gastrointestinal tract. Here, we investigated 1) the initial microbial colonization of seven different anatomical locations in newborn calves and 2) whether these early life microbial communities and 3) serum cytokine profiles are influenced by prenatal vitamin and mineral (VTM) supplementation. Samples were collected from the hoof, liver, lung, nasal cavity, eye, rumen (tissue and fluid), and vagina of beef calves that were born from dams that either received or did not receive VTM supplementation throughout gestation (n = 7/group). Calves were separated from dams immediately after birth and fed commercial colostrum and milk replacer until euthanasia at 30 h post-initial colostrum feeding. The microbiota of all samples was assessed using 16S rRNA gene sequencing and qPCR. Calf serum was subjected to multiplex quantification of 15 bovine cytokines and chemokines. Our results indicated that the hoof, eye, liver, lung, nasal cavity, and vagina of newborn calves were colonized by site-specific microbiota, whose community structure differed from the ruminal-associated communities (0.64 ≥ R2 ≥ 0.12, p ≤ 0.003). The ruminal fluid microbial community was the only one that differed by treatment (p < 0.01). However, differences (p < 0.05) by treatment were detected in microbial richness (vagina); diversity (ruminal tissue, fluid, and eye); composition at the phylum and genus level (ruminal tissue, fluid, and vagina); and in total bacterial abundance (eye and vagina). From serum cytokines evaluated, concentration of chemokine IP-10 was greater (p = 0.02) in VTM calves compared to control calves. Overall, our results suggest that upon birth, the whole-body of newborn calves are colonized by relatively rich, diverse, and site-specific bacterial communities. Noticeable differences were observed in ruminal, vaginal, and ocular microbiota of newborn calves in response to prenatal VTM supplementation. These findings can derive future hypotheses regarding the initial microbial colonization of different body sites, and on maternal micronutrient consumption as a factor that may influence early life microbial colonization.
Collapse
Affiliation(s)
- Sarah M. Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie N. Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Katherine E. Gzyl
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Jennifer L. Hurlbert
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Ana Clara B. Menezes
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Kerri A. Bochantin
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - James D. Kirsch
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Friederike Baumgaertner
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Kevin K. Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND, United States
| | - Kendall C. Swanson
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Carl R. Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
20
|
de Souza Furtado J, de Almeida Brasiel PG, Luquetti SCPD. Profile of the intestinal microbiota of patients with cystic fibrosis: A systematic review. Clin Nutr ESPEN 2023; 55:400-406. [PMID: 37202074 DOI: 10.1016/j.clnesp.2023.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND & AIMS Cystic fibrosis (CF) is a multisystem disease that can compromise several human body organs. The autosomal recessive genetic disorder is caused by different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, responsible for chloride ion transport across apical membranes of epithelial cells in tissues and bicarbonate secretion. In this study, we provide a systematic review of the profile of the intestinal microbiota of cystic fibrosis individuals. METHODS The review was conducted according to Preferred Items of Reports for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. PubMed/MEDLINE and Scopus databases were searched for relevant articles until Jully 2022. RESULTS Eighteen studies (1304 participants) met the inclusion criteria. The quality and bias was assessed using the Methodological index for non-randomized studies (MINORS) tool, with the majority of the studies indicating medium to high quality. Results showed significant changes in the composition of the intestinal microbiota of the individuals with CF compared with healthy controls, with increased of Enterococcus, Veillonella, and Streptococcus, and decreased of Bifidobacterium, Roseburia, and Alistipes genus. The intestinal bacterial community of CF patients was marked by a reduction in its richness and diversity. CONCLUSION The systematic review suggests a change in the intestinal microbiota of CF individuals, characterized by a reduction in microbial diversity and abundance of some bacterial markers.
Collapse
|
21
|
Wilburn AN, McAlees JW, Haslam DB, Graspeuntner S, Schmudde I, Laumonnier Y, Rupp J, Chougnet CA, Deshmukh H, Zacharias WJ, König P, Lewkowich IP. Delayed Microbial Maturation Durably Exacerbates Th17-driven Asthma in Mice. Am J Respir Cell Mol Biol 2023; 68:498-510. [PMID: 36622830 PMCID: PMC10174167 DOI: 10.1165/rcmb.2022-0367oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Microbial maturation disrupted by early-life dysbiosis has been linked with increased asthma risk and severity; however, the immunological mechanisms underpinning this connection are poorly understood. We sought to understand how delaying microbial maturation drives worsened asthma outcomes later in life and its long-term durability. Drinking water was supplemented with antibiotics on Postnatal Days 10-20. To assess the immediate and long-term effects of delaying microbial maturation on experimental asthma, we initiated house dust mite exposure when bacterial diversity was either at a minimum or had recovered. Airway hyperresponsiveness, histology, pulmonary leukocyte recruitment, flow cytometric analysis of cytokine-producing lymphocytes, and assessment of serum IgG1 (Immunoglobulin G1) and IgE (Immunoglobulin E) concentrations were performed. RT-PCR was used to measure IL-13 (Interleukin 13)-induced gene expression in sequentially sorted mesenchymal, epithelial, endothelial, and leukocyte cell populations from the lung. Delayed microbial maturation increased allergen-driven airway hyperresponsiveness and Th17 frequency compared with allergen-exposed control mice, even when allergen exposure began after bacterial diversity recovered. Blockade of IL-17A (Interleukin 17A) reversed the airway hyperresponsiveness phenotype. In addition, allergen exposure in animals that experienced delayed microbial maturation showed signs of synergistic signaling between IL-13 and IL-17A in the pulmonary mesenchymal compartment. Delaying microbial maturation in neonates promotes the development of more severe asthma by increasing Th17 frequency, even if allergen exposure is initiated weeks after microbial diversity is normalized. In addition, IL-17A-aggravated asthma is associated with increased expression of IL-13-induced genes in mesenchymal, but not epithelial cells.
Collapse
Affiliation(s)
| | | | | | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology
- German Center for Infection Research (DZIF), partner-site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany; and
| | - Inken Schmudde
- Institute of Anatomy, and
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology
- German Center for Infection Research (DZIF), partner-site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany; and
| | - Claire A. Chougnet
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Immunobiology
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - William J. Zacharias
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Peter König
- Institute of Anatomy, and
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Ian P. Lewkowich
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Immunobiology
| |
Collapse
|
22
|
Gildner TE, Cepon-Robins TJ. Rural Embodiment and Community Health: an Anthropological Case Study on Biocultural Determinants of Tropical Disease Infection and Immune System Development in the USA. CURRENT TROPICAL MEDICINE REPORTS 2023; 10:26-39. [PMID: 36714157 PMCID: PMC9868515 DOI: 10.1007/s40475-023-00282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/24/2023]
Abstract
Purpose of Review Biocultural methods are critically important for identifying environmental and socioeconomic factors linked with tropical disease risk and outcomes. For example, embodiment theory refers to the process by which lived experiences impact individual biology. Increased exposure to pathogens, chronic psychosocial stress, and unequal resource access are all outcomes linked with discrimination and poverty. Through lived experiences, race and socioeconomic inequality can literally become embodied-get under the skin and affect physiology-impacting immune responses and contributing to lifelong health disparities. Yet, few studies have investigated tropical disease patterns and associated immune function using embodiment theory to understand lasting physiological impacts associated with living in a high-pathogen environment. Recent Findings Here, we use preliminary data drawn from the Rural Embodiment and Community Health (REACH) study to assess whether pathogen exposure and immune stimulation within a sample of children from the Mississippi Delta are associated with household income. We also test whether immune marker levels-assessed with enzyme-linked immunosorbent assays using dried blood spot samples-vary between the REACH sample and a similarly aged nationally representative NHANES sample. Immune marker levels did not differ significantly between REACH participants living below vs. above the federal poverty line, yet immunoglobulin E levels-a marker of macroparasite infection-were higher among REACH study participants compared to the NHANES sample. Summary These results may suggest community-level pathogenic exposures (i.e., parasitic infections) are embodied by REACH participants with implications for long-term immune function, potentially resulting in immune aspects that differ from nationally representative samples. Supplementary Information The online version contains supplementary material available at 10.1007/s40475-023-00282-z.
Collapse
Affiliation(s)
- Theresa E Gildner
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO USA
| | - Tara J Cepon-Robins
- Department of Anthropology, University of Colorado Colorado Springs, Colorado Springs, CO USA
| |
Collapse
|
23
|
Wang G, Wang X, Ma Y, Cai S, Yang L, Fan Y, Zeng X, Qiao S. Lactobacillus reuteri improves the development and maturation of fecal microbiota in piglets through mother-to-infant microbe and metabolite vertical transmission. MICROBIOME 2022; 10:211. [PMID: 36461096 PMCID: PMC9717520 DOI: 10.1186/s40168-022-01336-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The immature neonatal fecal microbiota substantially impacts the development of gut health and greatly increases the risk of disease. Developing effective strategies to modulate the development of neonatal fecal microbiota has great significance. Herein, we investigated whether the maternal dietary supplementation and oral administration of Lactobacillus reuteri could effectively promote the development and maturation of the fecal microbiome in piglets from birth to weaning. RESULTS Metagenomic analysis of colostrum showed that maternal dietary L. reuteri supplementation influenced the overall microbiota composition, decreased the abundance of the phylum Proteobacteria and increased that of the species Bifidobacterium choerinum. KEGG pathway analysis revealed that maternal L. reuteri supplementation enriched the lysine biosynthesis and glycolysis/gluconeogenesis pathways and downregulated the bacterial invasion of epithelial cells in the colostrum. In addition, L. reuteri supplementation significantly altered the metabolite features and modules in umbilical cord blood serum based on metabolomics. Further, a significant covariation was observed between these differential metabolites and the species in colostrum. Maternal dietary L. reuteri supplementation also significantly influenced the microbiota composition and increased the meconium abundance of beneficial bacteria (such as Romboutsia, Lactobacillus, Blautia, Butyricicoccus, and Ruminococcus), some of which were markedly associated with several differential metabolites in umbilical cord blood serum between two groups. Notably, both the maternal dietary supplementation and oral intake of L. reuteri had strong impacts on the overall microbial composition and maturation of fecal microbiota in piglets during early life, and these effects were dependent on the growth stage. Oral administration of L. reuteri promoted diarrhea resistance in neonates, while maternal supplementation of L. reuteri enhanced the abilities of antioxidants and decreased inflammation. Moreover, the administration of L. reuteri via both methods in combination improved the growth performances of piglets. CONCLUSION Overall, our data demonstrated that L. reuteri had the ability to modulate the composition of fecal microbiota in newborn piglets by influencing the microbial community and functional composition in the colostrum and by altering several key metabolites in the umbilical cord blood serum. Also, both the maternal dietary supplementation and oral administration of L. reuteri effectively promoted the development and maturation of the fecal microbiome in piglets during early life. Both the maternal dietary supplementation and oral administration of L. reuteri in combination optimized the growth performances of piglets. Video Abstract.
Collapse
Affiliation(s)
- Gang Wang
- Present Address: State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
- Present Address: Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Xinyu Wang
- Present Address: State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
- Present Address: Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Yonghang Ma
- Present Address: State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
- Present Address: Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Shuang Cai
- Present Address: State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
- Present Address: Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Lijie Yang
- Present Address: State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
- Present Address: Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Yuxin Fan
- Present Address: State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
- Present Address: Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Xiangfang Zeng
- Present Address: State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
- Present Address: Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Shiyan Qiao
- Present Address: State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
- Present Address: Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
24
|
Fox M, Lee SM, Wiley KS, Lagishetty V, Sandman CA, Jacobs JP, Glynn LM. Development of the infant gut microbiome predicts temperament across the first year of life. Dev Psychopathol 2022; 34:1914-1925. [PMID: 34108055 PMCID: PMC9463039 DOI: 10.1017/s0954579421000456] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perturbations to the gut microbiome are implicated in altered neurodevelopmental trajectories that may shape life span risk for emotion dysregulation and affective disorders. However, the sensitive periods during which the microbiome may influence neurodevelopment remain understudied. We investigated relationships between gut microbiome composition across infancy and temperament at 12 months of age. In 67 infants, we examined if gut microbiome composition assessed at 1-3 weeks, 2, 6, and 12 months of age was associated with temperament at age 12 months. Stool samples were sequenced using the 16S Illumina MiSeq platform. Temperament was assessed using the Infant Behavior Questionnaire-Revised (IBQ-R). Beta diversity at age 1-3 weeks was associated with surgency/extraversion at age 12 months. Bifidobacterium and Lachnospiraceae abundance at 1-3 weeks of age was positively associated with surgency/extraversion at age 12 months. Klebsiella abundance at 1-3 weeks was negatively associated with surgency/extraversion at 12 months. Concurrent composition was associated with negative affectivity at 12 months, including a positive association with Ruminococcus-1 and a negative association with Lactobacillus. Our findings support a relationship between gut microbiome composition and infant temperament. While exploratory due to the small sample size, these results point to early and late infancy as sensitive periods during which the gut microbiome may exert effects on neurodevelopment.
Collapse
Affiliation(s)
- Molly Fox
- Department of Anthropology, UCLA, Los Angeles, CA, USA
- Department of Psychiatry & Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| | - S. Melanie Lee
- Department of Psychiatry & Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Kyle S. Wiley
- Department of Anthropology, UCLA, Los Angeles, CA, USA
- Department of Psychiatry & Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| | - Venu Lagishetty
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Curt A. Sandman
- Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA, USA
| | - Jonathan P. Jacobs
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laura M. Glynn
- Department of Psychology, Chapman University, Orange, CA, USA
| |
Collapse
|
25
|
Zhang X, Mao F, Li Y, Wang J, Wu L, Sun J, Cao F. Effects of a maternal mindfulness intervention targeting prenatal psychological distress on infants' meconium microbiota: A randomized controlled trial. Psychoneuroendocrinology 2022; 145:105913. [PMID: 36081227 DOI: 10.1016/j.psyneuen.2022.105913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Maternal psychological distress could affect gut microbiota of the infant; however, previous studies to date have been observational. OBJECTIVE To investigate the effects of mindfulness-based intervention (MBI) during pregnancy on the meconium microbiota of infants by alleviating maternal psychological distress. DESIGN Randomized controlled trial. METHOD Pregnant women with symptoms of depression or anxiety were randomized to either the intervention group (n = 80), comprising usual perinatal care and six digitally guided self-help MBI sessions, or the control group (n = 80) who underwent usual perinatal care. Meconium was collected within 48 h of birth to evaluate the infant's gut microbiota. The Kruskal-Wallis rank sum test, analysis of similarities, and DESeq2 were performed to explore the effects of the MBI on alpha and beta diversity indices and specific genera. RESULTS There were no significant differences between groups regarding the alpha diversity indices, including Chao1 and Simpson (p = 0.83 and p = 0.58). However, there was a significant between-group difference in the beta diversity index (R=0.02, p = 0.03). Bifidobacterium (log2 fold change=-1.90, FDR=0.002) and Blautia (log2 fold change=-1.45, FDR=0.01) were abundant in the intervention group, whereas Staphylococcus (log2 fold change=1.44, FDR=0.01) was abundant in the control group. CONCLUSIONS MBI aimed at alleviating maternal psychological distress can positively alter the meconium microbiota of infants. However, the mechanisms underlying the effects of maternal mindfulness during pregnancy on infant meconium microbiota require further exploration.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, China
| | - Fangxiang Mao
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, China
| | - Yang Li
- School of Nursing, The University of Texas at Austin, Austin, USA
| | - Juan Wang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, China
| | - Liuliu Wu
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, China
| | - Jiwei Sun
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fenglin Cao
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
26
|
Zhang X, Mao F, Li Y, Wang J, Wu L, Sun J, Cao F. Effects of a maternal mindfulness intervention targeting prenatal psychological distress on infants’ meconium microbiota: A randomized controlled trial. Psychoneuroendocrinology 2022; 145:105913. [DOI: 4.doi: 10.1016/j.psyneuen.2022.105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
|
27
|
Michel C, Blottière HM. Neonatal Programming of Microbiota Composition: A Plausible Idea That Is Not Supported by the Evidence. Front Microbiol 2022; 13:825942. [PMID: 35783422 PMCID: PMC9247513 DOI: 10.3389/fmicb.2022.825942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Underpinning the theory "developmental origins of health and disease" (DOHaD), evidence is accumulating to suggest that the risks of adult disease are in part programmed by exposure to environmental factors during the highly plastic "first 1,000 days of life" period. An elucidation of the mechanisms involved in this programming is challenging as it would help developing new strategies to promote adult health. The intestinal microbiome is proposed as a long-lasting memory of the neonatal environment. This proposal is supported by indisputable findings such as the concomitance of microbiota assembly and the first 1,000-day period, the influence of perinatal conditions on microbiota composition, and the impact of microbiota composition on host physiology, and is based on the widely held but unconfirmed view that the microbiota is long-lastingly shaped early in life. In this review, we examine the plausibility of the gut microbiota being programmed by the neonatal environment and evaluate the evidence for its validity. We highlight that the capacity of the pioneer bacteria to control the implantation of subsequent bacteria is supported by both theoretical principles and statistical associations, but remains to be demonstrated experimentally. In addition, our critical review of the literature on the long-term repercussions of selected neonatal modulations of the gut microbiota indicates that sustained programming of the microbiota composition by neonatal events is unlikely. This does not exclude the microbiota having a role in DOHaD due to a possible interaction with tissue and organ development during the critical windows of neonatal life.
Collapse
Affiliation(s)
| | - Hervé M. Blottière
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, France
| |
Collapse
|
28
|
Wang C, Wei S, Liu B, Wang F, Lu Z, Jin M, Wang Y. Maternal consumption of a fermented diet protects offspring against intestinal inflammation by regulating the gut microbiota. Gut Microbes 2022; 14:2057779. [PMID: 35506256 PMCID: PMC9090288 DOI: 10.1080/19490976.2022.2057779] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The neonatal intestinal tract is immature and can be easily infected by pathogens causing inflammation. Maternal diet manipulation is a promising nutritional strategy to enhance the gut health of offspring. A fermented diet is a gut microbiota targeting diet containing live probiotics and their metabolites, which benefit the gut and overall health host. However, it remains unclear how a maternal fermented diet (MFD) affects neonatal intestinal inflammation. Here, in vivo and in vitro models together with multi-omics analysis were applied to investigate the impacts and the underlying mechanism through which an MFD prevents from gut inflammation in neonates. An MFD remarkably improved the performance of both sows and piglets and significantly altered the gut microbiome and milk metabolome of sows. In addition, the MFD significantly accelerated the maturation of the gut microbiota of neonates and increased the abundance of gut Lactobacillus and the microbial functions of amino acid-related enzymes and glucose metabolism on the weaning day. Notably, the MFD reduced susceptibility to colonic inflammation in offspring. The fecal microbiota of sows was then transplanted into mouse dams and it was found that the mouse dams and pups in the MFD group alleviated the LPS-induced decrease in gut Lactobacillus abundance and barrier injury. Milk L-glutamine (GLN) and gut Lactobacillus reuteri (LR) were found as two of the main MFD-induced sow effectors that contributed to the gut health of piglets. The properties of LR and GLN in modulating gut microbiota and alleviating colonic inflammation by inhibiting the phosphorylation of p38 and JNK and activation of Caspase 3 were further verified. These findings provide the first data revealing that an MFD drives neonate gut microbiota development and ameliorates the colonic inflammation by regulating the gut microbiota. This fundamental evidence might provide references for modulating maternal nutrition to enhance early-life gut health and prevent gut inflammation.
Collapse
Affiliation(s)
- Cheng Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Siyu Wei
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Bojing Liu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Fengqin Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Zeqing Lu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Mingliang Jin
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Yizhen Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China,CONTACT Yizhen Wang National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou310058, PR China
| |
Collapse
|
29
|
Notarbartolo V, Giuffrè M, Montante C, Corsello G, Carta M. Composition of Human Breast Milk Microbiota and Its Role in Children's Health. Pediatr Gastroenterol Hepatol Nutr 2022; 25:194-210. [PMID: 35611376 PMCID: PMC9110848 DOI: 10.5223/pghn.2022.25.3.194] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/02/2022] [Indexed: 12/26/2022] Open
Abstract
Human milk contains a number of nutritional and bioactive molecules including microorganisms that constitute the so-called "Human Milk Microbiota (HMM)". Recent studies have shown that not only bacterial but also viral, fungal, and archaeal components are present in the HMM. Previous research has established, a "core" microbiome, consisting of Firmicutes (i.e., Streptococcus, Staphylococcus), Proteobacteria (i.e., Serratia, Pseudomonas, Ralstonia, Sphingomonas, Bradyrhizobium), and Actinobacteria (i.e., Propionibacterium, Corynebacterium). This review aims to summarize the main characteristics of HMM and the role it plays in shaping a child's health. We reviewed the most recent literature on the topic (2019-2021), using the PubMed database. The main sources of HMM origin were identified as the retrograde flow and the entero-mammary pathway. Several factors can influence its composition, such as maternal body mass index and diet, use of antibiotics, time and type of delivery, and mode of breastfeeding. The COVID-19 pandemic, by altering the mother-infant dyad and modifying many of our previous habits, has emerged as a new risk factor for the modification of HMM. HMM is an important contributor to gastrointestinal colonization in children and therefore, it is fundamental to avoid any form of perturbation in the HMM that can alter the microbial equilibrium, especially in the first 100 days of life. Microbial dysbiosis can be a trigger point for the development of necrotizing enterocolitis, especially in preterm infants, and for onset of chronic diseases, such as asthma and obesity, later in life.
Collapse
Affiliation(s)
- Veronica Notarbartolo
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Claudio Montante
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Maurizio Carta
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| |
Collapse
|
30
|
Cheema AS, Trevenen ML, Turlach BA, Furst AJ, Roman AS, Bode L, Gridneva Z, Lai CT, Stinson LF, Payne MS, Geddes DT. Exclusively Breastfed Infant Microbiota Develops over Time and Is Associated with Human Milk Oligosaccharide Intakes. Int J Mol Sci 2022; 23:2804. [PMID: 35269946 PMCID: PMC8910998 DOI: 10.3390/ijms23052804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Temporal development of maternal and infant microbiomes during early life impacts short- and long-term infant health. This study aimed to characterize bacterial dynamics within maternal faecal, human milk (HM), infant oral, and infant faecal samples during the exclusive breastfeeding period and to document associations between human milk oligosaccharide (HMO) intakes and infant oral and faecal bacterial profiles. Maternal and infant samples (n = 10) were collected at 2−5, 30, 60, 90 and 120 days postpartum and the full-length 16S ribosomal RNA (rRNA) gene was sequenced. Nineteen HMOs were quantitated using high-performance liquid chromatography. Bacterial profiles were unique to each sample type and changed significantly over time, with a large degree of intra- and inter-individual variation in all sample types. Beta diversity was stable over time within infant faecal, maternal faecal and HM samples, however, the infant oral microbiota at day 2−5 significantly differed from all other time points (all p < 0.02). HMO concentrations and intakes significantly differed over time, and HMO intakes showed differential associations with taxa observed in infant oral and faecal samples. The direct clinical relevance of this, however, is unknown. Regardless, future studies should account for intakes of HMOs when modelling the impact of HM on infant growth, as it may have implications for infant microbiota development.
Collapse
Affiliation(s)
- Ali Sadiq Cheema
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Michelle Louise Trevenen
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Berwin Ashoka Turlach
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Annalee June Furst
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Sophia Roman
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Lisa Faye Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Matthew Scott Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia;
- Women and Infants Research Foundation, Subiaco, WA 6008, Australia
| | - Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| |
Collapse
|
31
|
Martins Garcia T, van Roest M, Vermeulen JLM, Meisner S, Koster J, Wildenberg ME, van Elburg RM, Muncan V, Renes IB. Altered Gut Structure and Anti-Bacterial Defense in Adult Mice Treated with Antibiotics during Early Life. Antibiotics (Basel) 2022; 11:antibiotics11020267. [PMID: 35203869 PMCID: PMC8868095 DOI: 10.3390/antibiotics11020267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
The association between prolonged antibiotic (AB) use in neonates and increased incidence of later life diseases is not yet fully understood. AB treatment in early life alters intestinal epithelial cell composition, functioning, and maturation, which could be the basis for later life health effects. Here, we investigated whether AB-induced changes in the neonatal gut persisted up to adulthood and whether early life AB had additional long-term consequences for gut functioning. Mice received AB orally from postnatal day 10 to 20. Intestinal morphology, permeability, and gene and protein expression at 8 weeks were analyzed. Our data showed that the majority of the early life AB-induced gut effects did not persist into adulthood, yet early life AB did impact later life gut functioning. Specifically, the proximal small intestine (SI) of adult mice treated with AB in early life was characterized by hyperproliferative crypts, increased number of Paneth cells, and alterations in enteroendocrine cell-specific gene expression profiles. The distal SI of adult mice displayed a reduced expression of antibacterial defense markers. Together, our results suggest that early life AB leads to structural and physiological changes in the adult gut, which may contribute to disease development when homeostatic conditions are under challenge.
Collapse
Affiliation(s)
- Tânia Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Manon van Roest
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Jacqueline L. M. Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Manon E. Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Ruurd M. van Elburg
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.M.v.E.); (I.B.R.)
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
- Correspondence:
| | - Ingrid B. Renes
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.M.v.E.); (I.B.R.)
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
32
|
Reid G, Dhir R, Bron PA. Fixing Functional GI Disorders Using Microbes: Easier Said Than Done. Front Endocrinol (Lausanne) 2022; 13:804179. [PMID: 35360061 PMCID: PMC8963371 DOI: 10.3389/fendo.2022.804179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
- Department of Surgery, Western University, London, ON, Canada
- *Correspondence: Gregor Reid,
| | | | | |
Collapse
|
33
|
Laue HE, Coker MO, Madan JC. The Developing Microbiome From Birth to 3 Years: The Gut-Brain Axis and Neurodevelopmental Outcomes. Front Pediatr 2022; 10:815885. [PMID: 35321011 PMCID: PMC8936143 DOI: 10.3389/fped.2022.815885] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
The volume and breadth of research on the role of the microbiome in neurodevelopmental and neuropsychiatric disorders has expanded greatly over the last decade, opening doors to new models of mechanisms of the gut-brain axis and therapeutic interventions to reduce the burden of these outcomes. Studies have highlighted the window of birth to 3 years as an especially sensitive window when interventions may be the most effective. Harnessing the powerful gut-brain axis during this critical developmental window clarifies important investigations into the microbe-human connection and the developing brain, affording opportunities to prevent rather than treat neurodevelopmental disorders and neuropsychiatric illness. In this review, we present an overview of the developing intestinal microbiome in the critical window of birth to age 3; and its prospective relationship with neurodevelopment, with particular emphasis on immunological mechanisms. Next, the role of the microbiome in neurobehavioral outcomes (such as autism, anxiety, and attention-deficit hyperactivity disorder) as well as cognitive development are described. In these sections, we highlight the importance of pairing mechanistic studies in murine models with large scale epidemiological studies that aim to clarify the typical health promoting microbiome in early life across varied populations in comparison to dysbiosis. The microbiome is an important focus in human studies because it is so readily alterable with simple interventions, and we briefly outline what is known about microbiome targeted interventions in neurodevelopmental outcomes. More novel examinations of known environmental chemicals that adversely impact neurodevelopmental outcomes and the potential role of the microbiome as a mediator or modifier are discussed. Finally, we look to the future and emphasize the need for additional research to identify populations that are sensitive to alterations in their gut microbiome and clarify how interventions might correct and optimize neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Modupe O Coker
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Rutgers School of Dental Medicine, The State University of New Jersey, Newark, NJ, United States
| | - Juliette C Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Department of Pediatrics and Psychiatry, Children's Hospital at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
34
|
Short- and long-term effects of amoxicillin/clavulanic acid or doxycycline on the gastrointestinal microbiome of growing cats. PLoS One 2021; 16:e0253031. [PMID: 34910719 PMCID: PMC8673677 DOI: 10.1371/journal.pone.0253031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Antibiotic treatment in early life influences gastrointestinal (GI) microbial composition and function. In humans, the resultant intestinal dysbiosis is associated with an increased risk for certain diseases later in life. The objective of this study was to determine the temporal effects of antibiotic treatment on the GI microbiome of young cats. Fecal samples were collected from cats randomly allocated to receive either amoxicillin/clavulanic acid (20 mg/kg q12h) for 20 days (AMC group; 15 cats) or doxycycline (10 mg/kg q24h) for 28 days (DOX group;15 cats) as part of the standard treatment of upper respiratory tract infection. In addition, feces were collected from healthy control cats (CON group;15 cats). All cats were approximately two months of age at enrolment. Samples were collected on days 0 (baseline), 20 or 28 (AMC and DOX, respectively; last day of treatment), 60, 120, and 300. DNA was extracted and sequencing of the 16S rRNA gene and qPCR assays were performed. Fecal microbial composition was different on the last day of treatment for AMC cats, and 1 month after the end of antibiotic treatment for DOX cats, compared to CON cats. Species richness was significantly greater in DOX cats compared to CON cats on the last day of treatment. Abundance of Enterobacteriales was increased, and that of Erysipelotrichi was decreased in cats of the AMC group on the last day of treatment compared to CON cats. The abundance of the phylum Proteobacteria was increased in cats of the DOX group on days 60 and 120 compared to cats of the CON group. Only minor differences in abundances between the treatment groups and the control group were present on day 300. Both antibiotics appear to delay the developmental progression of the microbiome, and this effect is more profound during treatment with amoxicillin/clavulanic acid and one month after treatment with doxycycline. Future studies are required to determine if these changes influence microbiome function and whether they have possible effects on disease susceptibility in cats.
Collapse
|
35
|
Short- and Long-Term Implications of Human Milk Microbiota on Maternal and Child Health. Int J Mol Sci 2021; 22:ijms222111866. [PMID: 34769296 PMCID: PMC8584477 DOI: 10.3390/ijms222111866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Human milk (HM) is considered the most complete food for infants as its nutritional composition is specifically designed to meet infant nutritional requirements during early life. HM also provides numerous biologically active components, such as polyunsaturated fatty acids, milk fat globules, IgA, gangliosides or polyamines, among others; in addition, HM has a “bifidogenic effect”, a prebiotic effect, as a result of the low concentration of proteins and phosphates, as well as the presence of lactoferrin, lactose, nucleotides and oligosaccharides. Recently, has been a growing interest in HM as a potential source of probiotics and commensal bacteria to the infant gut, which might, in turn, influence both the gut colonization and maturation of infant immune system. Our review aims to address practical approaches to the detection of microbial communities in human breast milk samples, delving into their origin, composition and functions. Furthermore, we will summarize the current knowledge of how HM microbiota dysbiosis acts as a short- and long-term predictor of maternal and infant health. Finally, we also provide a critical view of the role of breast milk-related bacteria as a novel probiotic strategy in the prevention and treatment of maternal and offspring diseases.
Collapse
|
36
|
Human Milk Oligosaccharide-Stimulated Bifidobacterium Species Contribute to Prevent Later Respiratory Tract Infections. Microorganisms 2021; 9:microorganisms9091939. [PMID: 34576834 PMCID: PMC8465161 DOI: 10.3390/microorganisms9091939] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Human milk oligosaccharides (HMOs) may support immune protection, partly via their action on the early-life gut microbiota. Exploratory findings of a randomized placebo-controlled trial associated 2′fucosyllactose (2′FL) and lacto-N-neotetraose (LNnT) formula feeding with reduced risk for reported bronchitis and lower respiratory tract illnesses (LRTI), as well as changes in gut microbiota composition. We sought to identify putative gut microbial mechanisms linked with these clinical observations. (2) Methods: We used stool microbiota composition, metabolites including organic acids and gut health markers in several machine-learning-based classification tools related prospectively to experiencing reported bronchitis or LRTI, as compared to no reported respiratory illness. We performed preclinical epithelial barrier function modelling to add mechanistic insight to these clinical observations. (3) Results: Among the main features discriminant for infants who did not experience any reported bronchitis (n = 80/106) or LRTI (n = 70/103) were the 2-HMO formula containing 2′FL and LNnT, higher acetate, fucosylated glycans and Bifidobacterium, as well as lower succinate, butyrate, propionate and 5-aminovalerate, along with Carnobacteriaceae members and Escherichia. Acetate correlated with several Bifidobacterium species. By univariate analysis, infants experiencing no bronchitis or LRTI, compared with those who did, showed higher acetate (p < 0.007) and B. longum subsp. infantis (p ≤ 0.03). In vitro experiments demonstrate that 2′FL, LNnT and lacto-N-tetraose (LNT) stimulated B. longum subsp. infantis (ATCC15697) metabolic activity. Metabolites in spent culture media, primarily due to acetate, supported epithelial barrier protection. (4) Conclusions: An early-life gut ecology characterized by Bifidobacterium-species-driven metabolic changes partly explains the observed clinical outcomes of reduced risk for bronchitis and LRTI in infants fed a formula with HMOs. (Trial registry number NCT01715246.).
Collapse
|
37
|
Geddes DT, Gridneva Z, Perrella SL, Mitoulas LR, Kent JC, Stinson LF, Lai CT, Sakalidis V, Twigger AJ, Hartmann PE. 25 Years of Research in Human Lactation: From Discovery to Translation. Nutrients 2021; 13:3071. [PMID: 34578947 PMCID: PMC8465002 DOI: 10.3390/nu13093071] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Researchers have recently called for human lactation research to be conceptualized as a biological framework where maternal and infant factors impacting human milk, in terms of composition, volume and energy content are studied along with relationships to infant growth, development and health. This approach allows for the development of evidence-based interventions that are more likely to support breastfeeding and lactation in pursuit of global breastfeeding goals. Here we summarize the seminal findings of our research programme using a biological systems approach traversing breast anatomy, milk secretion, physiology of milk removal with respect to breastfeeding and expression, milk composition and infant intake, and infant gastric emptying, culminating in the exploration of relationships with infant growth, development of body composition, and health. This approach has allowed the translation of the findings with respect to education, and clinical practice. It also sets a foundation for improved study design for future investigations in human lactation.
Collapse
Affiliation(s)
- Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Sharon Lisa Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Leon Robert Mitoulas
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
- Medela, AG, Lättichstrasse 4b, 6340 Baar, Switzerland
| | - Jacqueline Coral Kent
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Lisa Faye Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Vanessa Sakalidis
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | | | - Peter Edwin Hartmann
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| |
Collapse
|
38
|
Gao R, Tian S, Wang J, Zhu W. Galacto-oligosaccharides improve barrier function and relieve colonic inflammation via modulating mucosa-associated microbiota composition in lipopolysaccharides-challenged piglets. J Anim Sci Biotechnol 2021; 12:92. [PMID: 34376253 PMCID: PMC8356462 DOI: 10.1186/s40104-021-00612-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Galacto-oligosaccharides (GOS) have been shown to modulate the intestinal microbiota of suckling piglets to exert beneficial effects on intestinal function. However, the modulation of intestinal microbiota and intestinal function by GOS in intestinal inflammation injury models has rarely been reported. In this study, we investigated the effects of GOS on the colonic mucosal microbiota composition, barrier function and inflammatory response of lipopolysaccharides (LPS)-challenged suckling piglets. METHODS A total of 18 newborn suckling piglets were divided into three groups, the CON group, the LPS-CON group and the LPS-GOS group. Piglets in the LPS-GOS group were orally fed with 1 g/kg body weight of GOS solution every day. On the d 14, piglets in the LPS-CON and LPS-GOS group were challenged intraperitoneally with LPS solution. All piglets were slaughtered 2 h after intraperitoneal injection and sampled. RESULTS We found that the colonic mucosa of LPS-challenged piglets was significantly injured and shedding, while the colonic mucosa of the LPS-GOS group piglets maintained its structure. Moreover, GOS significantly reduced the concentration of malondialdehyde (MDA) and the activity of reactive oxygen species (ROS) in the LPS-challenged suckling piglets, and significantly increased the activity of total antioxidant capacity (T-AOC). GOS significantly increased the relative abundance of norank_f__Muribaculaceae and Romboutsia, and significantly decreased the relative abundance of Alloprevotella, Campylobacter and Helicobacter in the colonic mucosa of LPS-challenged suckling piglets. In addition, GOS increased the concentrations of acetate, butyrate and total short chain fatty acids (SCFAs) in the colonic digesta of LPS-challenged suckling piglets. GOS significantly reduced the concentrations of interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and cluster of differentiation 14 (CD14), and the relative mRNA expression of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) in the LPS-challenged suckling piglets. In addition, GOS significantly reduced the relative mRNA expression of mucin2 (MUC2), and significantly increased the protein expression of Claudin-1 and zonula occluden-1 (ZO-1) in LPS-challenged suckling piglets. CONCLUSIONS These results suggested that GOS can modulate the colonic mucosa-associated microbiota composition and improve the intestinal function of LPS-challenged suckling piglets.
Collapse
Affiliation(s)
- Ren Gao
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shiyi Tian
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
39
|
Jian C, Carpén N, Helve O, de Vos WM, Korpela K, Salonen A. Early-life gut microbiota and its connection to metabolic health in children: Perspective on ecological drivers and need for quantitative approach. EBioMedicine 2021; 69:103475. [PMID: 34256346 PMCID: PMC8324810 DOI: 10.1016/j.ebiom.2021.103475] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
The colonisation and development of the gut microbiota has been implicated in paediatric metabolic disorders via its powerful effect on host metabolic and immune homeostasis. Here we summarise the evidence from human studies on the early gut microbiota and paediatric overweight and obesity. Manipulation of the early gut microbiota may represent a promising target for countering the burgeoning metabolic disorders in the paediatric population, provided the assembly patterns of microbiota and their health consequences can be decoded. Therefore, in this review, we pay particular attention to the important ecological drivers affecting the community dynamics of the early gut microbiota. We then discuss the knowledge gaps in commonly studied exposures linking the gut microbiota to metabolic disorders, especially regarding maternal factors and antibiotic use. This review also attempts to give directions for future studies aiming to identify predictive and corrective measures for paediatric metabolic disorders based on the gut microbiota. Gut microbiota; Metabolism; Paediatric overweight and obesity; Ecological driver; Dynamics; Infants.
Collapse
Affiliation(s)
- Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Noora Carpén
- Children's Hospital, Pediatric Research Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Otto Helve
- Children's Hospital, Pediatric Research Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland; Finnish Institute for Health and Welfare, Department of Health Security, Helsinki, Finland
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
40
|
Lackey KA, Fehrenkamp BD, Pace RM, Williams JE, Meehan CL, McGuire MA, McGuire MK. Breastfeeding Beyond 12 Months: Is There Evidence for Health Impacts? Annu Rev Nutr 2021; 41:283-308. [PMID: 34115518 DOI: 10.1146/annurev-nutr-043020-011242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Because breastfeeding provides optimal nutrition and other benefits for infants (e.g., lower risk of infectious disease) and benefits for mothers (e.g., less postpartum bleeding), health organizations recommend that healthy infants be exclusively breastfed for 4 to 6 months in the United States and 6 months internationally. Recommendations related to how long breastfeeding should continue, however, are inconsistent. The objective of this article is to review the literature related to evidence for benefits of breastfeeding beyond 1 year for mothers and infants. In summary, human milk represents a good source of nutrients and immune components beyond 1 year. Some studies point toward lower infant mortality in undernourished children breastfed for >1 year, and prolonged breastfeeding increases interbirth intervals. Data on other outcomes (e.g., growth, diarrhea, obesity, and maternal weight loss) are inconsistent, often lacking sufficient control for confounding variables. There is a substantial need for rigorous, prospective, mixed-methods, cross-cultural research on this topic. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kimberly A Lackey
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho 83844, USA;
| | - Bethaney D Fehrenkamp
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho 83844, USA;
| | - Ryan M Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho 83844, USA;
| | - Janet E Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho 83844, USA
| | - Courtney L Meehan
- Department of Anthropology, Washington State University, Pullman, Washington 99164, USA
| | - Mark A McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho 83844, USA
| | - Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho 83844, USA;
| |
Collapse
|
41
|
Perrella S, Gridneva Z, Lai CT, Stinson L, George A, Bilston-John S, Geddes D. Human milk composition promotes optimal infant growth, development and health. Semin Perinatol 2021; 45:151380. [PMID: 33431112 DOI: 10.1016/j.semperi.2020.151380] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human milk is a living dynamic fluid that promotes optimal nutrition and development of the infant and impacts health across the lifespan. This review reports on the diverse range of nutrients, immune protection factors, hormones, microbes and metabolites in human milk and their impacts on infant nutrition and health. While many of these components are stable across lactation and similar between women, some vary over time, and in response to maternal and infant health status, maternal diet and geographic location. Human milk may be considered as personalized nutrition, with many components working synergistically to stimulate and support the infant's immature immune system, while enhancing appropriate development, growth and body composition.
Collapse
Affiliation(s)
- Sharon Perrella
- School of Molecular Science, The University of Western Australia, M310, 35 Stirling Highway, Crawley Western Australia 6009, Australia.
| | - Zoya Gridneva
- School of Molecular Science, The University of Western Australia, M310, 35 Stirling Highway, Crawley Western Australia 6009, Australia
| | - Ching Tat Lai
- School of Molecular Science, The University of Western Australia, M310, 35 Stirling Highway, Crawley Western Australia 6009, Australia
| | - Lisa Stinson
- School of Molecular Science, The University of Western Australia, M310, 35 Stirling Highway, Crawley Western Australia 6009, Australia
| | - Alexandra George
- School of Molecular Science, The University of Western Australia, M310, 35 Stirling Highway, Crawley Western Australia 6009, Australia
| | - Sabrina Bilston-John
- School of Molecular Science, The University of Western Australia, M310, 35 Stirling Highway, Crawley Western Australia 6009, Australia
| | - Donna Geddes
- School of Molecular Science, The University of Western Australia, M310, 35 Stirling Highway, Crawley Western Australia 6009, Australia
| |
Collapse
|
42
|
Manus MB, Kuthyar S, Perroni-Marañón AG, de la Mora AN, Amato KR. Comparing different sample collection and storage methods for field-based skin microbiome research. Am J Hum Biol 2021; 34:e23584. [PMID: 33644952 DOI: 10.1002/ajhb.23584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The skin, as well as its microbial communities, serves as the primary interface between the human body and the surrounding environment. In order to implement the skin microbiome into human biology research, there is a need to explore the effects of different sample collection and storage methodologies, including the feasibility of conducting skin microbiome studies in field settings. METHODS We collected 99 skin microbiome samples from nine infants living in Veracruz, Mexico using a dual-tipped "dry" swab on the right armpit, palm, and forehead and a "wet" swab (0.15 M NaCl and 0.1% Tween 20) on the same body parts on the left side of the body. One swab from each collection method was stored in 95% ethanol while the other was frozen at -20°C. 16S rRNA amplicon sequencing generated data on bacterial diversity and community composition, which were analyzed using PERMANOVA, linear mixed effects models, and an algorithm-based classifier. RESULTS Treatment (wet_ethanol, wet_freezer, dry_ethanol, and dry_freezer) had an effect (~10% explanatory power) on the bacterial community diversity and composition of skin samples, although body site exhibited a stronger effect (~20% explanatory power). Within treatments, the collection method (wet vs. dry) affected measures of bacterial diversity to a greater degree than did the storage method (ethanol vs. freezer). CONCLUSIONS Our study provides novel information on skin microbiome sample collection and storage methods, suggesting that ethanol storage is suitable for research in resource-limited settings. Our results highlight the need for future study design to account for interbody site microbial variation.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Sahana Kuthyar
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | | | | | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
43
|
Season-of-birth phenomenon in health and longevity: epidemiologic evidence and mechanistic considerations. J Dev Orig Health Dis 2020; 12:849-858. [PMID: 33298226 DOI: 10.1017/s2040174420001221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In many human populations, especially those living in regions with pronounced climatic differences between seasons, the most sensitive (prenatal and neonatal) developmental stages occur in contrasting conditions depending on the season of conception. The difference in prenatal and postnatal environments may be a factor significantly affecting human development and risk for later life chronic diseases. Factors potentially contributing to this kind of developmental programming include nutrition, outdoor temperature, infectious exposures, duration of sunlight, vitamin D synthesis, etc. Month of birth is commonly used as a proxy for exposures which vary seasonally around the perinatal period. Season-of-birth patterns have been identified for many chronic health outcomes. In this review, the research evidence for the seasonality of birth in adult-life disorders is provided and potential mechanisms underlying the phenomenon of early life seasonal programming of chronic disease and longevity are discussed.
Collapse
|
44
|
Koya S, Babu GR, R D, Iyer V, Yamuna A, Lobo E, S P, Kinra S, Murthy GVS. Determinants of Breastfeeding Practices and Its Association With Infant Anthropometry: Results From a Prospective Cohort Study in South India. Front Public Health 2020; 8:492596. [PMID: 33102418 PMCID: PMC7116249 DOI: 10.3389/fpubh.2020.492596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Despite national efforts for promoting exclusive breastfeeding (EBF) during the first 6 months of the infants' life, breastfeeding rates are low in India. Evidence on the interference of supplementary food on optimal nourishment and growth of the infant has also been well-established. Our study was undertaken to assess the effect of breastfeeding practices on infant anthropometry and determine the various factors affecting breastfeeding practices. Methods A prospective cohort study - Maternal antecedents of adiposity and studying the transgenerational role of hyperglycemia and insulin (MAASTHI) was conducted at a tertiary care public hospital in Bengaluru, South India. From the consenting women, data such as obstetric history, infant feeding practices, anthropometry of mother and child, the psychosocial status of the women using the Edinburgh Postnatal Depression Scale (EPDS), was collected at baseline and subsequent follow-up: post-delivery and 14 weeks after birth. In this study, we analyzed data collected from April 2016 to April 2018, with descriptive statistics presented in mean and standard deviation, and logistic regression adjusting for confounders. Results Among the 240 women enrolled in the study, 33% (n= 80) were using supplementary food for their infants at 14 weeks of infants age. Infants who received supplementary feeding at age 14 weeks had nearly 2.5 times higher odds of being wasted (OR: 2.449, p-value: 0.002) as compared to exclusively breastfed infants. Conclusion Infants between 14 to 16 weeks of age who received supplementary feeding were at risk of wasting as compared to exclusively breastfed infants. Despite strong evidence in support of the benefits of exclusive breastfeeding, awareness in urban women in India is low. Increased focus on promoting exclusive breastfeeding is necessary to ensure proper nutritional intake and healthy growth of infants.
Collapse
Affiliation(s)
- Srinidhi Koya
- DTA3 MSCA Research Fellow, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, United Kingdom
| | - Giridhara R. Babu
- Public Health Foundation of India and Wellcome Trust-DBT India Alliance Research Fellow in Public Health, New Delhi, India
| | - Deepa R
- Research Fellows, Indian Institute of Public Health Bangalore, Public Health Foundation of India, New Delhi, India
| | - Veena Iyer
- Indian Institute of Public Health Gandhinagar, Public Health Foundation of India, New Delhi, India
| | - A. Yamuna
- Indian Institute of Public Health Bangalore, Public Health Foundation of India, New Delhi, India
| | - Eunice Lobo
- Indian Institute of Public Health Bangalore, Public Health Foundation of India, New Delhi, India
| | - Prafulla S
- Research Fellows, Indian Institute of Public Health Bangalore, Public Health Foundation of India, New Delhi, India
| | - Sanjay Kinra
- London School of Hygiene & Tropical Medicine & University College London Hospital, London, United Kingdom
| | - G. V. S. Murthy
- Public Health Foundation of India, and International Center for Eye Health, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
45
|
Oschwald A, Petry P, Kierdorf K, Erny D. CNS Macrophages and Infant Infections. Front Immunol 2020; 11:2123. [PMID: 33072074 PMCID: PMC7531029 DOI: 10.3389/fimmu.2020.02123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) harbors its own immune system composed of microglia in the parenchyma and CNS-associated macrophages (CAMs) in the perivascular space, leptomeninges, dura mater, and choroid plexus. Recent advances in understanding the CNS resident immune cells gave new insights into development, maturation and function of its immune guard. Microglia and CAMs undergo essential steps of differentiation and maturation triggered by environmental factors as well as intrinsic transcriptional programs throughout embryonic and postnatal development. These shaping steps allow the macrophages to adapt to their specific physiological function as first line of defense of the CNS and its interfaces. During infancy, the CNS might be targeted by a plethora of different pathogens which can cause severe tissue damage with potentially long reaching defects. Therefore, an efficient immune response of infant CNS macrophages is required even at these early stages to clear the infections but may also lead to detrimental consequences for the developing CNS. Here, we highlight the recent knowledge of the infant CNS immune system during embryonic and postnatal infections and the consequences for the developing CNS.
Collapse
Affiliation(s)
- Alexander Oschwald
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philippe Petry
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,CIBBS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
46
|
Structure and Function of Bovine Whey Derived Oligosaccharides Showing Synbiotic Epithelial Barrier Protective Properties. Nutrients 2020; 12:nu12072007. [PMID: 32640639 PMCID: PMC7400958 DOI: 10.3390/nu12072007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/15/2023] Open
Abstract
Commensal gut microbiota and probiotics have numerous effects on the host’s metabolic and protective systems, which occur primarily through the intestinal epithelial cell interface. Prebiotics, like galacto-oligosaccharides (GOS) are widely used to modulate their function and abundance. However, important structure–function relations may exist, requiring a detailed structural characterization. Here, we detailed the structural characterization of bovine whey derived oligosaccharide preparations enriched with GOS or not, dubbed GOS-enriched milk oligosaccharides (GMOS) or MOS, respectively. We explore GMOS’s and MOS’s potential to improve intestinal epithelial barrier function, assessed in a model based on barrier disruptive effects of the Clostridioides difficile toxin A. GMOS and MOS contain mainly GOS species composed of β1-6- and β1-3-linked galactoses, and 3′- and 6′-sialyllactose. Both GMOS and MOS, combined with lactobacilli, like Lactobacillus rhamnosus (LPR, NCC4007), gave synergistic epithelial barrier protection, while no such effect was observed with Bifidobacterium longum (BL NCC3001), Escherichia coli (Nissle) or fructo-oligosaccharides. Mechanistically, for barrier protection with MOS, (i) viable LPR was required, (ii) acidification of growth medium was not enough, (iii) LPR did not directly neutralize toxin A, and (iv) physical proximity of LPR with the intestinal epithelial cells was necessary. This is the first study, highlighting the importance of structure–function specificity and the necessity of the simultaneous presence of prebiotic, probiotic and host cell interactions required for a biological effect.
Collapse
|
47
|
Editorial: Outcomes from the 2018 Australia and New Zealand Developmental Origins of Health and Disease (ANZ DOHaD) scientific meeting. J Dev Orig Health Dis 2020; 11:199-200. [PMID: 32430092 DOI: 10.1017/s2040174420000288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|