1
|
Peng Y, Gale BK, Sant HJ. A spiral channel with integrated microelectrodes for label-free particle lateral position and size characterization. Biomed Microdevices 2025; 27:13. [PMID: 40100490 DOI: 10.1007/s10544-025-00742-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Modified-trident shaped microelectrodes were incorporated into a spiral-shaped microfluidic focusing channel, utilizing impedance flow cytometry to analyze and quantify inertial microfluidic-based separation of homogeneous particles differing in size. Double peak voltage pulses were generated as particles moved across the electrodes, where the ratio of the peak amplitudes indicated the lateral particle positions inside the channel at various flow rates, while the peak amplitude indicated particle size and vertical position. The root mean square error between the optical and electrical position measurements was 11.44 µm reflecting the lateral position measurement resolution. The peak amplitudes were used to estimate particle size after being adjusted to account for particle vertical position using a shape parameter, which effectively reduced errors in particle size calculations. The particle size estimate sensitivity was measured to be 2.15 μm/mV from the peak amplitudes. The electrodes with the appropriate signal processing were able to detect both the size and location of particles after separation with a spiral channel, showing their utility in potentially controlling the separation conditions for these devices.
Collapse
Affiliation(s)
- Yunhao Peng
- Department of Chemical Engineering, Price College of Engineering, University of Utah, 50 S. Central Campus Dr. Room 3290 MEB, Salt Lake City, UT, 84112-9203, USA
- Department of Electrical and Computer Engineering, Price College of Engineering, University of Utah, 50 S. Central Campus Drive Rm. 2110 MEB, Salt Lake City, UT, 84112, USA
| | - Bruce K Gale
- Department of Chemical Engineering, Price College of Engineering, University of Utah, 50 S. Central Campus Dr. Room 3290 MEB, Salt Lake City, UT, 84112-9203, USA
- Department of Mechanical Engineering, Price College of Engineering, University of Utah, Contact 1495 E 100 S (1550 MEK), Salt Lake City, UT, 84112, USA
| | - Himanshu J Sant
- Department of Chemical Engineering, Price College of Engineering, University of Utah, 50 S. Central Campus Dr. Room 3290 MEB, Salt Lake City, UT, 84112-9203, USA.
| |
Collapse
|
2
|
Chun MS. Designing Microfluidic-Chip Filtration with Multiple Channel Networks for the Highly Efficient Sorting of Cell Particles. MICROMACHINES 2024; 15:1474. [PMID: 39770227 PMCID: PMC11727769 DOI: 10.3390/mi15121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
Microfluidic-chip based hydrodynamic filtration is one of the passive sorting techniques that can separate cell or particle suspensions into subpopulations of different sizes. As the branch channels and side channels play an important role in maintaining particle focusing, their rational design is necessary for highly efficient sorting. A model framework involving multiple side and multiple branch channels has been developed by extending the analytical analysis of three-dimensional laminar flow in channel networks, which was previously validated by comparison with numerical simulations. Objective parameters were identified as the number of branch channels and each length of individual branches. The presence of multiple side channels causes an increase in the average fluid velocity in main and branch channels as the branch point shifts toward the end of the main channel, which differs from the behavior observed in a single side channel. The number of branches and their individual lengths decrease distinctly in the case of branch channels consisting of narrow and wide sections, which enables the compact design of a microfluidic-chip, being operated by a lower pressure drop under the same throughput. Sorting of bidisperse particles was accomplished with an optimally designed chip to verify this framework by achieving very high recovery and purity.
Collapse
Affiliation(s)
- Myung-Suk Chun
- Complex Fluids Laboratory, Advanced Materials and Systems Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; ; Tel.: +82-2-958-5363
- Biomedical Engineering Division, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
3
|
Zhang T, Di Carlo D, Lim CT, Zhou T, Tian G, Tang T, Shen AQ, Li W, Li M, Yang Y, Goda K, Yan R, Lei C, Hosokawa Y, Yalikun Y. Passive microfluidic devices for cell separation. Biotechnol Adv 2024; 71:108317. [PMID: 38220118 DOI: 10.1016/j.biotechadv.2024.108317] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The separation of specific cell populations is instrumental in gaining insights into cellular processes, elucidating disease mechanisms, and advancing applications in tissue engineering, regenerative medicine, diagnostics, and cell therapies. Microfluidic methods for cell separation have propelled the field forward, benefitting from miniaturization, advanced fabrication technologies, a profound understanding of fluid dynamics governing particle separation mechanisms, and a surge in interdisciplinary investigations focused on diverse applications. Cell separation methodologies can be categorized according to their underlying separation mechanisms. Passive microfluidic separation systems rely on channel structures and fluidic rheology, obviating the necessity for external force fields to facilitate label-free cell separation. These passive approaches offer a compelling combination of cost-effectiveness and scalability when compared to active methods that depend on external fields to manipulate cells. This review delves into the extensive utilization of passive microfluidic techniques for cell separation, encompassing various strategies such as filtration, sedimentation, adhesion-based techniques, pinched flow fractionation (PFF), deterministic lateral displacement (DLD), inertial microfluidics, hydrophoresis, viscoelastic microfluidics, and hybrid microfluidics. Besides, the review provides an in-depth discussion concerning cell types, separation markers, and the commercialization of these technologies. Subsequently, it outlines the current challenges faced in the field and presents a forward-looking perspective on potential future developments. This work hopes to aid in facilitating the dissemination of knowledge in cell separation, guiding future research, and informing practical applications across diverse scientific disciplines.
Collapse
Affiliation(s)
- Tianlong Zhang
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Tianyuan Zhou
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Tao Tang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ming Li
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
| | - Keisuke Goda
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Ruopeng Yan
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng Lei
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| |
Collapse
|
4
|
Shen F, Gao J, Zhang J, Ai M, Gao H, Liu Z. Vortex sorting of rare particles/cells in microcavities: A review. BIOMICROFLUIDICS 2024; 18:021504. [PMID: 38571909 PMCID: PMC10987199 DOI: 10.1063/5.0174938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Microfluidics or lab-on-a-chip technology has shown great potential for the separation of target particles/cells from heterogeneous solutions. Among current separation methods, vortex sorting of particles/cells in microcavities is a highly effective method for trapping and isolating rare target cells, such as circulating tumor cells, from flowing samples. By utilizing fluid forces and inertial particle effects, this passive method offers advantages such as label-free operation, high throughput, and high concentration. This paper reviews the fundamental research on the mechanisms of focusing, trapping, and holding of particles in this method, designs of novel microcavities, as well as its applications. We also summarize the challenges and prospects of this technique with the hope to promote its applications in medical and biological research.
Collapse
Affiliation(s)
- Feng Shen
- Authors to whom correspondence should be addressed: and
| | - Jie Gao
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Jie Zhang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Mingzhu Ai
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Hongkai Gao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Zhaomiao Liu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
5
|
Fang C, Luo Y, Naidu R. Advancements in Raman imaging for nanoplastic analysis: Challenges, algorithms and future Perspectives. Anal Chim Acta 2024; 1290:342069. [PMID: 38246736 DOI: 10.1016/j.aca.2023.342069] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND While the concept of microplastic (<5 mm) is well-established, emergence of nanoplastics (<1000 nm) as a new contaminant presents a recent and evolving challenge. The field of nanoplastic research remains in its early stages, and its progress is contingent upon the development of reliable and practical analytical methods, which are currently lacking. This review aims to address the intricacies of nanoplastic analysis by providing a comprehensive overview on the application of advanced imaging techniques, with a particular focus on Raman imaging, for nanoplastic identification and simultaneous visualisation towards quantification. RESULTS Although Raman imaging via hyper spectrum is a potentially powerful tool to analyse nanoplastics, several challenges should be overcome. The first challenge lies in the weak Raman signal of nanoplastics. To address this, effective sample preparation and signal enhancement techniques can be implemented, such as by analysing the hyper spectrum that contains hundred-to-thousand spectra, rather than a single spectrum. Second challenge is the complexity of Raman hyperspectral matrix with dataset size at megabyte (MB) or even bigger, which can be adopted using different algorithms ranging from image merging to multivariate analysis of chemometrics. Third challenge is the laser size that hinders the visualisation of small nanoplastics due to the laser diffraction (λ/2NA, ∼300 nm), which can be solved with involving the use of super-resolution. Signal processing, such as colour off-setting, Gaussian fitting (via deconvolution), and re-focus or image re-construction, are reviewed herein, which show a great promise for breaking through the diffraction limit. SIGNIFICANCE Overall, current studies along with further validation are imperative to refine these approaches and enhance the reliability, not only for nanoplastics research but also for broader investigations in the realm of nanomaterials.
Collapse
Affiliation(s)
- Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
6
|
Karimi A, Sattari-Najafabadi M. Numerical study of bacteria removal from microalgae solution using an asymmetric contraction-expansion microfluidic device: A parametric analysis approach. Heliyon 2023; 9:e20380. [PMID: 37780775 PMCID: PMC10539965 DOI: 10.1016/j.heliyon.2023.e20380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
Microalgae have been remarkably taken into account due to their wide applications in the biopharmaceutical, nutraceutical and bio-energy fields. However, contamination of microalgae with bacteria still appears to be a concern, adversely impacting products' quality and process efficiency. Microalgae decontamination with conventional techniques is usually expensive and time-consuming. Moreover, damage to microalgae cells is highly possible. Asymmetric contraction-expansion microchannels (Asym-CEMCs) are promising passive microfluidic devices that can overcome conventional techniques' drawbacks with their standing-out features. However, the flexibility of Asym-CEMCs performance arising from their various tunable geometrical parameters results in the fact that their performance for separating a target particle cannot be predicted without an investigation. In this work, for the first time, Asym-CEMCs were numerically studied for the removal of a very conventional bacteria, B. subtilis (1 μm), from one of the most popular microalgae, C. vulgaris (5.7 μm). The influences of the microchannel aspect ratio, length and width ratios of the expansion-to-contraction zones, and the total flow rate on the separation resolution and focusing width of the particles were investigated by a 3D numerical model. The aspect ratio had the strongest influence on the Asym-CEMC performance, however, the length ratio had no considerable effect on the results. A decrease in the aspect ratio augmented the shear-induced lift force and Dean drag force, leading to a significant separation resolution improvement. Microalgae decontamination was also enhanced by an increase in the total flow rate and expansion-to-contraction width ratio. Finally, a locally optimized Asym-CEMC with an aspect ratio of one and expansion-to-contraction width and length ratios of 4.7 and 2.07, respectively, was proposed, leading to complete microalgae decontamination with a high normalized separation resolution of 0.6. In a word, Asym-CEMCs with tailored dimensions are promising for successfully decontaminating microalgae from bacteria.
Collapse
Affiliation(s)
- Ali Karimi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, 14588-89694, Iran
| | | |
Collapse
|
7
|
Hettiarachchi S, Cha H, Ouyang L, Mudugamuwa A, An H, Kijanka G, Kashaninejad N, Nguyen NT, Zhang J. Recent microfluidic advances in submicron to nanoparticle manipulation and separation. LAB ON A CHIP 2023; 23:982-1010. [PMID: 36367456 DOI: 10.1039/d2lc00793b] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manipulation and separation of submicron and nanoparticles are indispensable in many chemical, biological, medical, and environmental applications. Conventional technologies such as ultracentrifugation, ultrafiltration, size exclusion chromatography, precipitation and immunoaffinity capture are limited by high cost, low resolution, low purity or the risk of damage to biological particles. Microfluidics can accurately control fluid flow in channels with dimensions of tens of micrometres. Rapid microfluidics advancement has enabled precise sorting and isolating of nanoparticles with better resolution and efficiency than conventional technologies. This paper comprehensively studies the latest progress in microfluidic technology for submicron and nanoparticle manipulation. We first summarise the principles of the traditional techniques for manipulating nanoparticles. Following the classification of microfluidic techniques as active, passive, and hybrid approaches, we elaborate on the physics, device design, working mechanism and applications of each technique. We also compare the merits and demerits of different microfluidic techniques and benchmark them with conventional technologies. Concurrently, we summarise seven standard post-separation detection techniques for nanoparticles. Finally, we discuss current challenges and future perspectives on microfluidic technology for nanoparticle manipulation and separation.
Collapse
Affiliation(s)
- Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Gregor Kijanka
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
8
|
Amani A, Shamloo A, Vatani P, Ebrahimi S. Particles Focusing and Separation by a Novel Inertial Microfluidic Device: Divergent Serpentine Microchannel. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ali Amani
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11365-8639, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11365-8639, Iran
| | - Pouyan Vatani
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11365-8639, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11365-8639, Iran
| |
Collapse
|
9
|
Jeon H, Wei M, Huang X, Yao J, Han W, Wang R, Xu X, Chen J, Sun L, Han J. Rapid and Label-Free Classification of Blood Leukocytes for Immune State Monitoring. Anal Chem 2022; 94:6394-6402. [PMID: 35416029 DOI: 10.1021/acs.analchem.2c00906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A fully automated and label-free sample-to-answer white blood cell (WBC) cytometry platform for rapid immune state monitoring is demonstrated. The platform integrates (1) a WBC separation process using the multidimensional double spiral (MDDS) device and (2) an imaging process where images of the separated WBCs are captured and analyzed. Using the deep-learning-based image processing technique, we analyzed the captured bright-field images to classify the WBCs into their subtypes. Furthermore, in addition to cell classification, we can detect activation-induced morphological changes in WBCs for functional immune assessment, which could allow the early detection of various diseases. The integrated platform operates in a rapid (<30 min), fully automated, and label-free manner. The platform could provide a promising solution to future point-of-care WBC diagnostics applications.
Collapse
Affiliation(s)
- Hyungkook Jeon
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Maoyu Wei
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiwei Huang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jiangfan Yao
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wentao Han
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Renjie Wang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xuefeng Xu
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jin Chen
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lingling Sun
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jongyoon Han
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States.,Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Viscoelastic Particle Focusing and Separation in a Spiral Channel. MICROMACHINES 2022; 13:mi13030361. [PMID: 35334653 PMCID: PMC8954746 DOI: 10.3390/mi13030361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
As one type of non-Newtonian fluid, viscoelastic fluids exhibit unique properties that contribute to particle lateral migration in confined microfluidic channels, leading to opportunities for particle manipulation and separation. In this paper, particle focusing in viscoelastic flow is studied in a wide range of polyethylene glycol (PEO) concentrations in aqueous solutions. Polystyrene beads with diameters from 3 to 20 μm are tested, and the variation of particle focusing position is explained by the coeffects of inertial flow, viscoelastic flow, and Dean flow. We showed that particle focusing position can be predicted by analyzing the force balance in the microchannel, and that particle separation resolution can be improved in viscoelastic flows.
Collapse
|
11
|
Public-Health-Driven Microfluidic Technologies: From Separation to Detection. MICROMACHINES 2021; 12:mi12040391. [PMID: 33918189 PMCID: PMC8066776 DOI: 10.3390/mi12040391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Separation and detection are ubiquitous in our daily life and they are two of the most important steps toward practical biomedical diagnostics and industrial applications. A deep understanding of working principles and examples of separation and detection enables a plethora of applications from blood test and air/water quality monitoring to food safety and biosecurity; none of which are irrelevant to public health. Microfluidics can separate and detect various particles/aerosols as well as cells/viruses in a cost-effective and easy-to-operate manner. There are a number of papers reviewing microfluidic separation and detection, but to the best of our knowledge, the two topics are normally reviewed separately. In fact, these two themes are closely related with each other from the perspectives of public health: understanding separation or sorting technique will lead to the development of new detection methods, thereby providing new paths to guide the separation routes. Therefore, the purpose of this review paper is two-fold: reporting the latest developments in the application of microfluidics for separation and outlining the emerging research in microfluidic detection. The dominating microfluidics-based passive separation methods and detection methods are discussed, along with the future perspectives and challenges being discussed. Our work inspires novel development of separation and detection methods for the benefits of public health.
Collapse
|
12
|
Liu L, Yang C, Liu C, Piao J, Kaw HY, Cui J, Shang H, Ri HC, Kim JM, Jin M, Li D. Open-tubular radially cyclical electric field-flow fractionation (OTR-CyElFFF): an online concentric distribution strategy for simultaneous separation of microparticles. LAB ON A CHIP 2020; 20:3535-3543. [PMID: 32852497 DOI: 10.1039/d0lc00620c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An open-tubular radially cyclical electric field-flow fractionation technique which achieves the online separation of microparticles in a functional annular channel is proposed in this study. The system was set up by using a stainless steel tube and a platinum wire modified with ionic liquid/mesoporous silica materials as the external and internal electrodes. The feasibility for online separation of various particles was experimentally demonstrated. Particles in the channel were affected by a radial electric field and field-flow fractionation (FFF). On the cross section, different particles showed distinctive migration distances depending on their own properties and the different magnitudes of forces being exerted. The same kind of particles form an annular distribution within the same annulus while different particles form annular distributions at varied concentric annuli through electrophoresis. Under a laminar flow of FFF, different sizes of particles formed a conical arrangement within the annular separation channel. With the joint influence of electric field and flow field, different trajectories were obtained and the particles were eventually separated. Voltage, frequency and duty cycle value are the main parameters affecting the separation of particles. By adjusting these parameters, particles migrate in a zigzag trajectory on one side of the electrodes (mode I) and reach both sides of the electrodes (mode II). Six polystyrene particles were completely separated with high resolution within several minutes. Our system offers numerous advantages of label-free, high-resolution and online separation without tedious operations, and it is a promising tool for the effective separation of various micro-objects.
Collapse
Affiliation(s)
- Lu Liu
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Cui Yang
- Department of Chemistry, Changchun Normal University, Changji North Road 677, Changchun City, Jilin Province 130032, China
| | - Cuicui Liu
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Jishou Piao
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Han Yeong Kaw
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Jiaxuan Cui
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Haibo Shang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Hyok Chol Ri
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Ji Man Kim
- Department of Chemistry, Sungkyunkwan University, Korea
| | - Mingshi Jin
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Donghao Li
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| |
Collapse
|
13
|
Nasiri R, Shamloo A, Ahadian S, Amirifar L, Akbari J, Goudie MJ, Lee K, Ashammakhi N, Dokmeci MR, Di Carlo D, Khademhosseini A. Microfluidic-Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000171. [PMID: 32529791 DOI: 10.1002/smll.202000171] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Cell separation is a key step in many biomedical research areas including biotechnology, cancer research, regenerative medicine, and drug discovery. While conventional cell sorting approaches have led to high-efficiency sorting by exploiting the cell's specific properties, microfluidics has shown great promise in cell separation by exploiting different physical principles and using different properties of the cells. In particular, label-free cell separation techniques are highly recommended to minimize cell damage and avoid costly and labor-intensive steps of labeling molecular signatures of cells. In general, microfluidic-based cell sorting approaches can separate cells using "intrinsic" (e.g., fluid dynamic forces) versus "extrinsic" external forces (e.g., magnetic, electric field, etc.) and by using different properties of cells including size, density, deformability, shape, as well as electrical, magnetic, and compressibility/acoustic properties to select target cells from a heterogeneous cell population. In this work, principles and applications of the most commonly used label-free microfluidic-based cell separation methods are described. In particular, applications of microfluidic methods for the separation of circulating tumor cells, blood cells, immune cells, stem cells, and other biological cells are summarized. Computational approaches complementing such microfluidic methods are also explained. Finally, challenges and perspectives to further develop microfluidic-based cell separation methods are discussed.
Collapse
Affiliation(s)
- Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Leyla Amirifar
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Javad Akbari
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Marcus J Goudie
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - KangJu Lee
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mehmet R Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
14
|
Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Int J Mol Sci 2020; 21:E2323. [PMID: 32230871 PMCID: PMC7177904 DOI: 10.3390/ijms21072323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient's life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods.
Collapse
Affiliation(s)
- Denis V. Voronin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Physical and Colloid Chemistry, National University of Oil and Gas (Gubkin University), 119991 Moscow, Russia
| | - Anastasiia A. Kozlova
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- School of Urbanistics, Civil Engineering and Architecture, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia
| | - Alexey V. Ermakov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Biomedical Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail A. Makarkin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Olga A. Inozemtseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
15
|
Zhou J, Mukherjee P, Gao H, Luan Q, Papautsky I. Label-free microfluidic sorting of microparticles. APL Bioeng 2019; 3:041504. [PMID: 31832577 PMCID: PMC6906121 DOI: 10.1063/1.5120501] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Massive growth of the microfluidics field has triggered numerous advances in focusing, separating, ordering, concentrating, and mixing of microparticles. Microfluidic systems capable of performing these functions are rapidly finding applications in industrial, environmental, and biomedical fields. Passive and label-free methods are one of the major categories of such systems that have received enormous attention owing to device operational simplicity and low costs. With new platforms continuously being proposed, our aim here is to provide an updated overview of the state of the art for passive label-free microparticle separation, with emphasis on performance and operational conditions. In addition to the now common separation approaches using Newtonian flows, such as deterministic lateral displacement, pinched flow fractionation, cross-flow filtration, hydrodynamic filtration, and inertial microfluidics, we also discuss separation approaches using non-Newtonian, viscoelastic flow. We then highlight the newly emerging approach based on shear-induced diffusion, which enables direct processing of complex samples such as untreated whole blood. Finally, we hope that an improved understanding of label-free passive sorting approaches can lead to sophisticated and useful platforms toward automation in industrial, environmental, and biomedical fields.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Prithviraj Mukherjee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Hua Gao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Qiyue Luan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Ian Papautsky
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
16
|
Dalili A, Samiei E, Hoorfar M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Analyst 2019; 144:87-113. [DOI: 10.1039/c8an01061g] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have reviewed the microfluidic approaches for cell/particle isolation and sorting, and extensively explained the mechanism behind each method.
Collapse
Affiliation(s)
- Arash Dalili
- The University of British
- School of Engineering
- Kelowna
- Canada V1 V 1 V7
| | - Ehsan Samiei
- University of Victoria
- Department of Mechanical Engineering
- Victoria
- Canada
| | - Mina Hoorfar
- The University of British
- School of Engineering
- Kelowna
- Canada V1 V 1 V7
| |
Collapse
|
17
|
Yang SH, Lee DJ, Youn JR, Song YS. Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device. Anal Chem 2017; 89:3639-3647. [DOI: 10.1021/acs.analchem.6b05052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sei Hyun Yang
- Research
Institute of Advanced Materials (RIAM), Department of Materials Science
and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Doo Jin Lee
- Ceramic
Fiber and Composite Materials Center, Korea Institute of Ceramic Engineering and Technology, 101 Soho-ro, Jinju-si, Gyeongsangnam-do, 52851, Republic of Korea
| | - Jae Ryoun Youn
- Research
Institute of Advanced Materials (RIAM), Department of Materials Science
and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Seok Song
- Department
of Fiber System Engineering, Dankook University, Gyeonggi-do, 16890, Republic of Korea
| |
Collapse
|
18
|
Zhou R, Wang C. Multiphase ferrofluid flows for micro-particle focusing and separation. BIOMICROFLUIDICS 2016; 10:034101. [PMID: 27190567 PMCID: PMC4859830 DOI: 10.1063/1.4948656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/25/2016] [Indexed: 05/16/2023]
Abstract
Ferrofluids have demonstrated great potential for a variety of manipulations of diamagnetic (or non-magnetic) micro-particles/cells in microfluidics, including sorting, focusing, and enriching. By utilizing size dependent magnetophoresis velocity, most of the existing techniques employ single phase ferrofluids to push the particles towards the channel walls. In this work, we demonstrate a novel strategy for focusing and separating diamagnetic micro-particles by using the laminar fluid interface of two co-flowing fluids-a ferrofluid and a non-magnetic fluid. Next to the microfluidic channel, microscale magnets are fabricated to generate strong localized magnetic field gradients and forces. Due to the magnetic force, diamagnetic particles suspended in the ferrofluid phase migrate across the ferrofluid stream at the size-dependent velocities. Because of the low Reynolds number and high Péclet number associated with the flow, the fluid interface is sharp and stable. When the micro-particles migrate to the interface, they are accumulated near the interface, resulting in effective focusing and separation of particles. We investigated several factors that affect the focusing and separation efficiency, including susceptibility of the ferrofluid, distance between the microfluidic channel and microscale magnet, and width of the microfluidic channel. This concept can be extended to multiple fluid interfaces. For example, a complete separation of micro-particles was demonstrated by using a three-stream multiphase flow configuration.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology , 400 W. 13th St., Rolla, Missouri 65409, USA
| | - Cheng Wang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology , 400 W. 13th St., Rolla, Missouri 65409, USA
| |
Collapse
|
19
|
Lu X, Xuan X. Continuous Microfluidic Particle Separation via Elasto-Inertial Pinched Flow Fractionation. Anal Chem 2015; 87:6389-96. [DOI: 10.1021/acs.analchem.5b01432] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xinyu Lu
- Department
of Mechanical
Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| | - Xiangchun Xuan
- Department
of Mechanical
Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| |
Collapse
|
20
|
Affiliation(s)
- Xinyu Lu
- Department
of Mechanical
Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| | - Xiangchun Xuan
- Department
of Mechanical
Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| |
Collapse
|
21
|
Munir A, Zhu Z, Wang J, Zhou HS. Experimental investigation of magnetically actuated separation using tangential microfluidic channels and magnetic nanoparticles. IET Nanobiotechnol 2014; 8:102-10. [PMID: 25014081 DOI: 10.1049/iet-nbt.2012.0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A novel continuous switching/separation scheme of magnetic nanoparticles (MNPs) in a sub-microlitre fluid volume surrounded by neodymium permanent magnet is studied in this work using tangential microfluidic channels. Polydimethylsiloxane tangential microchannels are fabricated using a novel micromoulding technique that can be done without a clean room and at much lower cost and time. Negligible switching of MNPs is seen in the absence of magnetic field, whereas 90% of switching is observed in the presence of magnetic field. The flow rate of MNPs solution had dramatic impact on separation performance. An optimum value of the flow rate is found that resulted in providing effective MNP separation at much faster rate. Separation performance is also investigated for a mixture containing non-magnetic polystyrene particles and MNPs. It is found that MNPs preferentially moved from lower microchannel to upper microchannel resulting in efficient separation. The proof-of-concept experiments performed in this work demonstrates that microfluidic bioseparation can be efficiently achieved using functionalised MNPs, together with tangential microchannels, appropriate magnetic field strength and optimum flow rates. This work verifies that a simple low-cost magnetic switching scheme can be potentially of great utility for the separation and detection of biomolecules in microfluidic lab-on-a-chip systems.
Collapse
Affiliation(s)
- Ahsan Munir
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Zanzan Zhu
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi 712100, People's Republic of China
| | - Hong Susan Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| |
Collapse
|
22
|
Nho HW, Yoon TH. Enhanced separation of colloidal particles in an AsPFF device with a tilted sidewall and vertical focusing channels (t-AsPFF-v). LAB ON A CHIP 2013; 13:773-6. [PMID: 23340906 DOI: 10.1039/c2lc41154g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Here, we report an enhanced separation of colloidal particles using a novel type AsPFF (asymmetric pinched flow fractionation) device with two additional features (t-AsPFF-v). Particularly, by adding a tilted sidewall and vertical focusing channels to the conventional AsPFF device, a significant enhancement in the separation resolution (R(m,n)) has been achieved, which was estimated to be 10.4 for 6 and 10 μm PS particles and found to be 11.6 times better than that of a conventional AsPFF.
Collapse
Affiliation(s)
- Hyun Woo Nho
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | | |
Collapse
|
23
|
|
24
|
Zhou Y, Wang Y, Lin Q. A Microfluidic Device for Continuous-Flow Magnetically Controlled Capture and Isolation of Microparticles. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2010; 19:743-751. [PMID: 24511214 PMCID: PMC3916004 DOI: 10.1109/jmems.2010.2050194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper presents a novel microfluidic device that exploits magnetic manipulation for integrated capture and isolation of microparticles in continuous flow. The device, which was fabricated from poly(dimethylsiloxane) (PDMS) by soft-lithography techniques, consists of an incubator and a separator integrated on a single chip. The incubator is based on a novel scheme termed target acquisition by repetitive traversal (TART), in which surface-functionalized magnetic beads repetitively traverse a sample to seek out and capture target particles. This is accomplished by a judicious combination of a serpentine microchannel geometry and a time-invariant magnetic field. Subsequently, in the separator, the captured target particles are isolated from nontarget particles via magnetically driven fractionation in the same magnetic field. Due to the TART incubation scheme that uses a corner-free serpentine channel, the device has no dead volume and allows minimization of undesired particle or magnetic-bead retention. Single-chip integration of the TART incubator with the magnetic-fractionation separator further allows automated continuous isolation and retrieval of specific microparticles in an integrated manner that is free of manual off-chip sample incubation, as often required by alternative approaches. Experiments are conducted to characterize the individual incubation and separation components, as well as the integrated device. The device is found to allow 90% of target particles in a sample to be captured and isolated and 99% of nontarget particles to be eliminated. With this high separation efficiency, along with excellent reliability and flexibility, the device is well suited to sorting, purification, enrichment, and detection of micro/nanoparticles and cells in lab-on-a-chip systems.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Mechanical Engineering, Columbia University, New York, NY 10027 USA
| | - Yi Wang
- CFD Research Corporation, Huntsville, AL 35805 USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY 10027 USA
| |
Collapse
|
25
|
Kang Y, Cetin B, Wu Z, Li D. Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2008.09.062] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|