1
|
Zhang YX, Zhang Y, Bian Y, Liu YJ, Ren A, Zhou Y, Shi D, Feng XS. Benzodiazepines in complex biological matrices: Recent updates on pretreatment and detection methods. J Pharm Anal 2023; 13:442-462. [PMID: 37305786 PMCID: PMC10257149 DOI: 10.1016/j.jpha.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Benzodiazepines (BDZs) are used in clinics for anxiolysis, anticonvulsants, sedative hypnosis, and muscle relaxation. They have high consumptions worldwide because of their easy availability and potential addiction. They are often used for suicide or criminal practices such as abduction and drug-facilitated sexual assault. The pharmacological effects of using small doses of BDZs and their detections from complex biological matrices are challenging. Efficient pretreatment methods followed by accurate and sensitive detections are necessary. Herein, pretreatment methods for the extraction, enrichment, and preconcentration of BDZs as well as the strategies for their screening, identification, and quantitation developed in the past five years have been reviewed. Moreover, recent advances in various methods are summarized. Characteristics and advantages of each method are encompassed. Future directions of the pretreatment and detection methods for BDZs are also reviewed.
Collapse
Affiliation(s)
- Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ai Ren
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| |
Collapse
|
2
|
Ohara K, Hayashi Y, Yamaguchi K. Laser Desorption Ionization-Mass Spectrometry of Linear Diphenylenes Encapsulated in Crystalline Sponge. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kazuaki Ohara
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Yukako Hayashi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
3
|
Fernández R, Garate J, Tolentino-Cortez T, Herraiz A, Lombardero L, Ducrocq F, Rodríguez-Puertas R, Trifilieff P, Astigarraga E, Barreda-Gómez G, Fernández JA. Microarray and Mass Spectrometry-Based Methodology for Lipid Profiling of Tissues and Cell Cultures. Anal Chem 2019; 91:15967-15973. [PMID: 31751120 DOI: 10.1021/acs.analchem.9b04529] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent developments in mass spectrometry have revealed the importance of lipids as biomarkers in the context of different diseases and as indicators of the cell's homeostasis. However, further advances are required to unveil the complex relationships between lipid classes and lipid species with proteins. Here, we present a new methodology that combines microarrays with mass spectrometry to obtain the lipid fingerprint of samples of a different nature in a standardized and fast way, with minimal sample consumption. As a proof of concept, we use the methodology to obtain the lipid fingerprint of 20 rat tissues and to create a lipid library for tissue classification. Then, we combine those results with immunohistochemistry and enzymatic assays to unveil the relationship between some lipid species and two enzymes. Finally, we demonstrate the performance of the methodology to explore changes in lipid composition of the nucleus accumbens from mice subjected to two lipid diets.
Collapse
Affiliation(s)
- Roberto Fernández
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | | | | | - Ainara Herraiz
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | | | - Fabien Ducrocq
- University of Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286 , F-33000 , Bordeaux , France
| | - Rafael Rodríguez-Puertas
- Neurodegenerative Diseases , Biocruces Bizkaia Health Research Institute , 48903 Barakaldo , Spain
| | - Pierre Trifilieff
- University of Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286 , F-33000 , Bordeaux , France
| | - Egoitz Astigarraga
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | - Gabriel Barreda-Gómez
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | | |
Collapse
|
4
|
Hayashi Y, Ohara K, Taki R, Saeki T, Yamaguchi K. Crystalline sponge-laser desorption ionization (CS-LDI) of unsaturated cyclic organic compounds encapsulated in different electronic environments in pores. Anal Chim Acta 2019; 1064:80-86. [PMID: 30982521 DOI: 10.1016/j.aca.2019.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 01/06/2023]
Abstract
We have developed laser desorption ionization mass spectrometry (LDI-MS) of organic molecules encapsulated in a crystalline sponge (CS). Cyclic organic compounds 1,2,3,4,5-pentamethylcyclopentadiene, zerumbone, and muscone were encapsulated in CS as guest regardless of guest crystallization. Single-crystal X-ray analysis closely scrutinized the position of the guest in the pore and the interaction between the guest and the CS framework. After single-crystal X-ray analysis, the same single crystal was subjected to LDI-MS. Ionization efficiency differed markedly depending on whether π-π interaction existed or not. It is obvious that π-π interaction is the key to transferring laser energy from the CS framework to the guest for the ionization of molecule encapsulated in CS. The results suggest the importance of controlling the positions of analyte and matrix as well as noncovalent interactions, such as hydrogen bonding interaction, electrostatic interaction, and so on.
Collapse
Affiliation(s)
- Yukako Hayashi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Kazuaki Ohara
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan.
| | - Rika Taki
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Tomomi Saeki
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan.
| |
Collapse
|
5
|
Tieu T, Alba M, Elnathan R, Cifuentes‐Rius A, Voelcker NH. Advances in Porous Silicon–Based Nanomaterials for Diagnostic and Therapeutic Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800095] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
| | - Anna Cifuentes‐Rius
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- Prof. N. H. Voelcker Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| |
Collapse
|
6
|
McInnes SJP, Santos A, Kumeria T. Porous Silicon Particles for Cancer Therapy and Bioimaging. NANOONCOLOGY 2018. [DOI: 10.1007/978-3-319-89878-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Gao J, Louie KB, Steinke P, Bowen BP, Raad MD, Zuckermann RN, Siuzdak G, Northen TR. Morphology-Driven Control of Metabolite Selectivity Using Nanostructure-Initiator Mass Spectrometry. Anal Chem 2017; 89:6521-6526. [PMID: 28520405 DOI: 10.1021/acs.analchem.7b00599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nanostructure-initiator mass spectrometry (NIMS) is a laser desorption/ionization analysis technique based on the vaporization of a nanostructure-trapped liquid "initiator" phase. Here we report an intriguing relationship between NIMS surface morphology and analyte selectivity. Scanning electron microscopy and spectroscopic ellipsometry were used to characterize the surface morphologies of a series of NIMS substrates generated by anodic electrochemical etching. Mass spectrometry imaging was applied to compare NIMS sensitivity of these various surfaces toward the analysis of diverse analytes. The porosity of NIMS surfaces was found to increase linearly with etching time where the pore size ranged from 4 to 12 nm with corresponding porosities estimated to be 7-70%. Surface morphology was found to significantly and selectively alter NIMS sensitivity. The small molecule (<2k Da) sensitivity was found to increase with increased porosity, whereas low porosity had the highest sensitivity for the largest molecules examined. Estimation of molecular sizes showed that this transition occurs when the pore size is <3× the maximum of molecular dimensions. While the origins of selectivity are unclear, increased signal from small molecules with increased surface area is consistent with a surface area restructuring-driven desorption/ionization process where signal intensity increases with porosity. In contrast, large molecules show highest signal for the low-porosity and small-pore-size surfaces. We attribute this to strong interactions between the initiator-coated pore structures and large molecules that hinder desorption/ionization by trapping large molecules. This finding may enable us to design NIMS surfaces with increased specificity to molecules of interest.
Collapse
Affiliation(s)
- Jian Gao
- Joint Genome Institute, Department of Energy , 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | - Katherine B Louie
- Joint Genome Institute, Department of Energy , 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | - Philipp Steinke
- Fraunhofer Institute for Photonic Microsystems IPMS - Center Nanoelectronic Technologies (CNT), Königsbrücker Strasse 178, 01099 Dresden, Germany
| | - Benjamin P Bowen
- Joint Genome Institute, Department of Energy , 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | - Markus de Raad
- Joint Genome Institute, Department of Energy , 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | | | - Gary Siuzdak
- Scripps Center for Metabolomics & Departments of Chemistry, Molecular and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Trent R Northen
- Joint Genome Institute, Department of Energy , 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| |
Collapse
|
8
|
Abdelmaksoud HH, Guinan TM, Voelcker NH. Fabrication of Nanostructured Mesoporous Germanium for Application in Laser Desorption Ionization Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5092-5099. [PMID: 28107617 DOI: 10.1021/acsami.6b14362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is a high-throughput analytical technique ideally suited for small-molecule detection from different bodily fluids (e.g., saliva, urine, and blood plasma). Many SALDI-MS substrates require complex fabrication processes and further surface modifications. Furthermore, some substrates show instability upon exposure to ambient conditions and need to be kept under special inert conditions. We have successfully optimized mesoporous germanium (meso-pGe) using bipolar electrochemical etching and efficiently applied meso-pGe as a SALDI-MS substrate for the detection of illicit drugs such as in the context of workplace, roadside, and antiaddictive drug compliance. Argon plasma treatment improved the meso-pGe efficiency as a SALDI-MS substrate and eliminated the need for surface functionalization. The resulting substrate showed a precise surface geometry tuning by altering the etching parameters, and an outstanding performance for illicit drug detection with a limit of detection in Milli-Q water of 1.7 ng/mL and in spiked saliva as low as 5.3 ng/mL for cocaine. The meso-pGe substrate had a demonstrated stability over 56 days stored in ambient conditions. This proof-of-principle study demonstrates that meso-pGe can be reproducibly fabricated and applied as an analytical SALDI-MS substrate which opens the door for further analytical and forensic high-throughput applications.
Collapse
Affiliation(s)
- Hazem H Abdelmaksoud
- Future Industries Institute, University of South Australia , University Boulevard, Mawson Lakes, Adelaide, 5095 South Australia, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , GPO Box 2471, Adelaide, South Australia 5001, Australia
| | - Taryn M Guinan
- Future Industries Institute, University of South Australia , University Boulevard, Mawson Lakes, Adelaide, 5095 South Australia, Australia
| | - Nicolas H Voelcker
- Future Industries Institute, University of South Australia , University Boulevard, Mawson Lakes, Adelaide, 5095 South Australia, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , GPO Box 2471, Adelaide, South Australia 5001, Australia
| |
Collapse
|
9
|
Guinan T, Kirkbride P, Pigou PE, Ronci M, Kobus H, Voelcker NH. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics. MASS SPECTROMETRY REVIEWS 2015; 34:627-40. [PMID: 24916100 DOI: 10.1002/mas.21431] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/24/2014] [Accepted: 03/20/2014] [Indexed: 05/20/2023]
Abstract
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques.
Collapse
Affiliation(s)
- Taryn Guinan
- Mawson Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Paul Kirkbride
- School of Physical and Chemical Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Paul E Pigou
- School of Physical and Chemical Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Maurizio Ronci
- Mawson Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Hilton Kobus
- School of Physical and Chemical Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Nicolas H Voelcker
- Mawson Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| |
Collapse
|
10
|
Guinan TM, Gustafsson OJR, McPhee G, Kobus H, Voelcker NH. Silver Coating for High-Mass-Accuracy Imaging Mass Spectrometry of Fingerprints on Nanostructured Silicon. Anal Chem 2015; 87:11195-202. [DOI: 10.1021/acs.analchem.5b02567] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | - Gordon McPhee
- Nextcell
Pty Ltd, Cooperative Research Centre for Cell Therapy Manufacturing, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hilton Kobus
- School
of Chemical and Physical Sciences, Flinders University, General Post Office Box 2100, Adelaide, South Australia 5001, Australia
| | | |
Collapse
|
11
|
Elnathan R, Isa L, Brodoceanu D, Nelson A, Harding FJ, Delalat B, Kraus T, Voelcker NH. Versatile Particle-Based Route to Engineer Vertically Aligned Silicon Nanowire Arrays and Nanoscale Pores. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23717-23724. [PMID: 26428032 DOI: 10.1021/acsami.5b07777] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Control over particle self-assembly is a prerequisite for the colloidal templating of lithographical etching masks to define nanostructures. This work integrates and combines for the first time bottom-up and top-down approaches, namely, particle self-assembly at liquid-liquid interfaces and metal-assisted chemical etching, to generate vertically aligned silicon nanowire (VA-SiNW) arrays and, alternatively, arrays of nanoscale pores in a silicon wafer. Of particular importance, and in contrast to current techniques, including conventional colloidal lithography, this approach provides excellent control over the nanowire or pore etching site locations and decouples nanowire or pore diameter and spacing. The spacing between pores or nanowires is tuned by adjusting the specific area of the particles at the liquid-liquid interface before deposition. Hence, the process enables fast and low-cost fabrication of ordered nanostructures in silicon and can be easily scaled up. We demonstrate that the fabricated VA-SiNW arrays can be used as in vitro transfection platforms for transfecting human primary cells.
Collapse
Affiliation(s)
- Roey Elnathan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Adelaide, SA 5001, Australia
| | - Lucio Isa
- Laboratory for Interfaces, Soft Matter and Assembly, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Daniel Brodoceanu
- INM-Leibniz Institute for New Materials , Campus D2 2, Saarbrücken 66123, Germany
| | - Adrienne Nelson
- Laboratory for Interfaces, Soft Matter and Assembly, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Frances J Harding
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Adelaide, SA 5001, Australia
| | - Bahman Delalat
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Adelaide, SA 5001, Australia
| | - Tobias Kraus
- INM-Leibniz Institute for New Materials , Campus D2 2, Saarbrücken 66123, Germany
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Adelaide, SA 5001, Australia
| |
Collapse
|
12
|
Abstract
Ambient ionization MS has become very popular in analytical science and has now evolved as an effective analytical tool in metabolomics, biological tissue imaging, protein and small molecule drug analysis, where biological samples are probed in a rapid and direct fashion with minimal sample preparation at ambient conditions. However, certain inherent challenges continue to hinder the vibrant prospects of these methods for in situ analyses or to replace conventional methods in bioanalysis. This review provides an introduction to the field and its application in bioanalysis, with an emphasis on the most recent developments and applications. Furthermore, ongoing challenges or limitations related to quantitation, sensitivity, selectivity, instrumentation and mass range of these ambient methods will also be discussed.
Collapse
|
13
|
Rudd D, Benkendorff K, Voelcker NH. Solvent separating secondary metabolites directly from biosynthetic tissue for surface-assisted laser desorption ionisation mass spectrometry. Mar Drugs 2015; 13:1410-31. [PMID: 25786067 PMCID: PMC4377991 DOI: 10.3390/md13031410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 11/16/2022] Open
Abstract
Marine bioactive metabolites are often heterogeneously expressed in tissues both spatially and over time. Therefore, traditional solvent extraction methods benefit from an understanding of the in situ sites of biosynthesis and storage to deal with heterogeneity and maximize yield. Recently, surface-assisted mass spectrometry (MS) methods namely nanostructure-assisted laser desorption ionisation (NALDI) and desorption ionisation on porous silicon (DIOS) surfaces have been developed to enable the direct detection of low molecular weight metabolites. Since direct tissue NALDI-MS or DIOS-MS produce complex spectra due to the wide variety of other metabolites and fragments present in the low mass range, we report here the use of "on surface" solvent separation directly from mollusc tissue onto nanostructured surfaces for MS analysis, as a mechanism for simplifying data annotation and detecting possible artefacts from compound delocalization during the preparative steps. Water, ethanol, chloroform and hexane selectively extracted a range of choline esters, brominated indoles and lipids from Dicathais orbita hypobranchial tissue imprints. These compounds could be quantified on the nanostructured surfaces by comparison to standard curves generated from the pure compounds. Surface-assisted MS could have broad utility for detecting a broad range of secondary metabolites in complex marine tissue samples.
Collapse
Affiliation(s)
- David Rudd
- Biological Sciences, Faculty of Science and Engineering, Flinders University of South Australia, PO Box 2100, Adelaide, SA 5001, Australia.
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | - Nicolas H Voelcker
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia.
| |
Collapse
|
14
|
Guinan TM, Kirkbride P, Della Vedova CB, Kershaw SG, Kobus H, Voelcker NH. Direct detection of illicit drugs from biological fluids by desorption/ionization mass spectrometry with nanoporous silicon microparticles. Analyst 2015; 140:7926-33. [DOI: 10.1039/c5an01754h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface assisted laser desorption/ionization mass spectrometry (SALDI-MS) with porous silicon microparticles was used for the all-in-one extraction and detection of illicit drugs from saliva, urine and plasma.
Collapse
Affiliation(s)
- T. M. Guinan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- Australia
| | - P. Kirkbride
- School of Physical and Chemical Sciences
- Flinders University
- Bedford Park
- Australia
| | - C. B. Della Vedova
- School of Pharmacy and Medical Sciences
- University of South Australia
- Adelaide
- Australia
| | - S. G. Kershaw
- School of Pharmacy and Medical Sciences
- University of South Australia
- Adelaide
- Australia
| | - H. Kobus
- School of Physical and Chemical Sciences
- Flinders University
- Bedford Park
- Australia
| | - N. H. Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- Australia
| |
Collapse
|
15
|
McInnes SJP, Lowe RD. Biomedical Uses of Porous Silicon. ELECTROCHEMICALLY ENGINEERED NANOPOROUS MATERIALS 2015. [DOI: 10.1007/978-3-319-20346-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Ohara K, Nakai A, Yamaguchi K. Laser desorption ionization of stilbenes in crystalline sponge. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:413-421. [PMID: 26307722 DOI: 10.1255/ejms.1319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The laser desorption (LD) ionization of three stilbenes in the nano porous metal-organic frameworks called "crystalline sponge" is demonstrated. The analyte position in the pore and the interaction between the analyte and the framework that functions as a matrix are discussed based on the results of single- crystal X-ray analysis. It is confirmed that the analyte/ligand ratio of 1:2 is sufficient for the analyte ionization. This method makes it possible to visualize hot spots on a target plate to be irradiated. That the sample requirement is dramatically reduced to the order of femtomoles is also an advantage. The relationship between laser interaction, analyte position in the pore, and analyte/ligand ratio is discussed as a new ionization field to elucidate the molecular structure of the analyte by LD ionization mass spectrometry.
Collapse
Affiliation(s)
- Kazuaki Ohara
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan.
| | - Ayaka Nakai
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan.
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769- 2193, Japan.
| |
Collapse
|
17
|
Abstract
Affinity-based biosensors (ABBs) have started to be considered in sport medicine and doping control analysis because they are cheap, easy to use and sufficiently selective analytical devices, characterized by a reversible interaction with the analyte under investigation allowing the use of the same sensor for multiple analyses. In this review we describe the main categories of substances reported in the World Anti-Doping Agency Prohibited List and how ABBs may contribute to their detection. Although several ABBs proposed in the last few years display limit of detections that are in principle matching the World Anti-Doping Agency requirements, their application in the framework of 'traditional' antidoping tests seems quite unlikely, mainly because of the still insufficient selectivity especially in the case of 'pseudo-endogenous' compounds, and on the lack of complete information regarding potential matrix effects in real samples and following their routine use. At the same time, ABBs could contribute to fill a significant information gap concerning complementary evidence that can be obtained from their use 'on the spot', as well as to preselect a risk population of individuals to be targeted for a full antidoping test; while in sport medicine they could contribute to obtaining analytical information of physiological relevance from the measurement of specific parameters or markers before, during and after physical exercise.
Collapse
|
18
|
Coffinier Y, Kurylo I, Drobecq H, Szunerits S, Melnyk O, Zaitsev VN, Boukherroub R. Decoration of silicon nanostructures with copper particles for simultaneous selective capture and mass spectrometry detection of His-tagged model peptide. Analyst 2014; 139:5155-63. [DOI: 10.1039/c4an01056f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Yin Z, Wang X, Li W, He M, Hang W, Huang B. Thermal Diffusion Desorption for the Comprehensive Analysis of Organic Compounds. Anal Chem 2014; 86:6372-8. [DOI: 10.1021/ac500602t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhibin Yin
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaohua Wang
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weifeng Li
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Miaohong He
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Hang
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Benli Huang
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Hu J, Wu P, Deng D, Jiang X, Hou X, Lv Y. An optical humidity sensor based on CdTe nanocrystals modified porous silicon. Microchem J 2013. [DOI: 10.1016/j.microc.2012.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Ocsoy I, Gulbakan B, Shukoor MI, Xiong X, Chen T, Powell DH, Tan W. Aptamer-conjugated multifunctional nanoflowers as a platform for targeting, capture, and detection in laser desorption ionization mass spectrometry. ACS NANO 2013; 7:417-427. [PMID: 23211039 PMCID: PMC3568519 DOI: 10.1021/nn304458m] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although many different nanomaterials have been tested as substrates for laser desorption and ionization mass spectrometry (LDI-MS), this emerging field still requires more efficient multifuncional nanomaterials for targeting, enrichment, and detection. Here, we report the use of gold manganese oxide (Au@MnO) hybrid nanoflowers as an efficient matrix for LDI-MS. The nanoflowers were also functionalized with two different aptamers to target cancer cells and capture adenosine triphosphate (ATP). These nanoflowers were successfully used for metabolite extraction from cancer cell lysates. Thus, in one system, our multifunctional nanoflowers can (1) act as an ionization substrate for mass spectrometry, (2) target cancer cells, and (3) detect and analyze metabolites from cancer cells.
Collapse
Affiliation(s)
- Ismail Ocsoy
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611; Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082
| | - Basri Gulbakan
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611; Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082
| | - Mohammed Ibrahim Shukoor
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611; Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082
| | - Xiangling Xiong
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611; Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082
| | - Tao Chen
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611; Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082
| | - David H. Powell
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611; Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082
| | - Weihong Tan
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611; Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082
| |
Collapse
|
22
|
Yonezawa T, Tsukamoto H, Hayashi S, Myojin Y, Kawasaki H, Arakawa R. Suitability of GaP nanoparticles as a surface-assisted laser desorption/ionization mass spectroscopy inorganic matrix and their soft ionization ability. Analyst 2013; 138:995-9. [DOI: 10.1039/c2an36738f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Ma R, Lu M, Ding L, Ju H, Cai Z. Surface-assisted laser desorption/ionization mass spectrometric detection of biomolecules by using functional single-walled carbon nanohorns as the matrix. Chemistry 2012; 19:102-8. [PMID: 23239539 DOI: 10.1002/chem.201202838] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 01/21/2023]
Abstract
A surface-assisted laser desorption/ionization time-of-flight mass spectrometric (SALDI-TOF MS) method was developed for the analysis of small biomolecules by using functional single-walled carbon nanohorns (SWNHs) as matrix. The functional SWNHs could transfer energy to the analyte under laser irradiation for accelerating its desorption and ionization, which led to low matrix effect, avoided fragmentation of the analyte, and provided high salt tolerance. Biomolecules including amino acids, peptides, and fatty acids could successfully be analyzed with about 3- and 5-fold higher signals than those obtained using conventional matrix. By integrating the advantages of SWNHs and the recognition ability of aptamers, a selective approach was proposed for simultaneous capture, enrichment, ionization, and MS detection of adenosine triphosphate (ATP). This method showed a greatly improved detection limit (1.0 μM) for the analysis of ATP in complex biological samples. This newly designed protocol not only opened a new application of SWNHs, but also offered a new technique for selective MS analysis of biomolecules based on aptamer recognition systems.
Collapse
Affiliation(s)
- Rongna Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
24
|
Tan J, Zhao WJ, Yu JK, Ma S, Sailor MJ, Wu JM. Capture, enrichment, and mass spectrometric detection of low-molecular-weight biomarkers with nanoporous silicon microparticles. Adv Healthc Mater 2012. [PMID: 23184826 DOI: 10.1002/adhm.201200161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mining the disease information contained in the low-molecular-weight range of a proteomic profile is becoming of increasing interest in cancer research. This work evaluates the ability of nanoporous silicon microparticles (NPSMPs) to capture, enrich, protect, and detect low-molecular-weight peptides (LMWPs) sieved from a pool of highly abundant plasma proteins. The average pore size and porosity of NPSMPs are controlled by the electrochemical preparation conditions, and the critical parameters for admission or exclusion of protein with a definite molecular weight are determined by reflectometric-interference Fourier transform spectroscopy (RIFTS). Sodium dodecyl sulfate polyacrylamide-gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis of the proteins captured by the NPSMPs show that the chemical nature of the NPSMPs surface and the solution pH also play vital roles in determining the affinity of NPSMPs for target analytes. It is found that carboxyl-terminated porous microparticles with a porosity of 26% (pore diameter around 9.0 nm) specifically fractionate, enrich and protect LMWPs sieved from either simulated samples or human serum samples. Moreover, NPSMPs containing captured peptides can be directly spotted onto a MALDI plate. When placed in a conventional MALDI matrix, laser irradiation of the particles results in the release of the target peptides confined in the nanopores, which are then ionized and detected in the MALDI experiment. As a proof-of-principle test case, mass spectra of NPSMPs prepared using serum from colorectal cancer patients and from control patients can be clearly distinguished by statistical analysis. The work demonstrates the utility of the method for discovery of biomarkers in the untapped LMWP fraction of human serum, which can be of significant value in the early diagnosis and management of diseases.
Collapse
Affiliation(s)
- Jie Tan
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
25
|
Ronci M, Rudd D, Guinan T, Benkendorff K, Voelcker NH. Mass spectrometry imaging on porous silicon: investigating the distribution of bioactives in marine mollusc tissues. Anal Chem 2012; 84:8996-9001. [PMID: 23009618 DOI: 10.1021/ac3027433] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Desorption/ionization on porous silicon-mass spectrometry (DIOS-MS) is an attractive alternative to conventional matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the analysis of low molecular weight compounds. Porous silicon (pSi) chips are also suitable as support for mass spectrometry imaging (MSI). Here, we report an implementation of DIOS-MSI using the biosynthetic organs of a marine mollusc for proof of principle. The tissue section is stamped onto a fluorocarbon-functionalized pSi chip, which extracts and traps small hydrophobic molecules from the tissue under retention of their relative spatial distribution. The section is subsequently removed and the chip is imaged without any remaining tissue. We apply this novel tissue contact printing approach to investigate the distribution of biologically active brominated precursors to Tyrian purple in the hypobranchial gland of the marine mollusc, Dicathais orbita, using DIOS-MSI. The tissue contact printing is also compatible with other types of desorption/ionization surfaces, such as nanoassisted laser desorption/ionization (NALDI) targets.
Collapse
Affiliation(s)
- Maurizio Ronci
- Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | | | | | | | | |
Collapse
|
26
|
Guinan T, Ronci M, Kobus H, Voelcker NH. Rapid detection of illicit drugs in neat saliva using desorption/ionization on porous silicon. Talanta 2012; 99:791-8. [DOI: 10.1016/j.talanta.2012.07.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/08/2012] [Accepted: 07/09/2012] [Indexed: 12/18/2022]
|
27
|
Lee J, Lee J, Chung TD, Yeo WS. Nanoengineered micro gold shells for LDI-TOF analysis of small molecules. Anal Chim Acta 2012; 736:1-6. [DOI: 10.1016/j.aca.2012.05.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 11/30/2022]
|
28
|
Zhao X, Pan F, Garcia-Gancedo L, Flewitt AJ, Ashley GM, Luo J, Lu JR. Interfacial recognition of human prostate-specific antigen by immobilized monoclonal antibody: effects of solution conditions and surface chemistry. J R Soc Interface 2012; 9:2457-67. [PMID: 22552922 DOI: 10.1098/rsif.2012.0148] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The specific recognition between monoclonal antibody (anti-human prostate-specific antigen, anti-hPSA) and its antigen (human prostate-specific antigen, hPSA) has promising applications in prostate cancer diagnostics and other biosensor applications. However, because of steric constraints associated with interfacial packing and molecular orientations, the binding efficiency is often very low. In this study, spectroscopic ellipsometry and neutron reflection have been used to investigate how solution pH, salt concentration and surface chemistry affect antibody adsorption and subsequent antigen binding. The adsorbed amount of antibody was found to vary with pH and the maximum adsorption occurred between pH 5 and 6, close to the isoelectric point of the antibody. By contrast, the highest antigen binding efficiency occurred close to the neutral pH. Increasing the ionic strength reduced antibody adsorbed amount at the silica-water interface but had little effect on antigen binding. Further studies of antibody adsorption on hydrophobic C8 (octyltrimethoxysilane) surface and chemical attachment of antibody on (3-mercaptopropyl)trimethoxysilane/4-maleimidobutyric acid N-hydroxysuccinimide ester-modified surface have also been undertaken. It was found that on all surfaces studied, the antibody predominantly adopted the 'flat on' orientation, and antigen-binding capabilities were comparable. The results indicate that antibody immobilization via appropriate physical adsorption can replace elaborate interfacial molecular engineering involving complex covalent attachments.
Collapse
Affiliation(s)
- Xiubo Zhao
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | | | | | | | | | | | | |
Collapse
|
29
|
Coffinier Y, Nguyen N, Drobecq H, Melnyk O, Thomy V, Boukherroub R. Affinity surface-assisted laser desorption/ionization mass spectrometry for peptide enrichment. Analyst 2012; 137:5527-32. [DOI: 10.1039/c2an35803d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Stolee JA, Walker BN, Zorba V, Russo RE, Vertes A. Laser–nanostructure interactions for ion production. Phys Chem Chem Phys 2012; 14:8453-71. [DOI: 10.1039/c2cp00038e] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Liu Y, Liu J, Deng C, Zhang X. Graphene and graphene oxide: two ideal choices for the enrichment and ionization of long-chain fatty acids free from matrix-assisted laser desorption/ionization matrix interference. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3223-3234. [PMID: 22006384 DOI: 10.1002/rcm.5218] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this work, graphene (G) and graphene oxide (GO) were utilized to enrich and ionize long-chain fatty acids. All together five long-chain fatty acids were selected as models here, n-dodecanoic acid (C12), n-tetradecanoic acid (C14), n-hexadecanoic acid (C16), n-octadecanoic acid (C18), and n-eicosanoic acid (C20). Due to the large surface area and strong interaction force of G or GO, all the five long-chain fatty models were effectively enriched by G or GO. On the other hand, the excellent electronic, thermal, and mechanical properties enable G and GO to be prefect energy receptacles for laser radiation, which make the ionization steps more effective. Eventually, the promoted G and GO methodology can sensitively detect the five long-chain fatty acid models from real biological samples even at low concentrations. Meanwhile, by adopting our promoted methodology, the detection of long-chain fatty acids by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was demonstrated to be simple, sensitive, fast, cost effective and high throughput, which is meaningful as to practical usage.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | | | | | | |
Collapse
|
32
|
Flavel BS, Sweetman MJ, Shearer CJ, Shapter JG, Voelcker NH. Micropatterned arrays of porous silicon: toward sensory biointerfaces. ACS APPLIED MATERIALS & INTERFACES 2011; 3:2463-2471. [PMID: 21699143 DOI: 10.1021/am2003526] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We describe the fabrication of arrays of porous silicon spots by means of photolithography where a positive photoresist serves as a mask during the anodization process. In particular, photoluminescent arrays and porous silicon spots suitable for further chemical modification and the attachment of human cells were created. The produced arrays of porous silicon were chemically modified by means of a thermal hydrosilylation reaction that facilitated immobilization of the fluorescent dye lissamine, and alternatively, the cell adhesion peptide arginine-glycine-aspartic acid-serine. The latter modification enabled the selective attachment of human lens epithelial cells on the peptide functionalized regions of the patterns. This type of surface patterning, using etched porous silicon arrays functionalized with biological recognition elements, presents a new format of interfacing porous silicon with mammalian cells. Porous silicon arrays with photoluminescent properties produced by this patterning strategy also have potential applications as platforms for in situ monitoring of cell behavior.
Collapse
Affiliation(s)
- Benjamin S Flavel
- Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia.
| | | | | | | | | |
Collapse
|
33
|
Zhao X, Pan F, Cowsill B, Lu JR, Garcia-Gancedo L, Flewitt AJ, Ashley GM, Luo J. Interfacial immobilization of monoclonal antibody and detection of human prostate-specific antigen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7654-62. [PMID: 21612249 DOI: 10.1021/la201245q] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Antibody orientation and its antigen binding efficiency at interface are of particular interest in many immunoassays and biosensor applications. In this paper, spectroscopic ellipsometry (SE), neutron reflection (NR), and dual polarization interferometry (DPI) have been used to investigate interfacial assembly of the antibody [mouse monoclonal anti-human prostate-specific antigen (anti-hPSA)] at the silicon oxide/water interface and subsequent antigen binding. It was found that the mass density of antibody adsorbed at the interface increased with solution concentration and adsorption time while the antigen binding efficiency showed a steady decline with increasing antibody amount at the interface over the concentration range studied. The amount of antigen bound to the interfacial immobilized antibody reached a maximum when the surface-adsorbed amount of antibody was around 1.5 mg/m(2). This phenomenon is well interpreted by the interfacial structural packing or crowding. NR revealed that the Y-shaped antibody laid flat on the interface at low surface mass density with a thickness around 40 Å, equivalent to the short axial length of the antibody molecule. The loose packing of the antibody within this range resulted in better antigen binding efficiency, while the subsequent increase of surface-adsorbed amount led to the crowding or overlapping of antibody fragments, hence reducing the antigen binding due to the steric hindrance. In situ studies of antigen binding by both NR and DPI demonstrated that the antigen inserted into the antibody layer rather than forming an additional layer on the top. Stability assaying revealed that the antibody immobilized at the silica surface remained stable and active over the monitoring period of 4 months. These results are useful in forming a general understanding of antibody interfacial behavior and particularly relevant to the control of their activity and stability in biosensor development.
Collapse
Affiliation(s)
- Xiubo Zhao
- Biological Physics Lab, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yan H, Ahmad-Tajudin A, Bengtsson M, Xiao S, Laurell T, Ekström S. Noncovalent Antibody Immobilization on Porous Silicon Combined with Miniaturized Solid-Phase Extraction (SPE) for Array Based ImmunoMALDI Assays. Anal Chem 2011; 83:4942-8. [DOI: 10.1021/ac200679t] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hong Yan
- Department of Measurement Technology and Industrial Electrical Engineering, Division of Nanotechnology, Lund University, Lund, Sweden
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, PR China
| | - Asilah Ahmad-Tajudin
- Department of Measurement Technology and Industrial Electrical Engineering, Division of Nanotechnology, Lund University, Lund, Sweden
- CREATE Health, Lund University, Lund, Sweden
| | - Martin Bengtsson
- Department of Measurement Technology and Industrial Electrical Engineering, Division of Nanotechnology, Lund University, Lund, Sweden
| | - Shoujun Xiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, PR China
| | - Thomas Laurell
- Department of Measurement Technology and Industrial Electrical Engineering, Division of Nanotechnology, Lund University, Lund, Sweden
- CREATE Health, Lund University, Lund, Sweden
- Department of Biomedical Engineering, Dongguk University, Seoul, Korea
| | - Simon Ekström
- Department of Measurement Technology and Industrial Electrical Engineering, Division of Nanotechnology, Lund University, Lund, Sweden
- CREATE Health, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Matrix-assisted laser desorption ionization imaging mass spectrometry in lipidomics. Anal Bioanal Chem 2011; 401:29-51. [DOI: 10.1007/s00216-011-4696-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 12/29/2010] [Accepted: 01/17/2011] [Indexed: 12/12/2022]
|
36
|
Gulbakan B, Yasun E, Shukoor MI, Zhu Z, You M, Tan X, Sanchez H, Powell DH, Dai H, Tan W. A dual platform for selective analyte enrichment and ionization in mass spectrometry using aptamer-conjugated graphene oxide. J Am Chem Soc 2010; 132:17408-10. [PMID: 21090719 PMCID: PMC3135746 DOI: 10.1021/ja109042w] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study demonstrates the use of aptamer-conjugated graphene oxide as an affinity extraction and detection platform for analytes from complex biological media. We have shown that cocaine and adenosine can be selectively enriched from plasma samples and that direct mass spectrometric readouts can be obtained without a matrix and with greatly improved signal-to-noise ratios. Aptamer-conjugated graphene oxide has clear advantages in target enrichment and in generating highly efficient ionization of target molecules for mass spectrometry. These results demonstrate the utility of the approach for analysis of small molecules in real biological samples.
Collapse
Affiliation(s)
- Basri Gulbakan
- Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200 (USA)
| | - Emir Yasun
- Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200 (USA)
| | - M. Ibrahim Shukoor
- Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200 (USA)
| | - Zhi Zhu
- Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200 (USA)
| | - Mingxu You
- Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200 (USA)
| | - Xiaohong Tan
- Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200 (USA)
| | - Hernan Sanchez
- Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - David H. Powell
- Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200 (USA)
| | - Hongjie Dai
- Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Weihong Tan
- Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200 (USA)
| |
Collapse
|
37
|
Bonanno LM, Kwong TC, DeLouise LA. Label-free porous silicon immunosensor for broad detection of opiates in a blind clinical study and results comparison to commercial analytical chemistry techniques. Anal Chem 2010; 82:9711-8. [PMID: 21062030 PMCID: PMC3064484 DOI: 10.1021/ac101804s] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this work, we evaluate for the first time the performance of a label-free porous silicon (PSi) immunosensor assay in a blind clinical study designed to screen authentic patient urine specimens for a broad range of opiates. The PSi opiate immunosensor achieved 96% concordance with liquid chromatography-mass spectrometry/tandem mass spectrometry (LC-MS/MS) results on samples that underwent standard opiate testing (n = 50). In addition, successful detection of a commonly abused opiate, oxycodone, resulted in 100% qualitative agreement between the PSi opiate sensor and LC-MS/MS. In contrast, a commercial broad opiate immunoassay technique (CEDIA) achieved 65% qualitative concordance with LC-MS/MS. Evaluation of important performance attributes including precision, accuracy, and recovery was completed on blank urine specimens spiked with test analytes. Variability of morphine detection as a model opiate target was <9% both within-run and between-day at and above the cutoff limit of 300 ng mL(-1). This study validates the analytical screening capability of label-free PSi opiate immunosensors in authentic patient samples and is the first semiquantitative demonstration of the technology's successful clinical use. These results motivate future development of label-free PSi technology to reduce complexity and cost of diagnostic testing particularly in a point-of-care setting.
Collapse
Affiliation(s)
- Lisa M. Bonanno
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Tai C. Kwong
- Department of Pathology & Lab Medicine, University of Rochester Medical Center, Rochester, NY
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
38
|
Kerwin J. The Asterisk chronicles: a short history of steroid use and analysis. Drug Test Anal 2010; 2:456-9. [DOI: 10.1002/dta.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
ARAKAWA R, KAWASAKI H. Functionalized Nanoparticles and Nanostructured Surfaces for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. ANAL SCI 2010; 26:1229-40. [DOI: 10.2116/analsci.26.1229] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ryuichi ARAKAWA
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | - Hideya KAWASAKI
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| |
Collapse
|