1
|
Yu W, Yi SZ, Jiang CY, Guan JW, Xue R, Zhang XX, Zeng T, Tang H, Chen W, Han B. Biosensor-based active ingredient recognition system for screening potential small molecular Severe acute respiratory syndrome coronavirus 2 entry blockers targeting the spike protein from Rugosa rose. Biomed Chromatogr 2024; 38:e5987. [PMID: 39126351 DOI: 10.1002/bmc.5987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The traditional formulation Hanchuan zupa granules (HCZPs) have been widely used for controlling coronavirus disease 2019 (COVID-19). However, its active components remain unknown. Here, HCZP components targeting the spike receptor-binding domain (S-RBD) of SARS-CoV-2 were investigated using a surface plasmon resonance (SPR) biosensor-based active ingredient recognition system (SPR-AIRS). Recombinant S-RBD proteins were immobilized on the SPR chip by amine coupling for the prescreening of nine HCZP medicinal herbs. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) identified gallic acid (GA) and methyl gallate (MG) from Rosa rugosa as S-RBD ligands, with KD values of 2.69 and 0.95 μM, respectively, as shown by SPR. Molecular dynamics indicated that GA formed hydrogen bonds with G496, N501, and Y505 of S-RBD, and MG with G496 and Y505, inhibiting S-RBD binding to angiotensin-converting enzyme 2 (ACE2). SPR-based competition analysis verified that both compounds blocked S-RBD and ACE2 binding, and SPR demonstrated that GA and MG bound to ACE2 (KD = 5.10 and 4.05 μM, respectively), suggesting that they blocked the receptor and neutralized SARS-CoV-2. Infection with SARS-CoV-2 pseudovirus showed that GA and MG suppressed viral entry into 293T-ACE2 cells. These S-RBD inhibitors have potential for drug design, while the findings provide a reference on HCZP composition and its use for treating COVID-19.
Collapse
Affiliation(s)
- Wei Yu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization/School of Medical, Shihezi University, Shihezi, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Sheng-Zhe Yi
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization/School of Medical, Shihezi University, Shihezi, China
| | - Cheng-Yu Jiang
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization/School of Medical, Shihezi University, Shihezi, China
| | - Jia-Wei Guan
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization/School of Medical, Shihezi University, Shihezi, China
| | - Rui Xue
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization/School of Medical, Shihezi University, Shihezi, China
| | - Xu-Xuan Zhang
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization/School of Medical, Shihezi University, Shihezi, China
| | - Tao Zeng
- Corps Center for Food and Drug Evaluation and Verification, Xinjiang Production and Construction Corps Market Supervision Administration, Urumqi, China
| | - Hui Tang
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization/School of Medical, Shihezi University, Shihezi, China
| | - Wen Chen
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization/School of Medical, Shihezi University, Shihezi, China
| | - Bo Han
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization/School of Medical, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Wang J, Zhang H, Wan W, Yang H, Zhao J. Advances in nanotechnological approaches for the detection of early markers associated with severe cardiac ailments. Nanomedicine (Lond) 2024; 19:1487-1506. [PMID: 39121377 PMCID: PMC11318751 DOI: 10.1080/17435889.2024.2364581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/31/2024] [Indexed: 08/11/2024] Open
Abstract
Mortality from cardiovascular disease (CVD) accounts for over 30% of all deaths globally, necessitating reliable diagnostic tools. Prompt identification and precise diagnosis are critical for effective personalized treatment. Nanotechnology offers promising applications in diagnostics, biosensing and drug delivery for prevalent cardiovascular diseases. Its integration into cardiovascular care enhances diagnostic accuracy, enabling early intervention and tailored treatment plans. By leveraging nanoscale innovations, healthcare professionals can address the complexities of CVD progression and customize interventions based on individual patient needs. Ongoing advancements in nanotechnology continue to shape the landscape of cardiovascular medicine, offering potential for improved patient outcomes and reduced mortality rates from these pervasive diseases.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiac Care Unit, Yantaishan Hospital, Yantai, Shandong, 264003, China
| | - Haifeng Zhang
- Department of Cardiology, Yantai Yeda Hospital, Yantai, Shangdong, 264006, China
| | - Weiping Wan
- Department of Ultrasound, Yantaishan Hospital, Yantai, Shandong, 264003, China
| | - Haijiao Yang
- Department of Cardiac Care Unit, Yantaishan Hospital, Yantai, Shandong, 264003, China
| | - Jing Zhao
- Department of Critical Care Medicine, Yantaishan Hospital, Yantai, Shandong, 264003, China
| |
Collapse
|
3
|
Singh AK, Anwar M, Pradhan R, Ashar MS, Rai N, Dey S. Surface plasmon resonance based-optical biosensor: Emerging diagnostic tool for early detection of diseases. JOURNAL OF BIOPHOTONICS 2023:e202200380. [PMID: 36883612 DOI: 10.1002/jbio.202200380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The development of diagnostic tools remains at the center of the health care system. In recent times optical biosensors have been widely applied in the scientific community, especially for monitoring protein-protein or nucleic acid hybridization interactions. Optical biosensors-derived surface plasmon resonance (SPR) technology has appeared as a revolutionary technology at the current times. This review focuses on the research work in molecular biomarker evaluation using the technique based on SPR for translational clinical diagnosis. The review has covered both communicable and noncommunicable diseases by using different bio-fluids of the patient's sample for diagnosis of the diseases. An increasing number of SPR approaches have been developed in healthcare research and fundamental biological studies. The utility of SPR in the area of biosensing basically lies in its noninvasive diagnostic and prognostic feature due to its label-free high sensitivity and specificity properties. This makes SPR an invaluable tool with precise application in the recognition of different stages of the disease.
Collapse
Affiliation(s)
- Abhinay Kumar Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Masroor Anwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Rashmita Pradhan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mohd Suhail Ashar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Nitish Rai
- Department of Biotechnology, Mohanlal Sukhadia University (MLSU), Udaipur, Rajasthan, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Kakkar S, Chauhan S, Bala R, Bharti, Kumar V, Rohit M, Bhalla V. Site-directed dual bioprobes inducing single-step nano-sandwich assay for the detection of cardiac troponin I. Mikrochim Acta 2022; 189:366. [PMID: 36053384 DOI: 10.1007/s00604-022-05461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022]
Abstract
Bioreceptor functionalized metallic nano-colloids have been identified as effective nanobioprobes to realize the detection of an analyte based on a common phenomenon of salt-induced aggregation. In marked contrast to this, we describe a nano-sandwich assay integrating the novel match-pair of aptamer and peptide functionalized gold nanoparticles. The site-directed biomolecular interaction of high affinity aptamer and peptide bioreceptors directed towards distinct sites of cardiac biomarker troponin I; this was found to form a nano-sandwich assay in a peculiar manner. The gold nanoconjugates interact with specific and distant regions of troponin I to result in collision of probes upon target identification. In the presence of TnI, both nanobioprobes bind at their respective sites forming a nano-sandwich pair providing a visual color change from red to blue. Thus, the presence of target TnI itself causes instant agglomeration in just a single-step without addition of any external aggregator. The assay imparts 100% specificity and 90% sensitivity in a dynamic concentration range of 0.1-500 ng/mL troponin I with detection limit as low as 0.084 ng/mL. The applicability of the assay has been validated in clinical samples of acute myocardial infarction patients thus establishing a promising point-of-care detection of TnI.
Collapse
Affiliation(s)
- Saloni Kakkar
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | - Sakshi Chauhan
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | - Rajni Bala
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | - Bharti
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | - Virendra Kumar
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | | | - Vijayender Bhalla
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036.
| |
Collapse
|
5
|
Chu SS, Nguyen HA, Zhang J, Tabassum S, Cao H. Towards Multiplexed and Multimodal Biosensor Platforms in Real-Time Monitoring of Metabolic Disorders. SENSORS (BASEL, SWITZERLAND) 2022; 22:5200. [PMID: 35890880 PMCID: PMC9323394 DOI: 10.3390/s22145200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Metabolic syndrome (MS) is a cluster of conditions that increases the probability of heart disease, stroke, and diabetes, and is very common worldwide. While the exact cause of MS has yet to be understood, there is evidence indicating the relationship between MS and the dysregulation of the immune system. The resultant biomarkers that are expressed in the process are gaining relevance in the early detection of related MS. However, sensing only a single analyte has its limitations because one analyte can be involved with various conditions. Thus, for MS, which generally results from the co-existence of multiple complications, a multi-analyte sensing platform is necessary for precise diagnosis. In this review, we summarize various types of biomarkers related to MS and the non-invasively accessible biofluids that are available for sensing. Then two types of widely used sensing platform, the electrochemical and optical, are discussed in terms of multimodal biosensing, figure-of-merit (FOM), sensitivity, and specificity for early diagnosis of MS. This provides a thorough insight into the current status of the available platforms and how the electrochemical and optical modalities can complement each other for a more reliable sensing platform for MS.
Collapse
Affiliation(s)
- Sung Sik Chu
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
| | - Hung Anh Nguyen
- Department of Electrical Engineering and Computer Science, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA;
| | - Jimmy Zhang
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
| | - Shawana Tabassum
- Department of Electrical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Hung Cao
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
- Department of Electrical Engineering and Computer Science, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA;
| |
Collapse
|
6
|
Wei Y, Zhou W, Wu Y, Zhu H. High Sensitivity Label-Free Quantitative Method for Detecting Tumor Biomarkers in Human Serum by Optical Microfiber Couplers. ACS Sens 2021; 6:4304-4314. [PMID: 34806360 DOI: 10.1021/acssensors.1c01031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Label-free optical fiber immunosensors have attracted widespread attention in recent decades due to their high sensitivity. However, nonspecific adsorption in serum has remained a critical bottleneck in existing label-free fiber optic biosensors, which hinders their widespread use in diagnostics. In addition, individual differences in clinical human serum (HS) negatively impact biosensing results. In this work, the modified serum preadsorption strategy was applied to reduce nonspecific adsorption by forming a saturated antifouling interface on an optical microfiber coupler (OMC). Furthermore, to reduce the effect of the differences between individual HS samples, we proposed a new method where Sigma HS was used as a wavelength shift reference due to being close to clinical serum compared to other serums. Sigma HS was used first to reduce the differences in immune sensors before performing a clinical sample test in which quantitative detection was achieved based on the independent calibration of several sensors with wide dynamic ranges via dissociation processes. The individual differences in 25% HS were corrected by 30% Sigma HS. As a proof of concept, the label-free OMC immune sensor demonstrates good sensitivity and specificity for the detection of carcinoembryonic antigen (CEA) in 25% Sigma HS at different concentrations. The detection limit of CEA reached as low as 34.6 fg/mL (0.475 fM). Additionally, label-free quantitative detection of CEA using this OMC immune sensor was verified experimentally according to the calibration line, and the results agree well with clinical examination detection. To our knowledge, it is the first study to employ an OMC immune sensor in point-of-care label-free quantitative detection for clinical HS.
Collapse
Affiliation(s)
- Youlian Wei
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
- University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Wenchao Zhou
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
| | - Yihui Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
| | - Hongquan Zhu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
7
|
Retout M, Gosselin B, Mattiuzzi A, Ternad I, Jabin I, Bruylants G. Peptide‐Conjugated Silver Nanoparticles for the Colorimetric Detection of the Oncoprotein Mdm2 in Human Serum. Chempluschem 2021; 87:e202100450. [DOI: 10.1002/cplu.202100450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/17/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Maurice Retout
- UCSD: University of California San Diego Bioengineering UNITED STATES
| | - Bryan Gosselin
- Université Libre de Bruxelles: Universite Libre de Bruxelles Ecole polytechnique de Bruxelles BELGIUM
| | - Alice Mattiuzzi
- Université Libre de Bruxelles: Universite Libre de Bruxelles Faculté des sciences BELGIUM
| | - Indiana Ternad
- Universite de Mons - Hainaut: Universite de Mons Faculté des Sciences BELGIUM
| | - Ivan Jabin
- Université Libre de Bruxelles: Universite Libre de Bruxelles Faculté des Sciences BELGIUM
| | - Gilles Bruylants
- Université Libre de Bruxelles Brussels School of Engineering 50, av. F.D. Roosevelt 1050 Brussels BELGIUM
| |
Collapse
|
8
|
Shen J, Zhang L, Yuan J, Zhu Y, Cheng H, Zeng Y, Wang J, You X, Yang C, Qu X, Chen H. Digital Microfluidic Thermal Control Chip-Based Multichannel Immunosensor for Noninvasively Detecting Acute Myocardial Infarction. Anal Chem 2021; 93:15033-15041. [PMID: 34730944 DOI: 10.1021/acs.analchem.1c02758] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rapid and automated detection of acute myocardial infarction (AMI) at its developing stage is very important due to its high mortality rate. To quantitatively diagnose AMI, Myo, CK-MB, and cTnI are chosen as three biomarkers, which are usually detected through an immunosorbent assay, such as the enzyme-linked immunosorbent assay. However, the approach poses many drawbacks, such as long detection time, the cumbersome process, the need for professionals, and the difficulty of realizing automatic operation. Here, a multichannel digital microfluidic (DMF) thermal control chip integrated with a sandwich-based immunoassay strategy is proposed for the automated, rapid, and sensitive detection of AMI biomarkers. A miniaturized temperature control module is integrated on the back of the DMF chip, meeting the temperature requirement for the immunoassay. With this DMF thermal control chip, sample and reagent consumption are reduced to several microliters, significantly alleviating reagent consumption and sample dependence, and the automated and multichannel detection of biomarkers can be achieved. In this work, the simultaneously noninvasive detection of the human serum sample containing the three biomarkers of AMI is also achieved within 30 min, which improves the diagnostic accuracy of AMI. Due to the features of automation and miniaturization, the multichannel immunosensor can be used in community hospitals to increase the speed of diagnosis of patients with various acute diseases.
Collapse
Affiliation(s)
- Jienan Shen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China.,Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315000, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Liyuan Zhang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Junjie Yuan
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yongsheng Zhu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Hao Cheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Yibo Zeng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Jiaqin Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Xueqiu You
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Xiangmeng Qu
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Hong Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China.,Jiujiang Research Institute of Xiamen University, Jiujiang 332000, China
| |
Collapse
|
9
|
Mishyn V, Rodrigues T, Leroux YR, Butruille L, Woitrain E, Montaigne D, Aspermair P, Happy H, Knoll W, Boukherroub R, Szunerits S. Electrochemical and electronic detection of biomarkers in serum: a systematic comparison using aptamer-functionalized surfaces. Anal Bioanal Chem 2021; 414:5319-5327. [PMID: 34595559 DOI: 10.1007/s00216-021-03658-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Sensitive and selective detection of biomarkers in serum in a short time has a significant impact on health. The enormous clinical importance of developing reliable methods and devices for testing serum levels of cardiac troponin I (cTnI), which are directly correlated to acute myocardial infarction (AMI), has spurred an unmatched race among researchers for the development of highly sensitive and cost-effective sensing formats to be able to differentiate patients with early onset of cardiac injury from healthy individuals with a mean cTnI level of 26 pg mL-1. Electronic- and electrochemical-based detection schemes allow for fast and quantitative detection not otherwise possible at the point of care. Such approaches rely largely on voltammetric and field-effect-based readouts. Here, we systematically investigate electric and electrochemical point-of-care sensors for the detection of cTnI in serum samples by using the same surface receptors, cTnI aptamer-functionalized CVD graphene-coated interdigated gold electrodes. The analytical performances of both sensors are comparable with a limit of detection (LoD) of 5.7 ± 0.6 pg mL-1(electrochemical) and 3.3 ± 1.2 pg mL-1 (electric). However, both sensors exhibit different equilibrium dissociation constant (KD) values between the aptamer-linked surface receptor and the cTnI analyte, being 160 pg mL-1 for the electrochemical and about three times lower for the electrical approach with KD = 51.4 pg mL-1. This difference is believed to be related to the use of a redox mediator in the electrochemical sensor for readout. The ability of the redox mediator to diffuse from the solution to the surface via the cTnI/aptamer interface is hindered, correlating to higher KD values. In contrast, the electric readout has the advantage of being label-free with a sensing limitation due to ionic strength effects, which can be limited using poly(ethylene) glycol surface ligands.
Collapse
Affiliation(s)
- Vladyslav Mishyn
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, 59000, Lille, France.
| | - Teresa Rodrigues
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, 59000, Lille, France. .,Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria.
| | - Yann R Leroux
- Univ. Rennes, CNRS, ISCR -UMR 6226, Campus de Beaulieu, F-35000, Rennes, France
| | - Laura Butruille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, 59000, Lille, France
| | - Eloise Woitrain
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, 59000, Lille, France
| | - David Montaigne
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, 59000, Lille, France
| | - Patrik Aspermair
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Henri Happy
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, 59000, Lille, France
| | - Wolfgang Knoll
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria.,Department of Scientific Coordination and Management, Danube Private University, 3500, Krems, Austria
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, 59000, Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, 59000, Lille, France.
| |
Collapse
|
10
|
D’Agata R, Bellassai N, Jungbluth V, Spoto G. Recent Advances in Antifouling Materials for Surface Plasmon Resonance Biosensing in Clinical Diagnostics and Food Safety. Polymers (Basel) 2021; 13:1929. [PMID: 34200632 PMCID: PMC8229487 DOI: 10.3390/polym13121929] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
Strategies to develop antifouling surface coatings are crucial for surface plasmon resonance (SPR) sensing in many analytical application fields, such as detecting human disease biomarkers for clinical diagnostics and monitoring foodborne pathogens and toxins involved in food quality control. In this review, firstly, we provide a brief discussion with considerations about the importance of adopting appropriate antifouling materials for achieving excellent performances in biosensing for food safety and clinical diagnosis. Secondly, a non-exhaustive landscape of polymeric layers is given in the context of surface modification and the mechanism of fouling resistance. Finally, we present an overview of some selected developments in SPR sensing, emphasizing applications of antifouling materials and progress to overcome the challenges related to the detection of targets in complex matrices relevant for diagnosis and food biosensing.
Collapse
Affiliation(s)
- Roberta D’Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
| | - Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
| | - Vanessa Jungbluth
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; (N.B.); (V.J.)
- Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi”, c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| |
Collapse
|
11
|
Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N. Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications. Chem Rev 2021; 121:8095-8160. [PMID: 34105942 DOI: 10.1021/acs.chemrev.1c00044] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature achieves differentiation of specific and nonspecific binding in molecular interactions through precise control of biomolecules in space and time. Artificial systems such as biosensors that rely on distinguishing specific molecular binding events in a sea of nonspecific interactions have struggled to overcome this issue. Despite the numerous technological advancements in biosensor technologies, nonspecific binding has remained a critical bottleneck due to the lack of a fundamental understanding of the phenomenon. To date, the identity, cause, and influence of nonspecific binding remain topics of debate within the scientific community. In this review, we discuss the evolution of the concept of nonspecific binding over the past five decades based upon the thermodynamic, intermolecular, and structural perspectives to provide classification frameworks for biomolecular interactions. Further, we introduce various theoretical models that predict the expected behavior of biosensors in physiologically relevant environments to calculate the theoretical detection limit and to optimize sensor performance. We conclude by discussing existing practical approaches to tackle the nonspecific binding challenge in vitro for biosensing platforms and how we can both address and harness nonspecific interactions for in vivo systems.
Collapse
Affiliation(s)
- Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Alexander Tanno
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Stephanie Hwu
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Raphael F Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| |
Collapse
|
12
|
Wang C, Li J, Kang M, Huang X, Liu Y, Zhou N, Zhang Z. Nanodiamonds and hydrogen-substituted graphdiyne heteronanostructure for the sensitive impedimetric aptasensing of myocardial infarction and cardiac troponin I. Anal Chim Acta 2020; 1141:110-119. [PMID: 33248643 DOI: 10.1016/j.aca.2020.10.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
A novel heteronanostructure of nanodiamonds (NDs) and hydrogen-substituted graphdiyne (HsGDY) (denoted as HsGDY@NDs) was prepared for the impedimetric aptasensing of biomarkers such as myoglobin (Myo) and cardiac troponin I (cTnI). Basic characterizations revealed that the HsGDY@NDs were composed of nanospheres with sizes of 200-500 nm. In these nanospheres, NDs were embedded within the HsGDY network. The HsGDY@NDs nanostructure, which integrated the good chemical stability and three-dimensional porous networks of HsGDY, and the good biocompatibility and electrochemical activity of NDs, could immobilize diverse aptamer strands and recognize target biomarkers. Compared with HsGDY- and NDs-based aptasensors, the HsGDY@NDs-based aptasensors exhibited superior sensing performances for Myo and cTnI, giving low detection limits of 6.29 and 9.04 fg mL-1 for cTnI and Myo, respectively. In addition, the HsGDY@NDs-based aptasensors exhibited high selectivity, good stability, reproducibility, and acceptable applicability in real human serum. Thus, the construction of HsGDY@NDs-based aptasensor is expected to broaden the application of porous organic frameworks in the sensing field and provide a prospective approach for the early detection of disease biomarkers.
Collapse
Affiliation(s)
- Changbao Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Jiangnan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Mengmeng Kang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Xiaoyu Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Zhihong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China.
| |
Collapse
|
13
|
Xin Y, Yang R, Qu Y, Liu H, Feng Y, Li L, Shi W, Liu Q. Novel, Highly Sensitive, and Specific Assay to Monitor Acute Myocardial Infarction (AMI) by the Determination of Cardiac Troponin I (cTnI) and Heart-Type Fatty Acid Binding Protein (H-FABP) by a Colloidal Gold-Based Immunochromatographic Test Strip. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1802594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yuanrong Xin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- Jiangsu Sunan Pharmaceutical Industrial Co., Ltd, Zhenjiang, Jiangsu, China
| | - Renlong Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yang Qu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- Chia Tai Qingjiang Pharmaceutical Industry Co., Ltd, Huaian, China
| | - Hongfei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- School of Medical Technology, Zhenjiang college, Zhenjiang, Jiangsu, China
| | - Yingshu Feng
- School of Medical Technology, Zhenjiang college, Zhenjiang, Jiangsu, China
| | - Lin Li
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Wenjing Shi
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qiang Liu
- Department of Medical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
14
|
Lambert AS, Valiulis SN, Malinick AS, Tanabe I, Cheng Q. Plasmonic Biosensing with Aluminum Thin Films under the Kretschmann Configuration. Anal Chem 2020; 92:8654-8659. [PMID: 32525300 DOI: 10.1021/acs.analchem.0c01631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aluminum has recently attracted considerable interest as a plasmonic material due to its unique optical properties, but most work has been limited to nanostructures. We report here SPR biosensing with aluminum thin-films using the standard Kretschmann configuration that has previously been dominated by gold films. Electron-beam physical vapor deposition (EBPVD)-prepared Al films oxidize in air to form a nanofilm of Al2O3, yielding robust stability for sensing applications in buffered solutions. FDTD simulations revealed a sharp plasmonic dip in the visible range that enables measurement of both angular shift and reflection intensity change at a fixed angle. Bulk and surface tests indicated that Al films exhibited superb sensitivity performance in both categories. Compared to Au, the Al/Al2O3 layer showed a marked effect of suppressing nonspecific binding from proteins in human serum. Further characterization indicated that Al film demonstrated a higher sensitivity and a wider working range than Au films when used for SPR imaging analysis. Combined with its economic and manufacturing benefits, the Al thin-film has the potential to become a highly advantageous plasmonic substrate to meet a wide range of biosensing needs in SPR configurations.
Collapse
Affiliation(s)
- Alexander S Lambert
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Santino N Valiulis
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Alexander S Malinick
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ichiro Tanabe
- Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
15
|
Electrospun nanofiber-based cancer sensors: A review. Int J Pharm 2020; 583:119364. [DOI: 10.1016/j.ijpharm.2020.119364] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/27/2022]
|
16
|
Masson JF. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 2020; 145:3776-3800. [PMID: 32374303 DOI: 10.1039/d0an00316f] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plasmonic sensors are ideally suited for the design of small, integrated, and portable devices that can be employed in situ for the detection of analytes relevant to environmental sciences, clinical diagnostics, infectious diseases, food, and industrial applications. To successfully deploy plasmonic sensors, scaled-down analytical devices based on surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) must integrate optics, plasmonic materials, surface chemistry, fluidics, detectors and data processing in a functional instrument with a small footprint. The field has significantly progressed from the implementation of the various components in specifically designed prism-based instruments to the use of nanomaterials, optical fibers and smartphones to yield increasingly portable devices, which have been shown for a number of applications in the laboratory and deployed on site for environmental, biomedical/clinical, and food applications. A roadmap to deploy plasmonic sensors is provided by reviewing the current successes and by laying out the directions the field is currently taking to increase the use of field-deployed plasmonic sensors at the point-of-care, in the environment and in industries.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Departement de chimie, Centre Québécois sur les Matériaux Fonctionnels (CQMF) and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, QC, CanadaH3C 3J7.
| |
Collapse
|
17
|
Adhikari J, Keasberry NA, Mahadi AH, Yoshikawa H, Tamiya E, Ahmed MU. An ultra-sensitive label-free electrochemiluminescence CKMB immunosensor using a novel nanocomposite-modified printed electrode. RSC Adv 2019; 9:34283-34292. [PMID: 35529968 PMCID: PMC9074035 DOI: 10.1039/c9ra05016g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/08/2019] [Indexed: 11/23/2022] Open
Abstract
This study presents a novel and ultrasensitive electrochemiluminescence approach for the quantitative assessment of creatine kinase MB (CK-MB). Both carbon, carbon nano-onions (CNOs) and metal-based nanoparticles, such as gold nanoparticles (AuNPs) and iron oxide (Fe3O4), were combined to generate a unique nanocomposite for the detection of CKMB. The immunosensor construction involved the deposition of the nanocomposite on the working electrode, followed by the incubation of an antibody and a blocking agent. Tris(2,2'-bipyridyl)-ruthenium(ii) chloride ([Ru(bpy)3]2+Cl) was used as a luminophore, where tri-n-propylamine (TPrA) was selected as the co-reactant due to its aqueous immobility and luminescence properties. The analytical performance was demonstrated by cyclic voltammetry on ECL. The characterization of each absorbed layer was performed by cyclic voltammetry (CV) and chronocoulometry (CC) techniques in both EC and ECL. For further characterization of iron oxide, gold nanoparticles and carbon nano-onions, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were performed. The proposed immunosensor showcases a wide linear range (10 ng mL-1 to 50 fg mL-1), with an extremely low limit of detection (5 fg mL-1). This CKMB immunosensor also exhibits remarkable selectivity, reproducibility, stability and resistance capability towards common interferences available in human serum. In addition, the immunosensor holds great potential to work with real serum samples for clinical diagnosis.
Collapse
Affiliation(s)
- Juthi Adhikari
- Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link, Gadong BE 1410 Brunei Darussalam
| | - Natasha Ann Keasberry
- Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link, Gadong BE 1410 Brunei Darussalam
| | - Abdul Hanif Mahadi
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam Tungku Link, Gadong BE1410 Brunei Darussalam
| | - Hiroyuki Yoshikawa
- Nanobioengineering Laboratory, Department of Applied Physics, Graduate School of Engineering, Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Eiichi Tamiya
- Nanobioengineering Laboratory, Department of Applied Physics, Graduate School of Engineering, Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
- AIST PhotoBIO-OIL, Osaka University Suita Osaka 565-0871 Japan
| | - Minhaz Uddin Ahmed
- Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link, Gadong BE 1410 Brunei Darussalam
| |
Collapse
|
18
|
Zou B, Cheng H, Tu Y. An electrochemiluminescence immunosensor for myoglobin using an indium tin oxide glass electrode modified with gold nanoparticles and platinum nanowires. Mikrochim Acta 2019; 186:598. [DOI: 10.1007/s00604-019-3703-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/13/2019] [Indexed: 11/30/2022]
|
19
|
Thaler M, Luppa PB. Highly sensitive immunodiagnostics at the point of care employing alternative recognition elements and smartphones: hype, trend, or revolution? Anal Bioanal Chem 2019; 411:7623-7635. [PMID: 31236649 DOI: 10.1007/s00216-019-01974-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
Immunodiagnostic tests performed at the point of care (POC) today usually employ antibodies for biorecognition and are read out either visually or with specialized equipment. Availability of alternative biorecognition elements with promising features as well as smartphone-based approaches for signal readout, however, challenge the described established configuration in terms of analytical performance and practicability. Assessing these developments' clinical relevance and their impact on POC immunodiagnostics is demanding. The first part of this review will therefore give an overview on suitable diagnostic biosensors based on alternative recognition elements (such as nucleic acid-based aptamers or engineered binding proteins) and exemplify advantages and drawbacks of these biomolecules on the base of selected assays. The second part of the review then focuses on smartphone-connected diagnostics and discusses the indispensable considerations required for successful future clinical POCT implementation. Together, the joint depiction of two of the most innovative and exciting developments in the field will enable the reader to cast a glance into the distant future of POC immunodiagnostics.
Collapse
Affiliation(s)
- Markus Thaler
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar der TU München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Peter B Luppa
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar der TU München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
20
|
Lee T, Ahn JH, Choi J, Lee Y, Kim JM, Park C, Jang H, Kim TH, Lee MH. Development of the Troponin Detection System Based on the Nanostructure. MICROMACHINES 2019; 10:mi10030203. [PMID: 30909423 PMCID: PMC6470505 DOI: 10.3390/mi10030203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/17/2019] [Accepted: 03/17/2019] [Indexed: 12/23/2022]
Abstract
During the last 30 years, the World Health Organization (WHO) reported a gradual increase in the number of patients with cardiovascular disease (CVD), not only in developed but also in developing countries. In particular, acute myocardial infarction (AMI) is one of the severe CVDs because of the high death rate, damage to the body, and various complications. During these harmful effects, rapid diagnosis of AMI is key for saving patients with CVD in an emergency. The prompt diagnosis and proper treatment of patients with AMI are important to increase the survival rate of these patients. To treat patients with AMI quickly, detection of a CVD biomarker at an ultra-low concentration is essential. Cardiac troponins (cTNs), cardiac myoglobin (cMB), and creatine kinase MB are typical biomarkers for AMI detection. An increase in the levels of those biomarkers in blood implies damage to cardiomyocytes and thus is related to AMI progression. In particular, cTNs are regarded as a gold standard biomarker for AMI diagnosis. The conventional TN detection system for detection of AMI requires long measurement time and is labor-intensive and tedious. Therefore, the demand for sensitive and selective TN detection techniques is increasing at present. To meet this demand, several approaches and methods have been applied to develop a TN detection system based on a nanostructure. In the present review, the authors reviewed recent advances in TN biosensors with a focus on four detection systems: (1) An electrochemical (EC) TN nanobiosensor, (2) field effect transistor (FET)-based TN nanobiosensor, (3) surface plasmon resonance (SPR)-based TN nanobiosensor and (4) surface enhanced Raman spectroscopy (SERS)-based TN nanobiosensor.
Collapse
Affiliation(s)
- Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
| | - Jae-Hyuk Ahn
- Department of Electronic Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
| | - Jinha Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 04107, Korea.
| | - Yeonju Lee
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
| | - Jin-Myung Kim
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Korea.
| |
Collapse
|
21
|
Christodouleas DC, Kaur B, Chorti P. From Point-of-Care Testing to eHealth Diagnostic Devices (eDiagnostics). ACS CENTRAL SCIENCE 2018; 4:1600-1616. [PMID: 30648144 PMCID: PMC6311959 DOI: 10.1021/acscentsci.8b00625] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 05/09/2023]
Abstract
Point-of-care devices were originally designed to allow medical testing at or near the point of care by health-care professionals. Some point-of-care devices allow medical self-testing at home but cannot fully cover the growing diagnostic needs of eHealth systems that are under development in many countries. A number of easy-to-use, network-connected diagnostic devices for self-testing are needed to allow remote monitoring of patients' health. This Outlook highlights the essential characteristics of diagnostic devices for eHealth settings and indicates point-of-care technologies that may lead to the development of new devices. It also describes the most representative examples of simple-to-use, point-of-care devices that have been used for analysis of untreated biological samples.
Collapse
Affiliation(s)
| | - Balwinder Kaur
- Department of Chemistry, University
of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Parthena Chorti
- Department of Chemistry, University
of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
22
|
Farzin L, Shamsipur M, Samandari L, Sheibani S. Recent advances in designing nanomaterial based biointerfaces for electrochemical biosensing cardiovascular biomarkers. J Pharm Biomed Anal 2018; 161:344-376. [PMID: 30205301 DOI: 10.1016/j.jpba.2018.08.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
Early diagnosis of cardiovascular disease (CVD) is critically important for successful treatment and recovery of patients. At present, detection of CVD at early stages of its progression becomes a major issue for world health. The nanoscale electrochemical biosensors exhibit diverse outstanding properties, rendering them extremely suitable for the determination of CVD biomarkers at very low concentrations in biological fluids. The unique advantages offered by electrochemical biosensors in terms of sensitivity and stability imparted by nanostructuring the electrode surface together with high affinity and selectivity of bioreceptors have led to the development of new electrochemical biosensing strategies that have introduced as interesting alternatives to conventional methodologies for clinical diagnostics of CVD. This review provides an updated overview of selected examples during the period 2005-2018 involving electrochemical biosensing approaches and signal amplification strategies based on nanomaterials, which have been applied for determination of CVD biomarkers. The studied CVD biomarkers include AXL receptor tyrosine kinase, apolipoproteins, cholesterol, C-reactive protein (CRP), D-dimer, fibrinogen (Fib), glucose, insulin, interleukins, lipoproteins, myoglobin, N-terminal pro-B-type natriuretic peptide (BNP), tumor necrosis factor alpha (TNF-α) and troponins (Tns) on electrochemical transduction format. Identification of new specific CVD biomarkers, multiplex bioassay for the simultaneous determination of biomarkers, emergence of microfluidic biosensors, real-time analysis of biomarkers and point of care validation with high sensitivity and selectivity are the major challenges for future research.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran.
| | - Leila Samandari
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran
| |
Collapse
|
23
|
Keçili R. Selective Recognition of Myoglobin in Biological Samples Using Molecularly Imprinted Polymer-Based Affinity Traps. Int J Anal Chem 2018; 2018:4359892. [PMID: 30174693 PMCID: PMC6106809 DOI: 10.1155/2018/4359892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/21/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022] Open
Abstract
The current work demonstrates the design, characterization, and preparation of molecularly imprinted microspheres for the selective detection of myoglobin in serum samples. The suspension polymerization approach was applied for the preparation of myoglobin imprinted microspheres. For this purpose, N-methacryloylamino folic acid-Nd3+ (MAFol- Nd3+) was chosen as the complex functional monomer. The optimization studies were performed changing the medium pH, temperature, and myoglobin concentration. pH 7.0 was determined as the optimum value where the prepared imprinted microspheres displayed maximum binding for myoglobin. The maximum binding capacity was achieved as 623 mgg-1. In addition, the selectivity studies were conducted. The results confirmed that the imprinted microspheres showed great selectivity towards myoglobin in the existence of hemoglobin, cytochrome c, and lysozyme which were chosen as potentially competing proteins.
Collapse
Affiliation(s)
- Rüstem Keçili
- Anadolu University, Yunus Emre Vocational School of Health Services, Department of Medical Services and Techniques, 26470 Eskisehir, Turkey
| |
Collapse
|
24
|
Chen L, Lv D, Chen X, Liu M, Wang D, Liu Y, Hong Z, Zhu Z, Hu X, Cao Y, Yang J, Chai Y. Biosensor-Based Active Ingredients Recognition System for Screening STAT3 Ligands from Medical Herbs. Anal Chem 2018; 90:8936-8945. [PMID: 29953204 DOI: 10.1021/acs.analchem.8b01103] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Langdong Chen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Diya Lv
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Xiaofei Chen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Mingdong Liu
- Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Dongyao Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Yue Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Zhanying Hong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Xiaoxia Hu
- Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Jianmin Yang
- Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| |
Collapse
|
25
|
Sarangadharan I, Wang SL, Sukesan R, Chen PC, Dai TY, Pulikkathodi AK, Hsu CP, Chiang HHK, Liu LYM, Wang YL. Single Drop Whole Blood Diagnostics: Portable Biomedical Sensor for Cardiac Troponin I Detection. Anal Chem 2018; 90:2867-2874. [PMID: 29376635 DOI: 10.1021/acs.analchem.7b05018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Detection of disease biomarkers from whole blood is very important in disease prevention and management. However, new generation assays like point-of-care or mobile diagnostics face a myriad of challenges in detecting proteins from whole blood. In this research, we have designed, fabricated, and characterized a portable biomedical sensor for the detection of cardiac troponin I (cTnI) directly from whole blood, without sample pretreatments. The sensing methodology is based on an extended gate electrical double layer (EDL) gated field effect transistor (FET) biosensor that can offer very high sensitivity, a wide dynamic range, and high selectivity to target analyte. The sensing methodology is not impeded by electrostatic screening and can be applied to all types of FET sensors. A portable biomedical system is designed to carry out the diagnostic assay in a very simple and rapid manner, that allows the user to screen for target protein from a single drop of blood, in 5 min. This biomedical sensor can be used in hospitals and homes alike, for early detection of cTnI which is a clinical marker for acute myocardial infarction. This sensing methodology could potentially revolutionize the modern health care industry.
Collapse
Affiliation(s)
- Indu Sarangadharan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Shin-Li Wang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Revathi Sukesan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Pei-Chi Chen
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Tze-Yu Dai
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Anil Kumar Pulikkathodi
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Chen-Pin Hsu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Hui-Hua Kenny Chiang
- Department of Biomedical Engineering, National Yang Ming University , Taipei, 112, Taiwan R.O.C
| | - Lawrence Yu-Min Liu
- Division of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital , Hsinchu, 300, Taiwan R.O.C.,Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Yu-Lin Wang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C.,Department of Power Mechanical Engineering, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| |
Collapse
|
26
|
Lee JK, Wang IS, Huang CH, Chen YF, Huang NT, Lin CT. Pre-Clinical Tests of an Integrated CMOS Biomolecular Sensor for Cardiac Diseases Diagnosis. SENSORS 2017; 17:s17122733. [PMID: 29186872 PMCID: PMC5751442 DOI: 10.3390/s17122733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 11/28/2022]
Abstract
Coronary artery disease and its related complications pose great threats to human health. In this work, we aim to clinically evaluate a CMOS field-effect biomolecular sensor for cardiac biomarkers, cardiac-specific troponin-I (cTnI), N-terminal prohormone brain natriuretic peptide (NT-proBNP), and interleukin-6 (IL-6). The CMOS biosensor is implemented via a standard commercialized 0.35 μm CMOS process. To validate the sensing characteristics, in buffer conditions, the developed CMOS biosensor has identified the detection limits of IL-6, cTnI, and NT-proBNP as being 45 pM, 32 pM, and 32 pM, respectively. In clinical serum conditions, furthermore, the developed CMOS biosensor performs a good correlation with an enzyme-linked immuno-sorbent assay (ELISA) obtained from a hospital central laboratory. Based on this work, the CMOS field-effect biosensor poses good potential for accomplishing the needs of a point-of-care testing (POCT) system for heart disease diagnosis.
Collapse
Affiliation(s)
- Jen-Kuang Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Telehealth Center, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan.
| | - I-Shun Wang
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan.
| | - Yih-Fan Chen
- Insisute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Nien-Tsu Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.
| | - Chih-Ting Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
27
|
Matta DP, Tripathy S, Krishna Vanjari SR, Sharma CS, Singh SG. An ultrasensitive label free nanobiosensor platform for the detection of cardiac biomarkers. Biomed Microdevices 2017; 18:111. [PMID: 27864741 DOI: 10.1007/s10544-016-0126-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We report the fabrication of a label free nano biosensor platform comprising single nanofiber that is derived out of multi-walled carbon nanotubes (MWCNTs) embedded SU-8 photoresist, for the detection of three important human cardiac biomarkers viz., myoglobin (Myo), cardiac Troponin I (cTn I) and Creatine Kinase-MB (CK-MB). These composite nanofibers were synthesized using electrospinning process. Single nanofibers were aligned between pairs of electrodes in-situ during the electrospinning process. The target proteins were detected using chemiresistive detection methodology. Each biomarker was detected using a specific, single, aligned nanofiber, functionalized with its corresponding monoclonal antibody. Chemiresistive detection involves measuring the change in conductance of the functionalized nanofibers upon the binding of the targeted antigen. The minimum detection limits of Myo, CK-MB and cTn I were experimentally found out to be as low as 6, 20 and 50 fg/ml respectively. No response was observed when the nanofibers were exposed to a non-specific protein, demonstrating excellent specificity to the targeted detection. These MWCNTs embedded SU-8 nanofibers based nanobiosensor platform shows great promise in the detection of cardiac markers and other proteins as they have fast response time, high sensitivity and good specificity.
Collapse
Affiliation(s)
- Durga Prakash Matta
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Suryasnata Tripathy
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | | | - Chandra Shekhar Sharma
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| |
Collapse
|
28
|
Ribeiro J, Pereira C, Silva A, Sales MGF. Electrochemical detection of cardiac biomarker myoglobin using polyphenol as imprinted polymer receptor. Anal Chim Acta 2017; 981:41-52. [DOI: 10.1016/j.aca.2017.05.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 02/03/2023]
|
29
|
Affiliation(s)
- Khalil Khadim Hussain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST); Pusan National University; Busan 46241 S. Korea
| | - Jong-Min Moon
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST); Pusan National University; Busan 46241 S. Korea
| | - Deog-Su Park
- Institute of BioPhysio Sensor Technology (IBST); Pusan National University; Busan 46241 S. Korea
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST); Pusan National University; Busan 46241 S. Korea
| |
Collapse
|
30
|
Abstract
The design and application of sensors for monitoring biomolecules in clinical samples is a common goal of the sensing research community. Surface plasmon resonance (SPR) and other plasmonic techniques such as localized surface plasmon resonance (LSPR) and imaging SPR are reaching a maturity level sufficient for their application in monitoring biomolecules in clinical samples. In recent years, the first examples for monitoring antibodies, proteins, enzymes, drugs, small molecules, peptides, and nucleic acids in biofluids collected from patients afflicted with a series of medical conditions (Alzheimer's, hepatitis, diabetes, leukemia, and cancers such as prostate and breast cancers, among others) demonstrate the progress of SPR sensing in clinical chemistry. This Perspective reviews the current status of the field, showcasing a series of early successes in the application of SPR for clinical analysis and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, and comparing SPR with ELISA, while providing an outlook of the challenges currently associated with plasmonic materials, instrumentation, microfluidics, bioreceptor selection, selection of a clinical market, and validation of a clinical assay for applying SPR sensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical applications.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Département
de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
- Centre
for self-assembled chemical structures (CSACS), McGill University, 801
Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
31
|
Hui N, Sun X, Niu S, Luo X. PEGylated Polyaniline Nanofibers: Antifouling and Conducting Biomaterial for Electrochemical DNA Sensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2914-2923. [PMID: 28026927 DOI: 10.1021/acsami.6b11682] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biofouling arising from nonspecific adsorption is a substantial outstanding challenge in diagnostics and disease monitoring, and antifouling sensing interfaces capable of reducing the nonspecific adsorption of proteins from biological complex samples are highly desirable. We present herein the preparation of novel composite nanofibers through the grafting of polyethylene glycol (PEG) polymer onto polyaniline (PANI) nanofibers and their application in the development of antifouling electrochemical biosensors. The PEGylated PANI (PANI/PEG) nanofibers possessed large surface area and remained conductive and at the same time demonstrated excellent antifouling performances in single protein solutions as well as complex human serum samples. Sensitive and low fouling electrochemical biosensors for the breast cancer susceptibility gene (BRCA1) can be easily fabricated through the attachment of DNA probes to the PANI/PEG nanofibers. The biosensor showed a very high sensitivity to target BRCA1 with a linear range from 0.01 pM to 1 nM and was also efficient enough to detect DNA mismatches with satisfactory selectivity. Moreover, the DNA biosensor based on the PEGylated PANI nanofibers supported the quantification of BRCA1 in complex human serum, indicating great potential of this novel biomaterial for application in biosensors and bioelectronics.
Collapse
Affiliation(s)
- Ni Hui
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, China
| | - Xiaotian Sun
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, China
| | - Shuyan Niu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, China
| |
Collapse
|
32
|
Aubé A, Charbonneau DM, Pelletier JN, Masson JF. Response Monitoring of Acute Lymphoblastic Leukemia Patients Undergoing l-Asparaginase Therapy: Successes and Challenges Associated with Clinical Sample Analysis in Plasmonic Sensing. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alexandra Aubé
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
| | - David M. Charbonneau
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
| | - Joelle N. Pelletier
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
| | - Jean-François Masson
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
- Centre
for Self-Assembled Chemical Structures (CSACS), McGill University, 801
Sherbrooke Street West, Montreal, Québec, H3A 2K6, Canada
| |
Collapse
|
33
|
Durga Prakash M, Vanjari SRK, Sharma CS, Singh SG. Ultrasensitive, Label Free, Chemiresistive Nanobiosensor Using Multiwalled Carbon Nanotubes Embedded Electrospun SU-8 Nanofibers. SENSORS (BASEL, SWITZERLAND) 2016; 16:E1354. [PMID: 27563905 PMCID: PMC5038632 DOI: 10.3390/s16091354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/24/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
Abstract
This paper reports the synthesis and fabrication of aligned electrospun nanofibers derived out of multiwalled carbon nanotubes (MWCNTs) embedded SU-8 photoresist, which are targeted towards ultrasensitive biosensor applications. The ultrasensitivity (detection in the range of fg/mL) and the specificity of these biosensors were achieved by complementing the inherent advantages of MWCNTs such as high surface to volume ratio and excellent electrical and transduction properties with the ease of surface functionalization of SU-8. The electrospinning process was optimized to precisely align nanofibers in between two electrodes of a copper microelectrode array. MWCNTs not only enhance the conductivity of SU-8 nanofibers but also act as transduction elements. In this paper, MWCNTs were embedded way beyond the percolation threshold and the optimum percentage loading of MWCNTs for maximizing the conductivity of nanofibers was figured out experimentally. As a proof of concept, the detection of myoglobin, an important biomarker for on-set of Acute Myocardial Infection (AMI) has been demonstrated by functionalizing the nanofibers with anti-myoglobin antibodies and carrying out detection using a chemiresistive method. This simple and robust device yielded a detection limit of 6 fg/mL.
Collapse
Affiliation(s)
- Matta Durga Prakash
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502205, India.
| | - Siva Rama Krishna Vanjari
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502205, India.
| | - Chandra Shekhar Sharma
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502205, India.
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502205, India.
| |
Collapse
|
34
|
Retout M, Valkenier H, Triffaux E, Doneux T, Bartik K, Bruylants G. Rapid and Selective Detection of Proteins by Dual Trapping Using Gold Nanoparticles Functionalized with Peptide Aptamers. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00229] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maurice Retout
- Engineering
of Molecular Nanosystems, Université libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, CP165/64, B-1050 Bruxelles, Belgium
| | - Hennie Valkenier
- Engineering
of Molecular Nanosystems, Université libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, CP165/64, B-1050 Bruxelles, Belgium
| | - Eléonore Triffaux
- Chimie
Analytique et Chimie des Interfaces, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe 2, CP 255, B-1050 Bruxelles, Belgium
| | - Thomas Doneux
- Chimie
Analytique et Chimie des Interfaces, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe 2, CP 255, B-1050 Bruxelles, Belgium
| | - Kristin Bartik
- Engineering
of Molecular Nanosystems, Université libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, CP165/64, B-1050 Bruxelles, Belgium
| | - Gilles Bruylants
- Engineering
of Molecular Nanosystems, Université libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, CP165/64, B-1050 Bruxelles, Belgium
| |
Collapse
|
35
|
Lee HY, Choi JS, Guruprasath P, Lee BH, Cho YW. An Electrochemical Biosensor Based on a Myoglobin-specific Binding Peptide for Early Diagnosis of Acute Myocardial Infarction. ANAL SCI 2016; 31:699-704. [PMID: 26165294 DOI: 10.2116/analsci.31.699] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, a simple, highly sensitive electrochemical biosensor for myoglobin was developed using a myoglobin-specific binding peptide as a sensing probe. A peptide (Myo-3R7, CPSTLGASC, 838 Da) identified by phage display and that specifically binds to myoglobin was covalently immobilized on a gold electrode functionalized via a dithiobis(succinimidyl propionate) (DSP) self-assembled monolayer (SAM). The peptide immobilization was confirmed with fluorescence microarray scanning and cyclic voltammetry (CV). The electrochemical performance of the biosensor with respect to myoglobin was characterized by CV and differential pulse voltammetry (DPV) using Fe(CN)6(3-)/Fe(CN)6(4-) as a redox probe. We successfully detected myoglobin in a broad working range of 17.8 to 1780 ng mL(-1) with a correlation coefficient (R(2)) of 0.998. The estimated limit of detection (LOD) was fairly low, 9.8 ng mL(-1) in 30 min. The electrochemical biosensor based on a myoglobin-specific binding peptide offers sensitivity, selectivity, and rapidity, making it an attractive tool for the early detection of cardiac infarction.
Collapse
|
36
|
Affiliation(s)
- Xu Han
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| | - Shanghao Li
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| | - Zhili Peng
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| | - Abdelhameed M. Othman
- Department
of Chemistry, Faculty of Science at Yanbu, Taibah University, P.O. Box 344, Medina, Kingdom of Saudi Arabia
| | - Roger Leblanc
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| |
Collapse
|
37
|
Identification of peptide inhibitors of penicillinase using a phage display library. Anal Biochem 2016; 494:4-9. [DOI: 10.1016/j.ab.2015.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/18/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
|
38
|
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms. Sci Rep 2015; 5:12864. [PMID: 26255778 PMCID: PMC4542615 DOI: 10.1038/srep12864] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/10/2015] [Indexed: 12/17/2022] Open
Abstract
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.
Collapse
|
39
|
Kim S, Lee HJ. Direct Detection of α-1 Antitrypsin in Serum Samples using Surface Plasmon Resonance with a New Aptamer-Antibody Sandwich Assay. Anal Chem 2015; 87:7235-40. [PMID: 26070325 DOI: 10.1021/acs.analchem.5b01192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The challenges associated with performing surface plasmon resonance (SPR) based measurements in serum and other biofluids have continued to limit the applicability of this valuable sensing technology for sensitive bioaffinity measurements of proteins in clinically relevant samples. In this paper, a new sandwich assay is introduced for the quantitative SPR analysis of α-1 antitrypsin (AAT), which is a recognized biomarker for Alzheimer's disease. Detection was performed via the specific adsorption of AAT onto a gold chip surface modified with a DNA aptamer. The measurement dynamic range and also sensitivity in serum were improved with the subsequent surface binding of antiAAT. A methodology was established to measure the target protein in serum, albumin and immunoglobulin G (IgG) solutions with the results correlated with measurements in buffer only. A comparison between SPR and enzyme-linked immunosorbent assay (ELISA) measurements was also made. The detection of AAT in serum at clinically relevant concentrations was demonstrated with target concentrations as low as 10 fM readily achievable.
Collapse
Affiliation(s)
- Suhee Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 702-701, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 702-701, Republic of Korea
| |
Collapse
|
40
|
Lee S, Kwon D, Yim C, Jeon S. Facile Detection of Troponin I Using Dendritic Platinum Nanoparticles and Capillary Tube Indicators. Anal Chem 2015; 87:5004-8. [DOI: 10.1021/acs.analchem.5b00921] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sanghee Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro,
Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Donghoon Kwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro,
Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Changyong Yim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro,
Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro,
Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| |
Collapse
|
41
|
Zou Q, Kegel LL, Booksh KS. Electrografted Diazonium Salt Layers for Antifouling on the Surface of Surface Plasmon Resonance Biosensors. Anal Chem 2015; 87:2488-94. [DOI: 10.1021/ac504513a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiongjing Zou
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Laurel L. Kegel
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Karl S. Booksh
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
42
|
Sensitive point-of-care monitoring of cardiac biomarker myoglobin using aptamer and ubiquitous personal glucose meter. Biosens Bioelectron 2014; 64:161-4. [PMID: 25216451 DOI: 10.1016/j.bios.2014.08.079] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/08/2014] [Accepted: 08/27/2014] [Indexed: 11/20/2022]
Abstract
Myoglobin (Myo), which is one of the early markers to increase after acute myocardial infarction (AMI), plays a major role in urgent diagnosis of cardiovascular diseases. Hence, monitoring of Myo in point-of-care is fundamental. Here, a novel assay for sensitive and selective detection of Myo was introduced using a personal glucose meter (PGM) as readout. In the presence of Myo, the anti-Myo antibody immobilized on the surface of polystyrene microplate could capture the target Myo. Then the selected aptamer against Myo, which was obtained using our screening process, was conjugated with invertase, and such aptamer-invertase conjugates bound to the immobilized Myo due to the Myo/aptamer interaction. Subsequently, the resulting "antibody-Myo-aptamer sandwich" complex containing invertase conjugates hydrolyzed sucrose into glucose, thus establishing direct correlation between the Myo concentration and the amount of glucose measured by PGM. By employing the enzyme amplification, as low as 50 pM Myo could be detected. This assay also showed high selectivity for Myo and was successfully used for Myo detection in serum samples. This work may provide a simple but reliable tool for early diagnosis of AMI in the world, especially in developing countries.
Collapse
|
43
|
Wang Q, Liu W, Xing Y, Yang X, Wang K, Jiang R, Wang P, Zhao Q. Screening of DNA aptamers against myoglobin using a positive and negative selection units integrated microfluidic chip and its biosensing application. Anal Chem 2014; 86:6572-9. [PMID: 24914856 DOI: 10.1021/ac501088q] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An aptamer screening method using a positive and negative selection units integrated microfluidic chip was introduced. Here, myoglobin (Myo), one of the early markers to increase after acute myocardial infarction, was used as the model. After 7-round selection, the aptamers, which exhibited dissociation constants (K(d)) in the nanomolar range (from 4.93 to 6.38 nM), were successfully obtained using a positive and negative selection units integrated microfluidic chip. The aptamer with the highest affinity (K(d) = 4.93 nM) was then used for the fabrication of a label-free supersandwich electrochemical biosensor for Myo detection based on target-induced aptamer displacement. The detection limit of this aptamer-based electrochemical biosensor was 10 pM, which was significantly lower than that of those previous antibody-based biosensors for Myo detection. This work may not only develop a strategy for screening aptamer but also offer promising alternatives to the traditional analytical and immunological methods for Myo detection.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha, Hunan 410082, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mariani S, Minunni M. Surface plasmon resonance applications in clinical analysis. Anal Bioanal Chem 2014; 406:2303-23. [PMID: 24566759 PMCID: PMC7080119 DOI: 10.1007/s00216-014-7647-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/20/2022]
Abstract
In the last 20 years, surface plasmon resonance (SPR) and its advancement with imaging (SPRi) emerged as a suitable and reliable platform in clinical analysis for label-free, sensitive, and real-time monitoring of biomolecular interactions. Thus, we report in this review the state of the art of clinical target detection with SPR-based biosensors in complex matrices (e.g., serum, saliva, blood, and urine) as well as in standard solution when innovative approaches or advanced instrumentations were employed for improved detection. The principles of SPR-based biosensors are summarized first, focusing on the physical properties of the transducer, on the assays design, on the immobilization chemistry, and on new trends for implementing system analytical performances (e.g., coupling with nanoparticles (NPs). Then we critically review the detection of analytes of interest in molecular diagnostics, such as hormones (relevant also for anti-doping control) and biomarkers of interest in inflammatory, cancer, and heart failure diseases. Antibody detection is reported in relation to immune disorder diagnostics. Subsequently, nucleic acid targets are considered for revealing genetic diseases (e.g., point mutation and single nucleotides polymorphism, SNPs) as well as new emerging clinical markers (microRNA) and for pathogen detection. Finally, examples of pathogen detection by immunosensing were also analyzed. A parallel comparison with the reference methods was duly made, indicating the progress brought about by SPR technologies in clinical routine analysis.
Collapse
Affiliation(s)
- Stefano Mariani
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI Italy
| | - Maria Minunni
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI Italy
- Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 50019 Sesto Fiorentino, FI Italy
| |
Collapse
|
45
|
Couture M, Zhao SS, Masson JF. Modern surface plasmon resonance for bioanalytics and biophysics. Phys Chem Chem Phys 2013; 15:11190-216. [DOI: 10.1039/c3cp50281c] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Menegazzo N, Kegel LL, Kim YC, Allen DL, Booksh KS. Adaptable infrared surface plasmon resonance spectroscopy accessory. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:095113. [PMID: 23020425 DOI: 10.1063/1.4752463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A second generation prototype enabling surface plasmon resonance spectroscopic measurements in the infrared (IR) range is described. The new design (v2) uses the optical train (optics and detector) within conventional FT-IR spectrometers by confining dimensions of the accessory to space available within the sample compartment of the spectrometer. The v2 accessory builds upon knowledge gained from a previous version that was based on a modified commercial variable angle spectroscopic accessory and addresses observed limitations of the original design-improved temporal stability and measurement acquisition speed, crucial to biomolecular binding studies, as well as optical flexibility, a requirement for investigations of novel plasmon-supporting materials. Different aspects of the accessory, including temporal stability, mechanical resilience, and sensitivity to changes in refractive index of a sample were evaluated and presented in this contribution.
Collapse
Affiliation(s)
- Nicola Menegazzo
- Department of Chemistry and Biochemistry, University of Delaware, 002 Lammot Dupont Laboratory, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
47
|
Lee I, Luo X, Huang J, Cui XT, Yun M. Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors. BIOSENSORS-BASEL 2012; 2:205-20. [PMID: 25585711 PMCID: PMC4263570 DOI: 10.3390/bios2020205] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/20/2012] [Accepted: 04/25/2012] [Indexed: 12/04/2022]
Abstract
The detection of myoglobin (Myo), cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), and b-type natriuretic peptide (BNP) plays a vital role in diagnosing cardiovascular diseases. Here we present single site-specific polyaniline (PANI) nanowire biosensors that can detect cardiac biomarkers such as Myo, cTnI, CK-MB, and BNP with ultra-high sensitivity and good specificity. Using single PANI nanowire-based biosensors integrated with microfluidic channels, very low concentrations of Myo (100 pg/mL), cTnI (250 fg/mL), CK-MB (150 fg/mL), and BNP (50 fg/mL) were detected. The single PANI nanowire-based biosensors displayed linear sensing profiles for concentrations ranging from hundreds (fg/mL) to tens (ng/mL). In addition, devices showed a fast (few minutes) response satisfying respective reference conditions for Myo, cTnI, CK-MB, and BNP diagnosis of heart failure and for determining the stage of the disease. This single PANI nanowire-based biosensor demonstrated superior biosensing reliability with the feasibility of label free detection and improved processing cost efficiency due to good biocompatibility of PANI to monoclonal antibodies (mAbs). Therefore, this development of single PANI nanowire-based biosensors can be applied to other biosensors for cancer or other diseases.
Collapse
Affiliation(s)
- Innam Lee
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Xiliang Luo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Jiyong Huang
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Minhee Yun
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
48
|
Breault-Turcot J, Masson JF. Nanostructured substrates for portable and miniature SPR biosensors. Anal Bioanal Chem 2012; 403:1477-84. [PMID: 22526642 DOI: 10.1007/s00216-012-5963-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/21/2012] [Accepted: 03/21/2012] [Indexed: 12/30/2022]
Abstract
Surface plasmon resonance (SPR) biosensing has matured into a valuable analytical technique for measurements related to biomolecules, environmental contaminants, and the food industry. Contemporary SPR instruments are mainly suitable for laboratory-based measurements. However, several point-of-measurement applications would benefit from simple, small, portable and inexpensive sensors to assess the health condition of a patient, potential environmental contamination, or food safety issues. This Trend article explores nanostructured substrates for improving the sensitivity of classical SPR instruments and nanoparticle (NP)-based colorimetric substrates that may provide a solution to the development of point-of-measurement SPR techniques. Novel nanomaterials and methodology capable of enhancing the sensitivity of classical SPR sensors are destined to improve the limits of detection of miniature SPR instruments to the level required for most applications. In a different approach, paper or substrate-based SPR assays based on NPs, are a highly promising topic of research that may facilitate the widespread use of a novel class of miniature and portable SPR instruments.
Collapse
Affiliation(s)
- Julien Breault-Turcot
- Departement de chimie, Universite de Montreal, C.P. 6128 Succ. Centre-Ville, Montreal, Qc H3C 3J7, Canada
| | | |
Collapse
|
49
|
Wang J, Banerji S, Menegazzo N, Peng W, Zou Q, Booksh KS. Glucose detection with surface plasmon resonance spectroscopy and molecularly imprinted hydrogel coatings. Talanta 2011; 86:133-41. [DOI: 10.1016/j.talanta.2011.08.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
|
50
|
Nandhikonda P, Heagy MD. An abiotic fluorescent probe for cardiac troponin I. J Am Chem Soc 2011; 133:14972-4. [PMID: 21863849 DOI: 10.1021/ja205211a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first ratiometric fluorescent reporter was designed for the detection of cardiac troponin I (cTnI), a key protein elicited during cardiac muscle cell death. In designing this abiotic fluorescent probe, docking simulation studies were performed to predict the probe/protein interactions along the solvent exposed regions of cTnI. Simple cuvette titration experiments in aqueous buffered solution indicate remarkable selectivity for cardiac troponin in the clinically relevant nM region versus skeletal troponin.
Collapse
Affiliation(s)
- Premchendar Nandhikonda
- Department of Chemistry, New Mexico Institute of Mining & Technology, Socorro, New Mexico 87801, United States
| | | |
Collapse
|