1
|
Smetanina MA, Oscorbin IP, Shadrina AS, Sevost'ianova KS, Korolenya VA, Gavrilov KA, Shevela AI, Shirshova AN, Oskina NA, Zolotukhin IA, Filipenko ML. Quantitative and structural characteristics of mitochondrial DNA in varicose veins. Vascul Pharmacol 2022; 145:107021. [PMID: 35690235 DOI: 10.1016/j.vph.2022.107021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/09/2022] [Accepted: 06/04/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We examined quantitative (in terms of mtDNA/nuclear DNA) and structural (in terms of common deletions in the MT-ND4 gene region) characteristics of mitochondrial DNA (mtDNA) in varicose veins (VVs) and venous wall layers by comparing mitochondrial genome parameters, as well as mitochondrial function (in terms of mitochondrial membrane potential (MtMP)), in varicose vein (VV) vs. non-varicose vein (NV) tissue samples. METHODS We analyzed paired great saphenous vein samples (VV vs. NV segments from each patient left after venous surgery) harvested from patients with VVs. Relative mtDNA level and the proportion of no-deletion mtDNA were determined by a multiplex quantitative PCR (qPCR), confirming the latter with a more sensitive method - droplet digital PCR (ddPCR). Mitochondria's functional state in VVs was assessed using fluorescent (dependent on MtMP) live-staining of mitochondria in venous tissues. RESULTS Total mtDNA level was lower in VV than in NV samples (predominantly in the t. media layer). ddPCR analysis showed lower proportion of no-deletion mtDNA in VVs. Because of the decrease in relative MtMP in VVs, our results suggest a possible reduction of mitochondrial function in VVs. CONCLUSION Quantitative and structural changes (copy number and integrity) of mtDNA are plausibly involved in VV pathogenesis. Future clinical studies implementing the mitochondrial targeting may be eventually fostered after auxiliary mechanistic studies.
Collapse
Affiliation(s)
- Mariya A Smetanina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Fundamental Medicine of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Igor P Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexandra S Shadrina
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | - Kseniya S Sevost'ianova
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Valeria A Korolenya
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin A Gavrilov
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Andrey I Shevela
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Arina N Shirshova
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Natalya A Oskina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Igor A Zolotukhin
- Department of Faculty Surgery, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Laboratory of Molecular Diagnostics Development, Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Qi S, Jin Z, Jian Y, Hou Y, Li C, Zhao Y, Wang X, Zhou Q. Photo-induced mitochondrial DNA damage and NADH depletion by -NO 2 modified Ru(II) complexes. Chem Commun (Camb) 2021; 57:4162-4165. [PMID: 33908442 DOI: 10.1039/d1cc00258a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two mitochondria-localized Ru(ii) complexes with photo-labile ligands were reported to exert one- and two-photon activatable anticancer activity through a dual-function mechanism, i.e. mitochondrial DNA covalent binding after photo-induced ligand dissociation and photo-catalyzed NADH depletion, thus displaying good activity towards cisplatin-resistant cancer cells under both normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Shuang Qi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhihui Jin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yao Jian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuanjun Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Chao Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yao Zhao
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
3
|
Zhang W, Li N, Zeng H, Nakajima H, Lin JM, Uchiyama K. Inkjet Printing Based Separation of Mammalian Cells by Capillary Electrophoresis. Anal Chem 2017; 89:8674-8677. [DOI: 10.1021/acs.analchem.7b02624] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Weifei Zhang
- Department of Applied
Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Nan Li
- Department
of Chemistry, Beijing Key Laboratory of Microanalytical Methods and
Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry
and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Hulie Zeng
- Department of Applied
Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Hizuru Nakajima
- Department of Applied
Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Jin-Ming Lin
- Department
of Chemistry, Beijing Key Laboratory of Microanalytical Methods and
Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry
and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Katsumi Uchiyama
- Department of Applied
Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
4
|
Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8060949. [PMID: 28680532 PMCID: PMC5478868 DOI: 10.1155/2017/8060949] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 04/03/2017] [Indexed: 11/18/2022]
Abstract
Mitochondria preserve very complex and distinctively unique machinery to maintain and express the content of mitochondrial DNA (mtDNA). Similar to chromosomes, mtDNA is packaged into discrete mtDNA-protein complexes referred to as a nucleoid. In addition to its role as a mtDNA shield, over 50 nucleoid-associated proteins play roles in mtDNA maintenance and gene expression through either temporary or permanent association with mtDNA or other nucleoid-associated proteins. The number of mtDNA(s) contained within a single nucleoid is a fundamental question but remains a somewhat controversial issue. Disturbance in nucleoid components and mutations in mtDNA were identified as significant in various diseases, including carcinogenesis. Significant interest in the nucleoid structure and its regulation has been stimulated in relation to mitochondrial diseases, which encompass diseases in multicellular organisms and are associated with accumulation of numerous mutations in mtDNA. In this review, mitochondrial nucleoid structure, nucleoid-associated proteins, and their regulatory roles in mitochondrial metabolism are briefly addressed to provide an overview of the emerging research field involving mitochondrial biology.
Collapse
|
5
|
Victor AR, Brake AJ, Tyndall JC, Griffin DK, Zouves CG, Barnes FL, Viotti M. Accurate quantitation of mitochondrial DNA reveals uniform levels in human blastocysts irrespective of ploidy, age, or implantation potential. Fertil Steril 2016; 107:34-42.e3. [PMID: 27793366 DOI: 10.1016/j.fertnstert.2016.09.028] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To accurately determine mitochondrial DNA (mtDNA) levels in human blastocysts. DESIGN Retrospective analysis. SETTING IVF clinic. PATIENT(S) A total of 1,396 embryos derived from 259 patients. INTERVENTION(S) Blastocyst-derived trophectoderm biopsies were tested by next-generation sequencing (NGS) and quantitative real-time polymerase chain reaction (qPCR). MAIN OUTCOME MEASURE(S) For each sample the mtDNA value was divided by the nuclear DNA value, and the result was further subjected to mathematical analysis tailored to the genetic makeup of the source embryo. RESULT(S) On average the mathematical correction factor changed the conventionally determined mtDNA score of a given blastocyst via NGS by 1.43% ± 1.59% (n = 1,396), with maximal adjustments of 17.42%, and via qPCR by 1.33% ± 8.08% (n = 150), with maximal adjustments of 50.00%. Levels of mtDNA in euploid and aneuploid embryos showed a statistically insignificant difference by NGS (euploids n = 775, aneuploids n = 621) and by qPCR (euploids n = 100, aneuploids n = 50). Blastocysts derived from younger or older patients had comparable mtDNA levels by NGS ("young" age group n = 874, "advanced" age group n = 514) and by qPCR ("young" age group n = 92, "advanced" age group n = 58). Viable blastocysts did not contain significantly different mtDNA levels compared with unviable blastocysts when analyzed by NGS (implanted n = 101, nonimplanted n = 140) and by qPCR (implanted n = 49, nonimplanted n = 51). CONCLUSION(S) We recommend implementation of the correction factor calculation to laboratories evaluating mtDNA levels in embryos by NGS or qPCR. When applied to our in-house data, the calculation reveals that overall levels of mtDNA are largely equal between blastocysts stratified by ploidy, age, or implantation potential.
Collapse
Affiliation(s)
| | - Alan J Brake
- Zouves Fertility Center, Foster City, California
| | | | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | | | |
Collapse
|
6
|
Lacedonia D, Carpagnano GE, Crisetti E, Cotugno G, Palladino GP, Patricelli G, Sabato R, Foschino Barbaro MP. Mitochondrial DNA alteration in obstructive sleep apnea. Respir Res 2015; 16:47. [PMID: 25890226 PMCID: PMC4392628 DOI: 10.1186/s12931-015-0205-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/13/2015] [Indexed: 11/19/2022] Open
Abstract
Background Obstructive Sleep Apnea (OSAS) is a disease associated with the increase of cardiovascular risk and it is characterized by repeated episodes of Intermittent Hypoxia (IH) which inducing oxidative stress and systemic inflammation. Mitochondria are cell organelles involved in the respiratory that have their own DNA (MtDNA). The aim of this study was to investigate if the increase of oxidative stress in OSAS patients can induce also MtDNA alterations. Methods 46 OSAS patients (age 59.27 ± 11.38; BMI 30.84 ± 3.64; AHI 36.63 ± 24.18) were compared with 36 control subjects (age 54.42 ± 6.63; BMI 29.06 ± 4.7; AHI 3.8 ± 1.10). In blood cells Content of MtDNA and nuclear DNA (nDNA) was measured in OSAS patients by Real Time PCR. The ratio between MtDNA/nDNA was then calculated. Presence of oxidative stress was evaluated by levels of Reactive Oxygen Metabolites (ROMs), measured by diacron reactive oxygen metabolite test (d-ROM test). Results MtDNA/nDNA was higher in patients with OSAS than in the control group (150.94 ± 49.14 vs 128.96 ± 45.8; p = 0.04), the levels of ROMs were also higher in OSAS subjects (329.71 ± 70.17 vs 226 ± 36.76; p = 0.04) and they were positively correlated with MtDNA/nDNA (R = 0.5, p < 0.01). Conclusions In OSAS patients there is a Mitochondrial DNA damage induced by the increase of oxidative stress. Intermittent hypoxia seems to be the main mechanism which leads to this process.
Collapse
Affiliation(s)
- Donato Lacedonia
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Viale degli Aviatori, Foggia, 71100, Italy.
| | - Giovanna E Carpagnano
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Viale degli Aviatori, Foggia, 71100, Italy.
| | - Elisabetta Crisetti
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Viale degli Aviatori, Foggia, 71100, Italy.
| | - Grazia Cotugno
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Viale degli Aviatori, Foggia, 71100, Italy.
| | - Grazia P Palladino
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Viale degli Aviatori, Foggia, 71100, Italy.
| | - Giulia Patricelli
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Viale degli Aviatori, Foggia, 71100, Italy.
| | - Roberto Sabato
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Viale degli Aviatori, Foggia, 71100, Italy.
| | - Maria P Foschino Barbaro
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Viale degli Aviatori, Foggia, 71100, Italy.
| |
Collapse
|
7
|
Taylor TH, Frost NW, Bowser MT, Arriaga EA. Analysis of individual mitochondria via fluorescent immunolabeling with Anti-TOM22 antibodies. Anal Bioanal Chem 2014; 406:1683-91. [PMID: 24481619 DOI: 10.1007/s00216-013-7593-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/11/2013] [Accepted: 12/19/2013] [Indexed: 01/08/2023]
Abstract
Mitochondria are responsible for maintaining a variety of cellular functions. One such function is the interaction and subsequent import of proteins into these organelles via the translocase of outer membrane (TOM) complex. Antibodies have been used to analyze the presence and function of proteins comprising this complex, but have not been used to investigate variations in the abundance of TOM complex in mitochondria. Here, we report on the feasibility of using capillary cytometry with laser-induced fluorescence to detect mitochondria labeled with antibodies targeting the TOM complex and to estimate the number of antibodies that bind to these organelles. Mitochondria were fluorescently labeled with DsRed2, while antibodies targeting the TOM22 protein, one of nine proteins comprising the TOM complex, were conjugated to the Atto-488 fluorophore. At typical labeling conditions, 94% of DsRed2 mitochondria were also immunofluorescently labeled with Atto-488 Anti-TOM22 antibodies. The calculated median number of Atto-488 Anti-TOM22 antibodies bound to the surface of mitochondria was ∼2,000 per mitochondrion. The combination of fluorescent immunolabeling and capillary cytometry could be further developed to include multicolor labeling experiments, which enable monitoring several molecular targets at the same time in the same or different organelle types.
Collapse
Affiliation(s)
- Thane H Taylor
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | | | | |
Collapse
|
8
|
Shen F, Huang W, Qi JH, Yuan BF, Huang JT, Zhou X, Feng YQ, Liu YJ, Liu SM. Association of 5-methylcytosine and 5-hydroxymethylcytosine with mitochondrial DNA content and clinical and biochemical parameters in hepatocellular carcinoma. PLoS One 2013; 8:e76967. [PMID: 24143196 PMCID: PMC3797098 DOI: 10.1371/journal.pone.0076967] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/30/2013] [Indexed: 01/24/2023] Open
Abstract
Increasing epidemiological evidence has indicated that inherited variations of mitochondrial DNA (mtDNA) copy number affect the genetic susceptibility of many malignancies in a tumour-specific manner and that DNA methylation also plays an important role in controlling gene expression during the differentiation and development of hepatocellular carcinoma (HCC). Our previous study demonstrated that HCC tissues showed a lower 5-hydroxymethylcytosine (5-hmC) content when compared to tumour-adjacent tissues, but the relationship among 5-hmC, 5-methylcytosine (5-mC) and mtDNA content in HCC patients is still unknown. This study aimed to clarify the correlation among mtDNA content, 5-mC and 5-hmC by quantitative real-time PCR and liquid chromatography tandem mass spectrometry analysis. We demonstrated that 5-hmC correlated with tumour size [odds ratio (OR) 0.847, 95% confidence interval (CI) 0.746–0.962, P = 0.011], and HCC patients with a tumour size ≥5.0 cm showed a lower 5-hmC content and higher levels of fasting plasma aspartate aminotransferase, the ratio of alanine amiotransferase to aspartate aminotransferase, γ-glutamyltransferase, alpha-fetoprotein than those with a tumour size <5 cm (all P<0.05). We further revealed that the mtDNA content of HCC tumour tissues was 225.97(105.42, 430.54) [median (25th Percentile, 75th Percentile)] and was negatively correlated with 5-mC content (P = 0.035), but not 5-hmC content, in genomic DNA from HCC tumour tissues.
Collapse
Affiliation(s)
- Fan Shen
- Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei, China
| | - Jia-Hui Qi
- Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei, China
| | - Jing-Tao Huang
- Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Zhou
- Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei, China
| | - Ying-Juan Liu
- Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Song-Mei Liu
- Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
9
|
Kukat C, Larsson NG. mtDNA makes a U-turn for the mitochondrial nucleoid. Trends Cell Biol 2013; 23:457-63. [PMID: 23721879 DOI: 10.1016/j.tcb.2013.04.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 11/29/2022]
Abstract
Mitochondria contain mtDNA derived from the ancestral endosymbiont genome. Important subunits of the oxidative phosphorylation system, which supplies cells with the energy currency ATP, are encoded by mtDNA. A naked mtDNA molecule is longer than a typical mitochondrion and is therefore compacted in vivo to form a nucleoprotein complex, denoted the mitochondrial nucleoid. Mitochondrial transcription factor A (TFAM) is the main factor packaging mtDNA into nucleoids and is also essential for mtDNA transcription initiation. The crystal structure of TFAM shows that it bends mtDNA in a sharp U-turn, which likely provides the structural basis for its dual functions. Super-resolution imaging studies have revealed that the nucleoid has an average diameter of ∼100nm and frequently contains a single copy of mtDNA. In this review the structure of the mitochondrial nucleoid and its possible regulatory roles in mtDNA expression will be discussed.
Collapse
Affiliation(s)
- Christian Kukat
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
| | | |
Collapse
|
10
|
Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MM, Arriaga EA. Bioanalysis of eukaryotic organelles. Chem Rev 2013; 113:2733-811. [PMID: 23570618 PMCID: PMC3676536 DOI: 10.1021/cr300354g] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chad P. Satori
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Michelle M. Henderson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Elyse A. Krautkramer
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Vratislav Kostal
- Tescan, Libusina trida 21, Brno, 623 00, Czech Republic
- Institute of Analytical Chemistry ASCR, Veveri 97, Brno, 602 00, Czech Republic
| | - Mark M. Distefano
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Edgar A. Arriaga
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| |
Collapse
|
11
|
Satori CP, Kostal V, Arriaga EA. Review on recent advances in the analysis of isolated organelles. Anal Chim Acta 2012; 753:8-18. [PMID: 23107131 PMCID: PMC3484375 DOI: 10.1016/j.aca.2012.09.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/22/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
The analysis of isolated organelles is one of the pillars of modern bioanalytical chemistry. This review describes recent developments on the isolation and characterization of isolated organelles both from living organisms and cell cultures. Salient reports on methods to release organelles focused on reproducibility and yield, membrane isolation, and integrated devices for organelle release. New developments on organelle fractionation after their isolation were on the topics of centrifugation, immunocapture, free flow electrophoresis, flow field-flow fractionation, fluorescence activated organelle sorting, laser capture microdissection, and dielectrophoresis. New concepts on characterization of isolated organelles included atomic force microscopy, optical tweezers combined with Raman spectroscopy, organelle sensors, flow cytometry, capillary electrophoresis, and microfluidic devices.
Collapse
Affiliation(s)
- Chad P Satori
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
12
|
Malik AN, Czajka A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 2012; 13:481-92. [PMID: 23085537 DOI: 10.1016/j.mito.2012.10.011] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is central to numerous diseases of oxidative stress. Changes in mitochondrial DNA (MtDNA) content, often measured as mitochondrial genome to nuclear genome ratio (Mt/N) using real time quantitative PCR, have been reported in a broad range of human diseases, such as diabetes and its complications, obesity, cancer, HIV complications, and ageing. We propose the hypothesis that MtDNA content in body fluids and tissues could be a biomarker of mitochondrial dysfunction and review the evidence supporting this theory. Increased reactive oxygen species resulting from an external trigger such as hyperglycaemia or increased fat in conditions of oxidative stress could lead to enhanced mitochondrial biogenesis, and increased Mt/N. Altered MtDNA levels may contribute to enhanced oxidative stress and inflammation and could play a pathogenic role in mitochondrial dysfunction and disease. Changes in Mt/N are detectable in circulating cells such as peripheral blood mononuclear cells and these could be used as surrogate to predict global changes in tissues and organs. We review a large number of studies reporting changes in MtDNA levels in body fluids such as circulating blood cells, cell free serum, saliva, sperm, and cerebrospinal fluid as well as in tumour and normal tissue samples. However, the data are often conflicting as the current methodology used to measure Mt/N can give false results because of one or more of the following reasons (1) use of mitochondrial primers which co-amplify nuclear pseudogenes (2) use of nuclear genes which are variable and/or duplicated in numerous locations (3) a dilution bias caused by the differing genome sizes of the mitochondrial and nuclear genome and (4) template preparation protocols which affect the yields of nuclear and mitochondrial genomes. Development of robust and reproducible methodology is needed to test the hypothesis that MtDNA content in body fluids is biomarker of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Afshan N Malik
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, School of Medicine, King's college London, London, UK.
| | | |
Collapse
|
13
|
Ding S, Riddoch-Contreras J, Contrevas JR, Abramov AY, Qi Z, Duchen MR. Mild stress of caffeine increased mtDNA content in skeletal muscle cells: the interplay between Ca2+ transients and nitric oxide. J Muscle Res Cell Motil 2012; 33:327-37. [PMID: 22926241 DOI: 10.1007/s10974-012-9318-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/10/2012] [Indexed: 10/28/2022]
Abstract
Caffeine increases mitochondrial biogenesis in myotubes by evoking Ca(2+) transients. Nitric oxide (NO) also induces mitochondrial biogenesis in skeletal muscle cells via upregulation of AMP-activated protein kinase (AMPK) activity and PGC-1α. However, the interplay and timing sequence between Ca(2+) transients and NO releases remain unclear. Herein, we tested the hypothesis that caffeine-evoked Ca(2+) transients triggered NO production to increase mtDNA in skeletal muscle cells. Ca(2+) transients were recorded with Fura-2 AM and confocal microscopy; mtDNA staining, mitochondrial membrane potential and NO level were determined using fluorescent probes PicoGreen, tetramethylrhodamine methyl ester (TMRM) and DAF-FM, respectively. In primary cultured myotubes, a subtle and moderate stress of caffeine increased mtDNA exclusively. Mitochondrial membrane potential and mtDNA were increased by 1 mM as well as 5 mM caffeine, whereas 10 mM caffeine did not change the fluorescence intensity of PicoGreen and TMRM. NO level in myocytes increased gradually following the first jump of Ca(2+) transients evoked by caffeine (5 mM) till the end of recording, when Fura-2 indicated that Ca(2+) transients recovered partly and even disappeared. Importantly, nitric oxide synthase (NOS) inhibitor (L-NAME) suppressed caffeine-induced mtDNA biogenesis, whereas NO donor (DETA-NO) increased mtDNA content. These data strongly suggest that caffeine-induced mtDNA biogenesis is dose-sensitive and dependent on a certain level of stress. Further, an increasing level of NO following Ca(2+) transients is required for caffeine-induced mtDNA biogenesis. Additionally, Ca(2+) transients, a usual and first response to caffeine, was either suppressed or attenuated by L-NAME, DETA-NO, AICAR and U0126, suggesting an inability to control [Ca(2+)](i) in these treated cells. There may be an important interplay between NO and Ca(2+) transients in intracellular signaling system involving NOS, AMPK and MEK.
Collapse
Affiliation(s)
- Shuzhe Ding
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education of China, East China Normal University, Shanghai 200241, China.
| | | | | | | | | | | |
Collapse
|
14
|
Zhang S, Zhu S, Yang L, Zheng Y, Gao M, Wang S, Zeng JZ, Yan X. High-Throughput Multiparameter Analysis of Individual Mitochondria. Anal Chem 2012; 84:6421-8. [DOI: 10.1021/ac301464x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shuyue Zhang
- The Key Laboratory
of Analytical Science, The Key Laboratory for Chemical Biology of
Fujian Province, Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Shaobin Zhu
- The Key Laboratory
of Analytical Science, The Key Laboratory for Chemical Biology of
Fujian Province, Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Lingling Yang
- The Key Laboratory
of Analytical Science, The Key Laboratory for Chemical Biology of
Fujian Province, Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Yan Zheng
- The Key Laboratory
of Analytical Science, The Key Laboratory for Chemical Biology of
Fujian Province, Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Min Gao
- The Key Laboratory
of Analytical Science, The Key Laboratory for Chemical Biology of
Fujian Province, Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Shuo Wang
- The Key Laboratory
of Analytical Science, The Key Laboratory for Chemical Biology of
Fujian Province, Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Jin-zhang Zeng
- School of Pharmaceutical
Sciences and Institute for Biomedical Research, Xiamen University, People’s Republic of China
| | - Xiaomei Yan
- The Key Laboratory
of Analytical Science, The Key Laboratory for Chemical Biology of
Fujian Province, Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| |
Collapse
|
15
|
Bogenhagen DF. Mitochondrial DNA nucleoid structure. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:914-20. [PMID: 22142616 DOI: 10.1016/j.bbagrm.2011.11.005] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/13/2011] [Accepted: 11/16/2011] [Indexed: 12/21/2022]
Abstract
Eukaryotic cells are characterized by their content of intracellular membrane-bound organelles, including mitochondria as well as nuclei. These two DNA-containing compartments employ two distinct strategies for storage and readout of genetic information. The diploid nuclei of human cells contain about 6 billion base pairs encoding about 25,000 protein-encoding genes, averaging 120 kB/gene, packaged in chromatin arranged as a regular nucleosomal array. In contrast, human cells contain hundreds to thousands of copies of a ca.16 kB mtDNA genome tightly packed with 13 protein-coding genes along with rRNA and tRNA genes required for their expression. The mtDNAs are dispersed throughout the mitochondrial network as histone-free nucleoids containing single copies or small clusters of genomes. This review will summarize recent advances in understanding the microscopic structure and molecular composition of mtDNA nucleoids in higher eukaryotes. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Daniel F Bogenhagen
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA.
| |
Collapse
|
16
|
Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol 2011; 31:4994-5010. [PMID: 22006021 DOI: 10.1128/mcb.05694-11] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fundamental objective in molecular biology is to understand how DNA is organized in concert with various proteins, RNA, and biological membranes. Mitochondria maintain and express their own DNA (mtDNA), which is arranged within structures called nucleoids. Their functions, dimensions, composition, and precise locations relative to other mitochondrial structures are poorly defined. Superresolution fluorescence microscopy techniques that exceed the previous limits of imaging within the small and highly compartmentalized mitochondria have been recently developed. We have improved and employed both two- and three-dimensional applications of photoactivated localization microscopy (PALM and iPALM, respectively) to visualize the core dimensions and relative locations of mitochondrial nucleoids at an unprecedented resolution. PALM reveals that nucleoids differ greatly in size and shape. Three-dimensional volumetric analysis indicates that, on average, the mtDNA within ellipsoidal nucleoids is extraordinarily condensed. Two-color PALM shows that the freely diffusible mitochondrial matrix protein is largely excluded from the nucleoid. In contrast, nucleoids are closely associated with the inner membrane and often appear to be wrapped around cristae or crista-like inner membrane invaginations. Determinations revealing high packing density, separation from the matrix, and tight association with the inner membrane underscore the role of mechanisms that regulate access to mtDNA and that remain largely unknown.
Collapse
|
17
|
Ding J, Zhang L, Qu F, Ren X, Zhao X, Liu Q. Cell activity analysis by capillary zone electrophoresis combined with specific cell staining. Electrophoresis 2010; 32:455-63. [DOI: 10.1002/elps.201000324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 10/12/2010] [Accepted: 10/28/2010] [Indexed: 11/08/2022]
|
18
|
Detection of heteroplasmy in individual mitochondrial particles. Anal Bioanal Chem 2010; 397:3397-407. [PMID: 20467729 DOI: 10.1007/s00216-010-3751-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations have been associated with disease and aging. Since each cell has thousands of mtDNA copies, clustered into nucleoids of five to ten mtDNA molecules each, determining the effects of a given mtDNA mutation and their connection with disease phenotype is not straightforward. It has been postulated that heteroplasmy (coexistence of mutated and wild-type DNA) follows simple probability rules dictated by the random distribution of mtDNA molecules at the nucleoid level. This model has been used to explain how mutation levels correlate with the onset of disease phenotype and loss of cellular function. Nonetheless, experimental evidence of heteroplasmy at the nucleoid level is scarce. Here, we report a new method to determine heteroplasmy of individual mitochondrial particles containing one or more nucleoids. The method uses capillary cytometry with laser-induced fluorescence detection to detect individual mitochondrial particles stained with PicoGreen, which makes it possible to quantify the mtDNA copy number of each particle. After detection, one or more particles are collected into polymerase chain reaction (PCR) wells and then subjected to real-time multiplexed PCR amplification. This PCR strategy is suitable to obtain the relative abundance of mutated and wild-type mtDNA. The results obtained here indicate that individual mitochondrial particles and nucleoids contained within these particles are not heteroplasmic. The results presented here suggest that current models of mtDNA segregation and distribution (i.e., heteroplasmic nucleoids) need further consideration.
Collapse
|
19
|
Ren X, Qu F, Zhang L, Ding J, Liu Q. Continuous intact cell detection and viability determination by CE with dual-wavelength detection. Electrophoresis 2010; 31:324-30. [PMID: 20024918 DOI: 10.1002/elps.200900417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We introduce here a method for continuous intact cell detection and viability determination of individual trypan blue stained cells by CE with ultraviolet-visible dual-wavelength detection. To avoid cell aggregation or damage during electrophoresis, cells after staining were fixed with 4% formaldehyde and were continuously introduced into the capillary by EOF. The absorbance of a cell at 590 nm was used to determine its viability. An absorbance of two milli-absorbance unit at 590 nm was the clear cut-off point for living and dead Hela cells in our experiments. Good viability correlation between the conventional trypan blue staining assay and our established CE method (correlation coefficient, R(2)=0.9623) was demonstrated by analysis of cell mixtures with varying proportions of living and dead cells. The CE method was also used to analyze the cytotoxicity of methylmercury, and the results were in good agreement with the trypan blue staining assay and 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide methods. Compared with the 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide method, our established CE method can be easily automated to report cell viability based on the state of individual cells. Tedious manual cell counting and human error due to investigator bias can be avoided by using this method.
Collapse
Affiliation(s)
- Xiaomin Ren
- School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | | | | | | | | |
Collapse
|
20
|
Kostal V, Arriaga EA. Recent advances in the analysis of biological particles by capillary electrophoresis. Electrophoresis 2008; 29:2578-86. [PMID: 18576409 PMCID: PMC3037010 DOI: 10.1002/elps.200700917] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review covers research papers published in the years 2005-2007 that describe the application of capillary electrophoresis to the analysis of biological particles such as whole cells, subcellular organelles, viruses and microorganisms.
Collapse
Affiliation(s)
- Vratislav Kostal
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
21
|
Kostal V, Katzenmeyer J, Arriaga EA. Capillary electrophoresis in bioanalysis. Anal Chem 2008; 80:4533-50. [PMID: 18484738 DOI: 10.1021/ac8007384] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Vratislav Kostal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|