1
|
Lei K, Sheng Y, Li Y, Zhou Z, Zhu X, Huang K. Dynamic Detection of the E3-PROTAC-Target Protein Ternary Complex In Vitro and In Vivo via Bimolecular Fluorescence Complementation. ACS OMEGA 2024; 9:49739-49748. [PMID: 39713624 PMCID: PMC11656243 DOI: 10.1021/acsomega.4c08186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have played an important role in the development of protein-targeted degradation drugs. However, effective tools are urgently required for the further development and validation of PROTACs. We developed a high-potency reporter (AKT-PROTAC-Reporter; APR) for PROTACs that specifically targets AKT. The APR successfully detected the status and levels of the AKT-PROTAC-CRBN ternary complex in vivo and in vitro. The APR is based on a bimolecular fluorescence complementation system, where EGFP and luciferase were used as reporter signals for in vitro and in vivo experiments, respectively, with remarkable success. The absence of E3 ligase ubiquitin recruitment activity in the APR can significantly improve the reporting performance of the APR; however, this results in difficulties in the detection of the degradation efficiency of PROTAC target proteins. Our results show that the APR can sensitively, quickly, and effectively detect the presence of terpolymers. Furthermore, the APR can determine the specificity and degradation efficiency of the PROTAC via a fluorescence signal or bioluminescence signal intensity and can efficiently screen PROTACs for a certain target protein.
Collapse
Affiliation(s)
- Kunjian Lei
- Department
of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Institute
of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Yilei Sheng
- Department
of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Institute
of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Yishuang Li
- Department
of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Institute
of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Zhihong Zhou
- Department
of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Institute
of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Xingen Zhu
- Department
of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Institute
of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Kai Huang
- Department
of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Institute
of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| |
Collapse
|
2
|
Kageler L, Perr J, Flynn RA. Tools to investigate the cell surface: Proximity as a central concept in glycoRNA biology. Cell Chem Biol 2024; 31:1132-1144. [PMID: 38772372 PMCID: PMC11193615 DOI: 10.1016/j.chembiol.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Proximity is a fundamental concept in chemistry and biology, referring to the convergence of molecules to facilitate new molecular interactions or reactions. Hybrid biopolymers like glycosylphosphatidylinositol (GPI)-anchored proteins, ubiquitinated proteins, glycosylated RNAs (glycoRNAs), and RNAylated proteins exemplify this by covalent bonding of moieties that are often orthogonally active. Hybrid molecules like glycoRNAs are localized to new physical spaces, generating new interfaces for biological functions. To fully investigate the compositional and spatial features of molecules like glycoRNAs, flexible genetic and chemical tools that encompass different encoding and targeting biopolymers are required. Here we discuss concepts of molecular proximity and explore newer proximity labeling technologies that facilitate applications in RNA biology, cell surface biology, and the interface therein with a particular focus on glycoRNA biology. We review the advantages and disadvantages of methods pertaining to cell surface RNA identification and provide insights into the vast opportunities for method development in this area.
Collapse
Affiliation(s)
- Lauren Kageler
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan Perr
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Liu R, Li L, Chen S, Yang Z, Kochovski Z, Mei S, Lu Y, Zhang L, Chen G. Evolution of Protein Assemblies Driven by the Switching of Interplay Mode. ACS NANO 2023; 17:2245-2256. [PMID: 36648413 DOI: 10.1021/acsnano.2c08583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A protein assembly with the ability to switch interplay modes of multiple driving forces has been achieved. Although biomolecular systems driven by multiple driving forces have been exploited, work on such a protein assembly capable of switching the interplay modes at nanoscale has been rarely reported so far as a result of their great fabrication challenge. In this work, two sets of driving forces such as ligand-ligand interaction and protein-protein interaction were leveraged to antagonistically underpin the multilayered stackings and trigger the hollow evolution to afford the well-defined hollow rectangular frame of proteins. While these protein frames further collapsed into aggregates, the ligand-ligand interactions were weakened, and the interplay of two sets of driving forces thereby tended to switch into synergistic mode, converting the protein packing mode from porously loose packing to axially dense packing and thus giving rise to a morphological evolution toward a nanosized protein tube. This strategy not only provides a nanoscale understanding on the mechanism underlying the switch of interplay modes in the context of biomacromolecules but also may provide access for diverse sophisticated biomacromolecular nanostructures that are historically inaccessible for conventional self-assembly strategies.
Collapse
Affiliation(s)
- Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Shuyu Chen
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Shilin Mei
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
- Institute of Chemistry, University of Potsdam, 14467 Potsdam, Germany
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Wall DA, Tarrant SP, Wang C, Mills KV, Lennon CW. Intein Inhibitors as Novel Antimicrobials: Protein Splicing in Human Pathogens, Screening Methods, and Off-Target Considerations. Front Mol Biosci 2021; 8:752824. [PMID: 34692773 PMCID: PMC8529194 DOI: 10.3389/fmolb.2021.752824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 01/20/2023] Open
Abstract
Protein splicing is a post-translational process by which an intervening polypeptide, or intein, catalyzes its own removal from the flanking polypeptides, or exteins, concomitant with extein ligation. Although inteins are highly abundant in the microbial world, including within several human pathogens, they are absent in the genomes of metazoans. As protein splicing is required to permit function of essential proteins within pathogens, inteins represent attractive antimicrobial targets. Here we review key proteins interrupted by inteins in pathogenic mycobacteria and fungi, exciting discoveries that provide proof of concept that intein activity can be inhibited and that this inhibition has an effect on the host organism's fitness, and bioanalytical methods that have been used to screen for intein activity. We also consider potential off-target inhibition of hedgehog signaling, given the similarity in structure and function of inteins and hedgehog autoprocessing domains.
Collapse
Affiliation(s)
- Diana A Wall
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Seanan P Tarrant
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States.,Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Christopher W Lennon
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
5
|
Abstract
Bioluminescence (BL) is an excellent optical readout platform that has great potential to be utilized in various bioassays and molecular imaging. The advantages of BL-based bioassays include the long dynamic range, minimal background, high signal-to-noise ratios, biocompatibility for use in cell-based assays, no need of external light source for excitation, simplicity in the measurement system, and versatility in the assay design. The recent intensive research in BL has greatly diversified the available luciferase-luciferin systems in the bioassay toolbox. However, the wide variety does not promise their successful utilization in various bioassays as new tools. This is mainly due to complexity and confusion with the diversity, and the unavailability of defined standards. This review is intended to provide an overview of recent basic developments and applications in BL studies, and showcases the bioanalytical utilities. We hope that this review can be used as an instant reference on BL and provides useful guidance for readers in narrowing down their potential options in their own assay designs.
Collapse
Affiliation(s)
- Sung-Bae Kim
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine
| |
Collapse
|
6
|
Lee E, Jeon H, Ryu J, Kang C, Kim S, Park S, Kwon Y. Genetically encoded biosensors for the detection of rapamycin: toward the screening of agonists and antagonists. Analyst 2020; 145:5571-5577. [PMID: 32618311 DOI: 10.1039/d0an01116a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biosensors are valuable tools for the rapid screening of biological targets with high sensitivity and specificity. It is important to screen biological events in their native context for pharmacological and toxicological applications. However, in vitro biosensors often require purified probes and targets for screening, thus providing limited information on the biological activities of targets in their native environment. To address this issue, we developed a cell-based sensing system that could detect a biologically active small molecule, rapamycin (Rapa). We designed a reporter system based on fluorescence translocation by signal peptide reconstitution. Herein, signal peptides are activated by conditional protein splicing without the need for refolding into a functional tertiary structure, thus eliminating false positives and negatives due to mere binding or misfolding. The developed biosensor demonstrated excellent sensitivity with a limit of detection of 0.1 nM, and it was able to screen the agonist and antagonist of Rapa. The developed cell-based sensing system could contribute to improving the screening system aimed to identify the natural mimetics of Rapa and potential drug candidates.
Collapse
Affiliation(s)
- Euiyeon Lee
- Department of Biomedical Engineering (BK21 plus), Dongguk University, Seoul 04620, Korea.
| | | | | | | | | | | | | |
Collapse
|
7
|
Monteuuis G, Miścicka A, Świrski M, Zenad L, Niemitalo O, Wrobel L, Alam J, Chacinska A, Kastaniotis AJ, Kufel J. Non-canonical translation initiation in yeast generates a cryptic pool of mitochondrial proteins. Nucleic Acids Res 2019; 47:5777-5791. [PMID: 31216041 PMCID: PMC6582344 DOI: 10.1093/nar/gkz301] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Utilization of non-AUG alternative translation start sites is most common in bacteria and viruses, but it has been also reported in other organisms. This phenomenon increases proteome complexity by allowing expression of multiple protein isoforms from a single gene. In Saccharomyces cerevisiae, a few described cases concern proteins that are translated from upstream near-cognate start codons as N-terminally extended variants that localize to mitochondria. Using bioinformatics tools, we provide compelling evidence that in yeast the potential for producing alternative protein isoforms by non-AUG translation initiation is much more prevalent than previously anticipated and may apply to as many as a few thousand proteins. Several hundreds of candidates are predicted to gain a mitochondrial targeting signal (MTS), generating an unrecognized pool of mitochondrial proteins. We confirmed mitochondrial localization of a subset of proteins previously not identified as mitochondrial, whose standard forms do not carry an MTS. Our data highlight the potential of non-canonical translation initiation in expanding the capacity of the mitochondrial proteome and possibly also other cellular features.
Collapse
Affiliation(s)
- Geoffray Monteuuis
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014 Finland
| | - Anna Miścicka
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Michał Świrski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Lounis Zenad
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Olli Niemitalo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014 Finland
| | - Lidia Wrobel
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Jahangir Alam
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014 Finland
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.,Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Alexander J Kastaniotis
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014 Finland
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Kim SJ, Hatch ST, Dixon AS, Owen SC. Split‐enzyme fragment as a single affinity tag that enables protein expression, purification, and functional assays. Biotechnol Bioeng 2019; 116:1575-1583. [DOI: 10.1002/bit.26980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/06/2019] [Accepted: 03/28/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Sun Jin Kim
- Department of Pharmaceutics and Pharmaceutical ChemistryUniversity of UtahSalt Lake City Utah
| | - Samuel T. Hatch
- Department of Pharmaceutics and Pharmaceutical ChemistryUniversity of UtahSalt Lake City Utah
| | - Andrew S. Dixon
- Department of Pharmaceutics and Pharmaceutical ChemistryUniversity of UtahSalt Lake City Utah
| | - Shawn C. Owen
- Department of Pharmaceutics and Pharmaceutical ChemistryUniversity of UtahSalt Lake City Utah
- Department of Biomedical EngineeringUniversity of UtahSalt Lake City Utah
- Department of Medicinal ChemistryUniversity of UtahSalt Lake City Utah
| |
Collapse
|
9
|
Jeon H, Lee E, Kim D, Lee M, Ryu J, Kang C, Kim S, Kwon Y. Cell-Based Biosensors Based on Intein-Mediated Protein Engineering for Detection of Biologically Active Signaling Molecules. Anal Chem 2018; 90:9779-9786. [PMID: 30028129 DOI: 10.1021/acs.analchem.8b01481] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Live-cell-based biosensors have emerged as a useful tool for biotechnology and chemical biology. Genetically encoded sensor cells often use bimolecular fluorescence complementation or fluorescence resonance energy transfer to build a reporter unit that suffers from nonspecific signal activation at high concentrations. Here, we designed genetically encoded sensor cells that can report the presence of biologically active molecules via fluorescence-translocation based on split intein-mediated conditional protein trans-splicing (PTS) and conditional protein trans-cleavage (PTC) reactions. In this work, the target molecules or the external stimuli activated intein-mediated reactions, which resulted in activation of the fluorophore-conjugated signal peptide. This approach fully valued the bond-making and bond-breaking features of intein-mediated reactions in sensor construction and thus eliminated the interference of false-positive signals resulting from the mere binding of fragmented reporters. We could also avoid the necessity of designing split reporters to refold into active structures upon reconstitution. These live-cell-based sensors were able to detect biologically active signaling molecules, such as Ca2+ and cortisol, as well as relevant biological stimuli, such as histamine-induced Ca2+ stimuli and the glucocorticoid receptor agonist, dexamethasone. These live-cell-based sensing systems hold large potential for applications such as drug screening and toxicology studies, which require functional information about targets.
Collapse
Affiliation(s)
- Hyunjin Jeon
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| | - Euiyeon Lee
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| | - Dahee Kim
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| | - Minhyung Lee
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| | - Jeahee Ryu
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| | - Chungwon Kang
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| | - Soyoun Kim
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| | - Youngeun Kwon
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| |
Collapse
|
10
|
Botero D, Alvarado C, Bernal A, Danies G, Restrepo S. Network Analyses in Plant Pathogens. Front Microbiol 2018; 9:35. [PMID: 29441045 PMCID: PMC5797656 DOI: 10.3389/fmicb.2018.00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/09/2018] [Indexed: 11/14/2022] Open
Abstract
Even in the age of big data in Biology, studying the connections between the biological processes and the molecular mechanisms behind them is a challenging task. Systems biology arose as a transversal discipline between biology, chemistry, computer science, mathematics, and physics to facilitate the elucidation of such connections. A scenario, where the application of systems biology constitutes a very powerful tool, is the study of interactions between hosts and pathogens using network approaches. Interactions between pathogenic bacteria and their hosts, both in agricultural and human health contexts are of great interest to researchers worldwide. Large amounts of data have been generated in the last few years within this area of research. However, studies have been relatively limited to simple interactions. This has left great amounts of data that remain to be utilized. Here, we review the main techniques in network analysis and their complementary experimental assays used to investigate bacterial-plant interactions. Other host-pathogen interactions are presented in those cases where few or no examples of plant pathogens exist. Furthermore, we present key results that have been obtained with these techniques and how these can help in the design of new strategies to control bacterial pathogens. The review comprises metabolic simulation, protein-protein interactions, regulatory control of gene expression, host-pathogen modeling, and genome evolution in bacteria. The aim of this review is to offer scientists working on plant-pathogen interactions basic concepts around network biology, as well as an array of techniques that will be useful for a better and more complete interpretation of their data.
Collapse
Affiliation(s)
- David Botero
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia.,Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia.,Grupo de Biología Computacional y Ecología Microbiana, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Camilo Alvarado
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Adriana Bernal
- Laboratory of Molecular Interactions of Agricultural Microbes, LIMMA, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Giovanna Danies
- Department of Design, Universidad de Los Andes, Bogotá, Colombia
| | - Silvia Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
11
|
Cevheroğlu O, Kumaş G, Hauser M, Becker JM, Son ÇD. The yeast Ste2p G protein-coupled receptor dimerizes on the cell plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:698-711. [PMID: 28073700 DOI: 10.1016/j.bbamem.2017.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022]
Abstract
Dimerization of G protein-coupled receptors (GPCR) may play an important role in maturation, internalization, signaling and/or pharmacology of these receptors. However, the location where dimerization occurs is still under debate. In our study, variants of Ste2p, a yeast mating pheromone GPCR, were tagged with split EGFP (enhanced green fluorescent protein) fragments inserted between transmembrane domain seven and the C-terminus or appended to the C-terminus. Bimolecular Fluorescence Complementation (BiFC) assay was used to determine where receptor dimerization occurred during protein trafficking by monitoring generation of EGFP fluorescence, which occurred upon GPCR dimerization. Our results suggest that these tagged receptors traffic to the membrane as monomers, undergo dimerization or higher ordered oligomerization predominantly on the plasma membrane, and are internalized as dimers/oligomers. This study is the first to provide direct in vivo visualization of GPCR dimerization/oligomerization, during trafficking to and from the plasma membrane.
Collapse
Affiliation(s)
- Orkun Cevheroğlu
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, 06800 Cankaya, Ankara, Turkey; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Gözde Kumaş
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, 06800 Cankaya, Ankara, Turkey
| | - Melinda Hauser
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Çağdaş D Son
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, 06800 Cankaya, Ankara, Turkey.
| |
Collapse
|
12
|
|
13
|
Conditional Toxin Splicing Using a Split Intein System. Methods Mol Biol 2016. [PMID: 27714618 DOI: 10.1007/978-1-4939-6451-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Protein toxin splicing mediated by split inteins can be used as a strategy for conditional cell ablation. The approach requires artificial fragmentation of a potent protein toxin and tethering each toxin fragment to a split intein fragment. The toxin-intein fragments are, in turn, fused to dimerization domains, such that addition of a dimerizing agent reconstitutes the split intein. These chimeric toxin-intein fusions remain nontoxic until the dimerizer is added, resulting in activation of intein splicing and ligation of toxin fragments to form an active toxin. Considerations for the engineering and implementation of conditional toxin splicing (CTS) systems include: choice of toxin split site, split site (extein) chemistry, and temperature sensitivity. The following method outlines design criteria and implementation notes for CTS using a previously engineered system for splicing a toxin called sarcin, as well as for developing alternative CTS systems.
Collapse
|
14
|
Multicolor Imaging of Bifacial Activities of Estrogens. Methods Mol Biol 2016. [PMID: 27424902 DOI: 10.1007/978-1-4939-3813-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The present protocol introduces multicolor imaging of bifacial activities of an estrogen. For the multicolor imaging, the authors fabricated two single-chain probes emitting green or red bioluminescence (named Simer-G and -R, respectively) from click beetle luciferase (CBLuc) green and red: Simer-R consists of the ligand binding domain of estrogen receptor (ER LBD) and the Src homology-2 (SH2) domain of Src, which are sandwiched between split-CBLuc red (CBLuc-R). On the other hand, Simer-G emitting red light consists of the ER LBD and a common consensus sequence of coactivators (LXXLL motif), which are inserted between split-CBLuc green (CBLuc-G). This probe set creates fingerprinting spectra from the characteristic green and red bioluminescence in response to agonistic and antagonistic activities of a ligand of interest. The present protocol further provides a unique methodology to calculate characteristic estrogenicity scores of various ligands from the spectra.
Collapse
|
15
|
Wang J, Ding K, Chen Y, Zhang L, Liu Z, Xue A, Gu W, Yang X, Li X, Huang J, Xing C, Cao Y, Chen M. Detection of thrombin with an aptamer-based macromolecule biosensor using bacterial ghost system. ACS Synth Biol 2014; 3:963-5. [PMID: 25524099 DOI: 10.1021/sb500018f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A rapid on-site detection of exogenous proteins without the need for equipped laboratories or skilled personnel would benefit many areas. We built a rapid protein detection platform based on aptamer-induced inner-membrane scaffolds dimerization by virtue of bacterial ghost system. When the detection platform was coincubated with two kinds of aptamers targeting two different sites of thrombin, green fluorescence or β-lactamase activity were yielded with two different designs. The latter was detected by commercially available testing strips.
Collapse
Affiliation(s)
- Jiasheng Wang
- Zhejiang
University Team (ZJU-China) for the International Genetically
Engineered Machine Competition (iGEM), ‡College of Life Sciences, §School of Medicine, ∥Department of Chemical
and Biological Engineering, ⊥College of Agriculture and Biotechnology, #Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Computer Science and Technology, ○Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Ke Ding
- Zhejiang
University Team (ZJU-China) for the International Genetically
Engineered Machine Competition (iGEM), ‡College of Life Sciences, §School of Medicine, ∥Department of Chemical
and Biological Engineering, ⊥College of Agriculture and Biotechnology, #Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Computer Science and Technology, ○Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yujie Chen
- Zhejiang
University Team (ZJU-China) for the International Genetically
Engineered Machine Competition (iGEM), ‡College of Life Sciences, §School of Medicine, ∥Department of Chemical
and Biological Engineering, ⊥College of Agriculture and Biotechnology, #Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Computer Science and Technology, ○Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Lifeng Zhang
- Zhejiang
University Team (ZJU-China) for the International Genetically
Engineered Machine Competition (iGEM), ‡College of Life Sciences, §School of Medicine, ∥Department of Chemical
and Biological Engineering, ⊥College of Agriculture and Biotechnology, #Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Computer Science and Technology, ○Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zukai Liu
- Zhejiang
University Team (ZJU-China) for the International Genetically
Engineered Machine Competition (iGEM), ‡College of Life Sciences, §School of Medicine, ∥Department of Chemical
and Biological Engineering, ⊥College of Agriculture and Biotechnology, #Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Computer Science and Technology, ○Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Angli Xue
- Zhejiang
University Team (ZJU-China) for the International Genetically
Engineered Machine Competition (iGEM), ‡College of Life Sciences, §School of Medicine, ∥Department of Chemical
and Biological Engineering, ⊥College of Agriculture and Biotechnology, #Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Computer Science and Technology, ○Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Wenjia Gu
- Zhejiang
University Team (ZJU-China) for the International Genetically
Engineered Machine Competition (iGEM), ‡College of Life Sciences, §School of Medicine, ∥Department of Chemical
and Biological Engineering, ⊥College of Agriculture and Biotechnology, #Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Computer Science and Technology, ○Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xiaoyue Yang
- Zhejiang
University Team (ZJU-China) for the International Genetically
Engineered Machine Competition (iGEM), ‡College of Life Sciences, §School of Medicine, ∥Department of Chemical
and Biological Engineering, ⊥College of Agriculture and Biotechnology, #Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Computer Science and Technology, ○Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xihan Li
- Zhejiang
University Team (ZJU-China) for the International Genetically
Engineered Machine Competition (iGEM), ‡College of Life Sciences, §School of Medicine, ∥Department of Chemical
and Biological Engineering, ⊥College of Agriculture and Biotechnology, #Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Computer Science and Technology, ○Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jin Huang
- Zhejiang
University Team (ZJU-China) for the International Genetically
Engineered Machine Competition (iGEM), ‡College of Life Sciences, §School of Medicine, ∥Department of Chemical
and Biological Engineering, ⊥College of Agriculture and Biotechnology, #Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Computer Science and Technology, ○Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Congcong Xing
- Zhejiang
University Team (ZJU-China) for the International Genetically
Engineered Machine Competition (iGEM), ‡College of Life Sciences, §School of Medicine, ∥Department of Chemical
and Biological Engineering, ⊥College of Agriculture and Biotechnology, #Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Computer Science and Technology, ○Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yunlong Cao
- Zhejiang
University Team (ZJU-China) for the International Genetically
Engineered Machine Competition (iGEM), ‡College of Life Sciences, §School of Medicine, ∥Department of Chemical
and Biological Engineering, ⊥College of Agriculture and Biotechnology, #Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Computer Science and Technology, ○Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Ming Chen
- Zhejiang
University Team (ZJU-China) for the International Genetically
Engineered Machine Competition (iGEM), ‡College of Life Sciences, §School of Medicine, ∥Department of Chemical
and Biological Engineering, ⊥College of Agriculture and Biotechnology, #Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Computer Science and Technology, ○Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Yoshimura H, Ozawa T. Methods of Split Reporter Reconstitution for the Analysis of Biomolecules. CHEM REC 2014; 14:492-501. [DOI: 10.1002/tcr.201402001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Hideaki Yoshimura
- Department of Chemistry; Graduate School of Science; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Takeaki Ozawa
- Department of Chemistry; Graduate School of Science; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
17
|
Alford SC, O'Sullivan C, Obst J, Christie J, Howard PL. Conditional protein splicing of α-sarcin in live cells. MOLECULAR BIOSYSTEMS 2014; 10:831-7. [DOI: 10.1039/c3mb70387h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Lin Y, Li M, Song H, Xu L, Meng Q, Liu XQ. Protein trans-splicing of multiple atypical split inteins engineered from natural inteins. PLoS One 2013; 8:e59516. [PMID: 23593141 PMCID: PMC3620165 DOI: 10.1371/journal.pone.0059516] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/15/2013] [Indexed: 11/30/2022] Open
Abstract
Protein trans-splicing by split inteins has many uses in protein production and research. Splicing proteins with synthetic peptides, which employs atypical split inteins, is particularly useful for site-specific protein modifications and labeling, because the synthetic peptide can be made to contain a variety of unnatural amino acids and chemical modifications. For this purpose, atypical split inteins need to be engineered to have a small N-intein or C-intein fragment that can be more easily included in a synthetic peptide that also contains a small extein to be trans-spliced onto target proteins. Here we have successfully engineered multiple atypical split inteins capable of protein trans-splicing, by modifying and testing more than a dozen natural inteins. These included both S1 split inteins having a very small (11–12 aa) N-intein fragment and S11 split inteins having a very small (6 aa) C-intein fragment. Four of the new S1 and S11 split inteins showed high efficiencies (85–100%) of protein trans-splicing both in E. coli cells and in vitro. Under in vitro conditions, they exhibited reaction rate constants ranging from ∼1.7×10−4 s−1 to ∼3.8×10−4 s−1, which are comparable to or higher than those of previously reported atypical split inteins. These findings should facilitate a more general use of trans-splicing between proteins and synthetic peptides, by expanding the availability of different atypical split inteins. They also have implications on understanding the structure-function relationship of atypical split inteins, particularly in terms of intein fragment complementation.
Collapse
Affiliation(s)
- Ying Lin
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Mengmeng Li
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Huiling Song
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lingling Xu
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- * E-mail: (QM); (XQL)
| | - Xiang-Qin Liu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (QM); (XQL)
| |
Collapse
|
19
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
20
|
Zhou J, Lin J, Zhou C, Deng X, Xia B. An improved bimolecular fluorescence complementation tool based on superfolder green fluorescent protein. Acta Biochim Biophys Sin (Shanghai) 2011; 43:239-44. [PMID: 21273204 DOI: 10.1093/abbs/gmq128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bimolecular fluorescence complementation (BiFC) has been widely used in the analysis of protein-protein interactions (PPIs) in recent years. There are many notable advantages of BiFC such as convenience and direct visualization of PPI in cells. However, BiFC has one common limitation: the separated non-fluorescent fragments can be spontaneously self-assembled into an intact protein, which leads to false-positive results. In this study, a pair of complementary fragments (sfGFPN and sfGFPC) was constructed by splitting superfolder GFP (sfGFP) between the 214 and 215 amino acid residue, and sfGFPC was mutated by site-directed gene mutagenesis to decrease the signal of negative control. Our results showed that mutations in sfGFPC (sfGFPC(m12)) can effectively decrease the signal of negative control. Thus, we provide an improved BiFC tool for the analysis of PPI. Further, since the self-assembly problem is a common shortcoming for application of BiFC, our research provides a feasible strategy for other BiFC candidate proteins with the same problem.
Collapse
Affiliation(s)
- Jun Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Biomedical Engineering, Beihang University, Beijing, China
| | | | | | | | | |
Collapse
|
21
|
Ozawa T, Umezawa Y. Genetically-encoded fluorescent probes for imaging endogenous mRNA in living cells. Methods Mol Biol 2011; 714:175-188. [PMID: 21431741 DOI: 10.1007/978-1-61779-005-8_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Localization of mRNAs plays pivotal roles in different cell types, including neurons and the cells in the developing stages. To visualize the dynamic movements of mRNAs in living cells, many methods have been emerged in the past decade. However, it has not been realized to visualize endogenous mRNAs with genetically encoded fluorescent probes. We recently developed fluorescent protein-based RNA probes for characterizing the localization and dynamics of mRNAs in single living cells. The probes consist of two RNA-binding domains of human PUMILIO1, each connected with split fragments of a fluorescent protein capable of reconstitution upon binding to a target mRNA. The probes are modified to specifically recognize a 16-base sequence of an mRNA of interest and to target into organelles by means of a short signal peptide. We have shown that ND6 mRNA is concentrated particularly on mitochondrial DNA (mtDNA) and movement of the mRNA is restricted in mitochondria. The probes provide a general means to study spatial and temporal mRNA localization and dynamics in intracellular compartments in living cells.
Collapse
Affiliation(s)
- Takeaki Ozawa
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | | |
Collapse
|
22
|
Abstract
Protein-protein interaction is one of the most pivotal roles of proteins in living organisms. Association/dissociation of proteins reflects responses to intrinsic or extrinsic perturbations of signaling pathways, involved in gene expression, cell division, cell differentiation, and apoptosis. For further understanding of the biological processes, it is important to monitor protein-protein interactions in model organisms. In particular, Escherichia coli-based methods are suitable to assess large libraries of proteins. Many of these proteins cannot be used in yeast due to toxicity or poor expression. Herein we describe a general method based on an intein-mediated protein reconstitution system (PRS) to detect protein-protein interactions in bacterial cells. The PRS-based approach requires no other agents including enzymes, substrates, and ATP. Another advantage is that matured green fluorescent protein (GFP) accumulates in a targeted cell till degraded. These allow highly sensitive screening of protein-protein interactions.
Collapse
|
23
|
Ozawa T, Umezawa Y. Peptide Assemblies in Living Cells. Methods for Detecting Protein-Protein Interactions†. Supramol Chem 2010. [DOI: 10.1080/10610270290026185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Takeaki Ozawa
- a Department of Chemistry, School of Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo , 113-0033 , Japan
- b Japan Science and Technology Corporation , Tokyo , Japan
| | - Yoshio Umezawa
- a Department of Chemistry, School of Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo , 113-0033 , Japan
- b Japan Science and Technology Corporation , Tokyo , Japan
| |
Collapse
|
24
|
Zhang L, Xiao N, Pan Y, Zheng Y, Pan Z, Luo Z, Xu X, Liu Y. Binding and Inhibition of Copper Ions to RecA Inteins fromMycobacterium tuberculosis. Chemistry 2010; 16:4297-306. [DOI: 10.1002/chem.200903584] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Broome AM, Bhavsar N, Ramamurthy G, Newton G, Basilion JP. Expanding the utility of beta-galactosidase complementation: piece by piece. Mol Pharm 2010; 7:60-74. [PMID: 19899815 PMCID: PMC2835542 DOI: 10.1021/mp900188e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to image and quantify multiple biomarkers in disease necessitates the development of split reporter fragment platforms. We have divided the beta-galactosidase enzyme into unique, independent polypeptides that are able to reassemble and complement enzymatic activity in bacteria and in mammalian cells. We created two sets of complementing pairs that individually have no enzymatic activity. However, when brought into close geometric proximity, the complementing pairs associated resulting in detectable enzymatic activity. We then constructed a stable ligand complex composed of reporter fragment, linker, and targeting moiety. The targeting moiety, in this case a ligand, allowed cell surface receptor targeting in vitro. Further, we were able to simultaneously visualize two cell surface receptors implicated in cancer development, epidermal growth factor receptor and transferrin receptor, using complementing pairs of the ligand-reporter fragment complex.
Collapse
Affiliation(s)
- Ann-Marie Broome
- Department of Biomedical Engineering, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
- Department of Radiology, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
- Department of Dermatology, Case Western Reserve University
| | - Nihir Bhavsar
- Department of Biomedical Engineering, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
| | - Gopal Ramamurthy
- Department of Radiology, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
| | - Gail Newton
- Department of Pathology at Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
| | - James P. Basilion
- Department of Biomedical Engineering, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
- Department of Radiology, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
| |
Collapse
|
26
|
Trends in microRNA detection. Anal Bioanal Chem 2009; 394:1109-16. [DOI: 10.1007/s00216-009-2744-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 12/28/2022]
|
27
|
Huang YM, Bystroff C. Complementation and reconstitution of fluorescence from circularly permuted and truncated green fluorescent protein. Biochemistry 2009; 48:929-40. [PMID: 19140681 DOI: 10.1021/bi802027g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Green fluorescent protein (GFP) has been used as a proof of concept for a novel "leave-one-out" biosensor design in which a protein that has a segment omitted from the middle of the sequence by circular permutation and truncation binds the missing peptide and reconstitutes its function. Three variants of GFP have been synthesized that are each missing one of the 11 beta-strands from its beta-barrel structure, and in two of the variants, adding the omitted peptide sequence in trans reconstitutes fluorescence. Detailed biochemical analysis indicates that GFP with beta-strand 7 "left out" (t7SPm) exists in a partially unfolded state. The apo form t7SPm binds the free beta-strand 7 peptide with a dissociation constant of approximately 0.5 microM and folds into the native state of GFP, resulting in fluorescence recovery. Folding of t7SPm, both with and without the peptide ligand, is at least a three-state process and has a rate comparable to that of the full-length and unpermuted GFP. The conserved kinetic properties strongly suggest that the rate-limiting steps in the folding pathway have not been altered by circular permutation and truncation in t7SPm. This study shows that structural and functional reconstitution of GFP can occur with a segment omitted from the middle of the chain, and that the unbound form is in a partially unfolded state.
Collapse
Affiliation(s)
- Yao-ming Huang
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, USA
| | | |
Collapse
|
28
|
Zettler J, Schütz V, Mootz HD. The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett 2009; 583:909-14. [PMID: 19302791 DOI: 10.1016/j.febslet.2009.02.003] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/02/2009] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
Abstract
We have studied the naturally split alpha subunit of the DNA polymerase III (DnaE) intein from Nostoc punctiforme PCC73102 (Npu) using purified proteins and determined an apparent first-order rate constant of (1.1+/-0.2)x10(-2) s(-1) at 37 degrees C. This represents the highest rate reported for the protein trans-splicing reaction so far (t(1/2) of approximately 60s). Furthermore, the reaction was very robust and high-yielding with respect to different extein sequences, temperatures from 6 to 37 degrees C, and the presence of up to 6 M urea. Given these outstanding properties, the Npu DnaE intein appears to be the intein of choice for many applications in protein and cellular chemistry.
Collapse
Affiliation(s)
- Joachim Zettler
- Technische Universität Dortmund, Fakultät Chemie-Chemische Biologie, Dortmund, Germany
| | | | | |
Collapse
|
29
|
Müller J, Johnsson N. Split-ubiquitin and the split-protein sensors: chessman for the endgame. Chembiochem 2009; 9:2029-38. [PMID: 18677736 DOI: 10.1002/cbic.200800190] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Judith Müller
- Institute of Medical Biochemistry, Cellular Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany
| | | |
Collapse
|
30
|
Kaihara A, Umezawa Y, Furukawa T. Bioluminescent indicators for Ca2+ based on split Renilla luciferase complementation in living cells. ANAL SCI 2008; 24:1405-8. [PMID: 18997366 DOI: 10.2116/analsci.24.1405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genetically encoded bioluminescent indicators for intracellular Ca2+ are described here with CaM-M13 interaction-induced complementation of split Renilla luciferase. The Ca2+-induced interaction between CaM and M13 leads to complementation of the N- and C-terminal halves of split Renilla luciferase in living cells. This intramolecular interaction results in the spontaneous and simultaneous emission of bioluminescence split Renilla luciferase. This is how intracellular Ca2+ is illuminated with the intramolecular complementation of split Renilla luciferase. The Ca2+-dependent spontaneous and simultaneous emission of bioluminescence promises to reveal Ca2+ dynamics in living cells, and also in vivo using the present indicators.
Collapse
Affiliation(s)
- Asami Kaihara
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Chiyoda, Tokyo 101-0062, Japan.
| | | | | |
Collapse
|
31
|
Kim SB, Umezawa Y, Kanno KA, Tao H. An integrated-molecule-format multicolor probe for monitoring multiple activities of a bioactive small molecule. ACS Chem Biol 2008; 3:359-72. [PMID: 18570355 DOI: 10.1021/cb800004s] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bioactive small molecules, including steroids, activate multiple signaling pathways in mammalian cells. However, current technologies cannot illuminate such multiple effects of a ligand in mammalian cells. Here, we demonstrate integrated-molecule-format multicolor systems simultaneously visualizing bifacial activities of a ligand, where estrogen receptor alpha (ERalpha) was exemplified to demonstrate the present technology. First, we developed a single-molecule-format probe emitting red bioluminescence for imaging interaction between the phosphorylated ligand binding domain of ERalpha (ER LBD) and the Src homology-2 (SH2) domain of Src. The SH2 domain-linked ER LBD was sandwiched between dissected N- and C-terminal fragments of Pyrophorus plagiophthalamus (click beetle) luciferase emitting red bioluminescence. Second, another single-molecule-format bio-luminescent probe emitting green bioluminescence was constructed to visualize intramolecular interaction between ER LBD and LXXLL motifs. Mammalian cells carrying the two probes emit red and/or green light in response to agonistic and antagonistic activities of a ligand, which correspond to its genomic and nongenomic activities, respectively. Third, the two probes were assembled to make an single-molecule-format multicolor indicator, in which all of the components for ligand sensing and multiple-light emission were integrated. The probe emitted characteristic light spectra in response to various agonists and antagonists. This is the first example where (i) protein phosphorylation was recognized with a single bioluminescent probe and (ii) bifacial activities of a ligand, either agonistic or antagonistic, were simultaneously visualized with multiple colors.
Collapse
Affiliation(s)
- Sung Bae Kim
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Yoshio Umezawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Kira A. Kanno
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Hiroaki Tao
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| |
Collapse
|
32
|
Takeda S, Tsukiji S, Ueda H, Nagamune T. Covalent split protein fragment-DNA hybrids generated through N-terminus-specific modification of proteins by oligonucleotides. Org Biomol Chem 2008; 6:2187-94. [PMID: 18528581 DOI: 10.1039/b720013g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Semisynthetic protein-DNA hybrid molecules have recently attracted much attention as valuable tools for bioanalytical chemistry and nanobiotechnology. Here we describe a synthetic method for conjugating oligonucleotides to the N-terminus of recombinant proteins. Our strategy involves the conversion of amine-terminated oligonucleotides to thioester-functionalized oligonucleotides by using a bifunctional reagent bearing an N-hydroxysuccinimide ester and benzyl thioester group, followed by native chemical ligation with proteins containing an N-terminal cysteine. We applied this technique to construct split luciferase fragment-DNA hybrid systems in which the catalytic activity of split luciferase is restored by the re-assembly of each fragment through a specific DNA-protein or DNA-DNA interaction. Split protein fragment-DNA hybrids will offer new opportunities to explore the potential of protein-DNA conjugates for various applications.
Collapse
Affiliation(s)
- Shuji Takeda
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | | | | |
Collapse
|
33
|
Valencia-Burton M, Broude NE. Visualization of RNA using fluorescence complementation triggered by aptamer-protein interactions (RFAP) in live bacterial cells. ACTA ACUST UNITED AC 2008; Chapter 17:Unit 17.11. [PMID: 18228500 DOI: 10.1002/0471143030.cb1711s37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This unit describes a method allowing RNA visualization in live cells. The method is based on fluorescent protein complementation regulated by RNA-aptamer/RNA-binding protein interactions. Based on these two principles, a fluorescent ribonucleoprotein complex is assembled inside the cell only in response to the presence of the aptamer sequence on the target RNA.
Collapse
Affiliation(s)
- Maria Valencia-Burton
- Center for Advanced Biotechnology, College of Engineering, Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | | |
Collapse
|
34
|
Kaihara A, Umezawa Y. Genetically Encoded Bioluminescent Indicator for ERK2 Dimer in Living Cells. Chem Asian J 2008; 3:38-45. [DOI: 10.1002/asia.200700186] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Umezawa Y. Optical probes for molecular processes in live cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:397-421. [PMID: 20636084 DOI: 10.1146/annurev.anchem.1.031207.112757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this review, I summarize the development over the past several years of fluorescent and/or bioluminescent indicators to pinpoint cellular processes in living cells. These processes involve second messengers, protein phosphorylations, protein-protein interactions, protein-ligand interactions, nuclear receptor-coregulator interactions, nucleocytoplasmic trafficking of functional proteins, and protein localization.
Collapse
|
36
|
Ando T, Tsukiji S, Tanaka T, Nagamune T. Construction of a small-molecule-integrated semisynthetic split intein for in vivo protein ligation. Chem Commun (Camb) 2007:4995-7. [PMID: 18049731 DOI: 10.1039/b712843f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new split intein-based protein ligation tool that is synthetically accessible and can be used for protein semisynthesis on the cell surface and potentially inside cells has been constructed.
Collapse
Affiliation(s)
- Tomomi Ando
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | | | | |
Collapse
|
37
|
Villalobos V, Naik S, Piwnica-Worms D. Current State of Imaging Protein-Protein Interactions In Vivo with Genetically Encoded Reporters. Annu Rev Biomed Eng 2007; 9:321-49. [PMID: 17461729 DOI: 10.1146/annurev.bioeng.9.060906.152044] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Signaling pathways regulating proliferation, differentiation, and inflammation are commonly mediated through protein-protein interactions as well as reversible modification (e.g., phosphorylation) of proteins. To facilitate the study of regulated protein-protein interactions in cells and living animals, new imaging tools, many based on optical signals and capable of quantifying protein interactions in vivo, have advanced the study of induced protein interactions and their modification, as well as accelerated the rate of acquisition of these data. In particular, use of protein fragment complementation as a reporter strategy can accurately and rapidly dissect protein interactions with a variety of readouts, including absorbance, fluorescence, and bioluminescence. This review focuses on the development and validation of bioluminescent protein fragment complementation reporters that use either Renilla luciferase or firefly luciferase in vivo. Enhanced luciferase complementation provides a platform for near real-time detection and characterization of regulated and small-molecule-induced protein-protein interactions in intact cells and living animals and enables a wide range of novel applications in drug discovery, chemical genetics, and proteomics research.
Collapse
Affiliation(s)
- Victor Villalobos
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
38
|
Strub BR, Eswara MB, Pierce JB, Mangroo D. Utp8p is a nucleolar tRNA-binding protein that forms a complex with components of the nuclear tRNA export machinery in Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:3845-59. [PMID: 17634288 PMCID: PMC1995730 DOI: 10.1091/mbc.e06-11-1016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Utp8p is an essential nucleolar component of the nuclear tRNA export machinery in Saccharomyces cerevisiae. It is thought to act at a step between tRNA maturation/aminoacylation and translocation of the tRNA across the nuclear pore complex. To understand the function of Utp8p in nuclear tRNA export, a comprehensive affinity purification analysis was conducted to identify proteins that interact with Utp8p in vivo. In addition to finding proteins that have been shown previously to copurify with Utp8p, a number of new interactions were identified. These interactions include aminoacyl-tRNA synthetases, the RanGTPase Gsp1p, and nuclear tRNA export receptors such as Los1p and Msn5p. Characterization of the interaction of Utp8p with a subset of the newly identified proteins suggests that Utp8p most likely transfer tRNAs to the nuclear tRNA export receptors by using a channeling mechanism.
Collapse
Affiliation(s)
- Benjamin R. Strub
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Manoja B.K. Eswara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jacqueline B. Pierce
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Dev Mangroo
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
39
|
Ozawa T, Natori Y, Sako Y, Kuroiwa H, Kuroiwa T, Umezawa Y. A minimal peptide sequence that targets fluorescent and functional proteins into the mitochondrial intermembrane space. ACS Chem Biol 2007; 2:176-86. [PMID: 17348629 DOI: 10.1021/cb600492a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-based fluorescent and functional probes are widely used for real-time visualization, purification, and regulation of a variety of biological molecules. The protein-based probes can generally be targeted into subcellular compartments of eukaryotic cells by a particular short peptide sequence. Little is known, however, about the sequence that targets probes into the mitochondrial intermembrane space (IMS). To identify the IMS-targeting sequence, we developed a simple genetic screening method to discriminate the proteins localized in the IMS from those in the mitochondrial matrix, thereby revealing the minimum requisite sequence for the IMS targeting. An IMS-localized protein, Smac/DIABLO, was randomly mutated, and the mitochondrial localization of each mutant was analyzed. We found that the four residues of Ala-Val-Pro-Ile are required for IMS localization, and a sequence of these four residues fused with matrix-targeting signals is sufficient for targeting the Smac/DIABLO into the IMS. The sequence was shown to readily direct three dissimilar proteins of interest to the IMS, which will open avenues to elucidating the functions of the IMS in live cells.
Collapse
Affiliation(s)
- Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Umezawa Y. Methods of Analysis for Imaging and Detecting Ions and Molecules. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2007. [DOI: 10.1246/bcsj.80.441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Jeong EJ, Park K, Joung HA, Lee CS, Seol DW, Chung BH, Kim M. Detection of glucose-induced conformational change in hexokinase II using fluorescence complementation assay. Biotechnol Lett 2007; 29:797-802. [PMID: 17322968 DOI: 10.1007/s10529-007-9313-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/22/2006] [Accepted: 12/23/2006] [Indexed: 10/23/2022]
Abstract
Conformational changes in hexokinase are induced by its binding to glucose, thus providing an excellent example of an 'induced fit' model. To observe glucose-induced fluorescence restoration in hexokinase II using split-enhanced, green fluorescent protein (EGFP) in a process involving the reconstitution of split EGFP, E. coli cells expressing the chimeric NEGFP:HXK:CEGFP recombinant protein were treated with glucose and visualized via fluorescence read-outs. The reconstituted EGFP generated a strong fluorescence upon glucose stimulation of the bacteria. Moreover, the fluorescence intensity became stronger with increasing glucose up to 10 mM, with a maximum being observed after 60 min in a time- and concentration-dependent manner. Conformational changes associated with glucose-induced fit in human hexokinase II can thus be monitored successfully in vivo via fluorescence reconstitution assays, coupled with a quick and easy fluorescent read-out protocol.
Collapse
Affiliation(s)
- Eun-Ju Jeong
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yuseong, Daejeon, 305-600, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Kuroda K, Kato M, Mima J, Ueda M. Systems for the detection and analysis of protein–protein interactions. Appl Microbiol Biotechnol 2006; 71:127-36. [PMID: 16568316 DOI: 10.1007/s00253-006-0395-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/23/2006] [Accepted: 02/25/2006] [Indexed: 10/24/2022]
Abstract
The analysis of protein-protein interactions is important for developing a better understanding of the functional annotations of proteins that are involved in various biochemical reactions in vivo. The discovery that a protein with an unknown function binds to a protein with a known function could provide a significant clue to the cellular pathway concerning the unknown protein. Therefore, information on protein-protein interactions obtained by the comprehensive analysis of all gene products is available for the construction of interactive networks consisting of individual protein-protein interactions, which, in turn, permit elaborate biological phenomena to be understood. Systems for detecting protein-protein interactions in vitro and in vivo have been developed, and have been modified to compensate for limitations. Using these novel approaches, comprehensive and reliable information on protein-protein interactions can be determined. Systems that permit this to be achieved are described in this review.
Collapse
Affiliation(s)
- Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Japan
| | | | | | | |
Collapse
|
43
|
Jeong J, Kim SK, Ahn J, Park K, Jeong EJ, Kim M, Chung BH. Monitoring of conformational change in maltose binding protein using split green fluorescent protein. Biochem Biophys Res Commun 2006; 339:647-51. [PMID: 16325147 DOI: 10.1016/j.bbrc.2005.11.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 11/10/2005] [Indexed: 11/28/2022]
Abstract
In this study, we describe a novel method for the detection of conformational changes in proteins, which is predicated on the reconstitution of split green fluorescent protein (GFP). We employed fluorescence complementation assays for the monitoring of the conformationally altered proteins. In particular, we used maltose binding protein (MBP) as a model protein, as MBP undergoes a characteristic hinge-twist movement upon substrate binding. The common feature of this approach is that GFP, as a reporter protein, splits into two non-fluorescent fragments, which are genetically fused to the N- and C-termini of MBP. Upon binding to maltose, the chromophores move closer together, resulting in the generation of fluorescence. This split GFP method also involves the reconstitution of GFP, which is determined via observations of the degree to which fluorescence intensity is restored. As a result, reconstituted GFP has been observed to generate fluorescence upon maltose binding in vitro, thereby allowing for the direct detection of changes in fluorescence intensity in response to maltose, in a concentration- and time-dependent fashion. Our findings showed that the fluorescence complementation assay can be used to monitor the conformational alterations of a target protein, and this ability may prove useful in a number of scientific and medical applications.
Collapse
Affiliation(s)
- Jinyoung Jeong
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yuseong, Daejeon 305-600, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Ozawa T. Designing split reporter proteins for analytical tools. Anal Chim Acta 2006; 556:58-68. [PMID: 17723331 DOI: 10.1016/j.aca.2005.06.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/01/2005] [Accepted: 06/08/2005] [Indexed: 11/25/2022]
Abstract
A current focus of biological research is to quantify and image cellular processes in living cells and animals. To detect such cellular processes, genetically-encoded reporters have been extensively used. The most common reporters include firefly luciferase, renilla luciferase, green fluorescent protein (GFP) and its variants with various spectral properties. This review describes novel design of split-GFP and luciferase reporters based on protein splicing, and highlights some potential applications with the reporters to study protein-protein interactions, protein localization, intracellular protein dynamics, and protein activity in living cells and animals.
Collapse
Affiliation(s)
- Takeaki Ozawa
- Department of Molecular Structure, Institute for Molecular Science, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
45
|
Durek T, Becker CFW. Protein semi-synthesis: New proteins for functional and structural studies. ACTA ACUST UNITED AC 2005; 22:153-72. [PMID: 16188500 DOI: 10.1016/j.bioeng.2005.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/26/2005] [Accepted: 07/27/2005] [Indexed: 12/19/2022]
Abstract
Our ability to alter and control the structure and function of biomolecules, and of proteins in particular, will be of utmost importance in order to understand their respective biological roles in complex systems such as living organisms. This challenge has prompted the development of powerful modern techniques in the fields of molecular biology, physical biochemistry and chemical biology. These fields complement each other and their successful combination has provided unique insights into protein structure and function at the level of isolated molecules, cells and organisms. Chemistry is without doubt most suited for introducing subtle changes into biomolecules down to the atomic level, but often struggles when it comes to large targets, such as proteins. In this review, we attempt to give an overview of modern and broadly applicable techniques that permit chemical synthesis to be applied to complex protein targets in order to gain control over their structure and function. As will be demonstrated, these approaches offer unique possibilities in our efforts to understand the molecular basis of protein functioning in vitro and in vivo. We will discuss modern synthetic reactions that can be applied to proteins and give examples of recent highlights. Another focus of this review will be the application of inteins as versatile protein engineering tools.
Collapse
Affiliation(s)
- Thomas Durek
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
46
|
Affiliation(s)
- Johannes A Schmid
- Centre for Biomolecular Medicine and Pharmacology, Medical University Vienna, Waehringerstrasse 13A, 1090 Vienna, Austria.
| | | |
Collapse
|
47
|
Ozawa T. Methods of Analysis for Protein Dynamics in Living Cells Based on Protein Splicing. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2005. [DOI: 10.1246/bcsj.78.739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
|
49
|
Clarke P, Cuív PÓ, O'Connell M. Novel mobilizable prokaryotic two-hybrid system vectors for high-throughput protein interaction mapping in Escherichia coli by bacterial conjugation. Nucleic Acids Res 2005; 33:e18. [PMID: 15687376 PMCID: PMC548371 DOI: 10.1093/nar/gni011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since its initial description, the yeast two-hybrid (Y2H) system has been widely used for the detection and analysis of protein–protein interactions. Mating-based strategies have been developed permitting its application for automated proteomic interaction mapping projects using both exhaustive and high-throughput strategies. More recently, a number of prokaryotic two-hybrid (P2H) systems have been developed but, despite the many advantages such Escherichia coli-based systems have over the Y2H system, they have not yet been widely implemented for proteomic interaction mapping. This may be largely due to the fact that high-throughput strategies employing bacterial transformation are not as amenable to automation as Y2H mating-based strategies. Here, we describe the construction of novel conjugative P2H system vectors. These vectors carry a mobilization element of the IncPα group plasmid RP4 and can therefore be mobilized with high efficiency from an E.coli donor strain encoding all of the required transport functions in trans. We demonstrate how these vectors permit the exploitation of bacterial conjugation for technically simplified and automated proteomic interaction mapping strategies in E.coli, analogous to the mating-based strategies developed for the Y2H system.
Collapse
Affiliation(s)
| | | | - Michael O'Connell
- To whom correspondence should be addressed. Tel: +353 1 7005318; Fax: +353 1 7005412;
| |
Collapse
|
50
|
Cabantous S, Terwilliger TC, Waldo GS. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 2004; 23:102-7. [PMID: 15580262 DOI: 10.1038/nbt1044] [Citation(s) in RCA: 700] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 10/22/2004] [Indexed: 11/09/2022]
Abstract
Existing protein tagging and detection methods are powerful but have drawbacks. Split protein tags can perturb protein solubility or may not work in living cells. Green fluorescent protein (GFP) fusions can misfold or exhibit altered processing. Fluorogenic biarsenical FLaSH or ReASH substrates overcome many of these limitations but require a polycysteine tag motif, a reducing environment and cell transfection or permeabilization. An ideal protein tag would be genetically encoded, would work both in vivo and in vitro, would provide a sensitive analytical signal and would not require external chemical reagents or substrates. One way to accomplish this might be with a split GFP, but the GFP fragments reported thus far are large and fold poorly, require chemical ligation or fused interacting partners to force their association, or require coexpression or co-refolding to produce detectable folded and fluorescent GFP. We have engineered soluble, self-associating fragments of GFP that can be used to tag and detect either soluble or insoluble proteins in living cells or cell lysates. The split GFP system is simple and does not change fusion protein solubility.
Collapse
Affiliation(s)
- Stéphanie Cabantous
- Bioscience Division, MS-M888, Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico 87545, USA
| | | | | |
Collapse
|