1
|
Kawashima H. Stable Carbon Isotope Ratio of Volatile Organic Compounds in Air Using Solid-Phase Microextraction Coupled with Chromatography, Combustion, and Isotope Ratio Mass Spectrometry. Chromatographia 2022. [DOI: 10.1007/s10337-022-04203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Giebel BM, Cime S, Rodgers L, Li TD, Zhang S, Wang T. Short-term exposure to soils and sludge induce changes to plastic morphology and 13C stable isotopic composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153375. [PMID: 35093377 DOI: 10.1016/j.scitotenv.2022.153375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
There is concern about the buildup of plastic waste in soil, their degradation into microplastics, and their potential to interfere with the natural processing of soil organic carbon and other nutrient cycling processes. Here we used scanning electron microscopy (SEM) and 13C isotope ratio mass spectrometry to determine if precut consumer plastics comprised of either high density polyethylene (HDPE), a blend of linear low density polyethylene and low density polyethylene (L/LDPE), or polyethylene terephthalate (PETE) would degrade or transform during a short-term, 32 day, exposure to soil or sludge in laboratory microcosms. SEM confirmed morphological changes occurred to all plastics, but the attachment of biofilm and presence of microorganisms mostly favored PETE and HDPE surfaces. These observations support the idea that abiotic and/or biotic processes may degrade plastics in soil; however distinguishable and significant changes in mean stable isotopic values (Δδ13C) of ~0.2-0.7‰ were only observed for exposed PETE and HDPE. This indicates that each plastic's degradation in soil may be dependent on their physical and chemical properties, with L/LDPE being more resistant and less prone to degradation compared to the others, and less dependent on the environmental conditions or properties of the soil or sludge. Our experiments were short-term and while the mechanisms of degradation are not clear, the results provide strong motivation for further studies of plastic fate and processing in soil systems. Direct mechanistic studies using stable isotopic approaches in combination with other characterizations and techniques are clearly warranted and may lead to a significant enhancement in our present understanding of the interactions and dynamics of plastics in the soil environment.
Collapse
Affiliation(s)
- Brian M Giebel
- Environmental Sciences Initiative, Advanced Science Research Center, The Graduate Center, City University of New York, New York, NY 10031, USA.
| | - Schidza Cime
- Chemical Engineering Department, The City College of New York, City University of New York, New York, NY 10031, USA
| | - Lauren Rodgers
- Environmental Sciences Initiative, Advanced Science Research Center, The Graduate Center, City University of New York, New York, NY 10031, USA
| | - Tai-De Li
- Nanoscience Initiative, Advanced Science Research Center, The Graduate Center, City University of New York, New York, NY 10031, USA
| | - Sheng Zhang
- Nanoscience Initiative, Advanced Science Research Center, The Graduate Center, City University of New York, New York, NY 10031, USA
| | - Tong Wang
- Nanoscience Initiative, Advanced Science Research Center, The Graduate Center, City University of New York, New York, NY 10031, USA
| |
Collapse
|
3
|
He DY, Huang XF, Wei J, Wei FH, Zhu B, Cao LM, He LY. Soil dust as a potential bridge from biogenic volatile organic compounds to secondary organic aerosol in a rural environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118840. [PMID: 35026325 DOI: 10.1016/j.envpol.2022.118840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The role of coarse particles has recently been proven to be underestimated in the atmosphere and can strongly influence clouds, ecosystems and climate. However, previous studies on atmospheric chemistry of volatile organic compounds (VOCs) have mostly focused on the products in fine particles, it remains less understood how coarse particles promote secondary organic aerosol (SOA) formation. In this study, we investigated water-soluble compounds of size-segregated aerosol samples (0.056 to >18 μm) collected at a coastal rural site in southern China during late summer and found that oxygenated organic matter was abundant in the coarse mode. Comprehensive source apportionment based on mass spectrum and 14C analysis indicated that different from fossil fuel SOA, biogenic SOA existed more in the coarse mode than in the fine mode. The SOA in the coarse mode showed a unique correlation with biogenic VOCs. 13C and elemental composition strongly suggested a pathway of heterogeneous reactions on coarse particles, which had an abundant low-acidic aqueous environment with soil dust to possibly initiate iron-catalytic oxidation reactions to form SOA. This potential pathway might complement understanding of both formation of biogenic SOA and sink of biogenic VOCs in global biogeochemical cycles, warrantying future relevant studies.
Collapse
Affiliation(s)
- Dong-Yi He
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiao-Feng Huang
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Jing Wei
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Feng-Hua Wei
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bo Zhu
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Li-Ming Cao
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ling-Yan He
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
4
|
Jung CC, Su HJ. Chemical and stable isotopic characteristics of PM 2.5 emitted from Chinese cooking. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115577. [PMID: 33254695 DOI: 10.1016/j.envpol.2020.115577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/16/2020] [Accepted: 08/28/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the characteristics of air pollutants generated from preparing Chinese cuisine and analyzed the isotopic compositions of carbon and nitrogen in particulate matter with a diameter <2.5 μm (PM2.5) to source apportionment study. The CO and CO2 concentrations and temperatures were measured using suitable instruments in real time during cooking, including stir-fry, fry, deep-fry, hot-pot, and mixed cooking, and periods with non-cooking. Personal environmental monitoring instruments were used to collect PM2.5 for carbon and nitrogen elements and isotopes analysis. Our data indicated that the concentrations of CO and CO2 and the temperature were higher during periods of cooking, especially for the fry and stir-fry methods, than during periods with non-cooking. The concentrations of PM2.5, total carbon, and total nitrogen were also higher during cooking; the maximum concentrations were measured during fry. The values of δ13C were considerably lower during the periods of cooking (mean: -28.15‰) than during non-cooking (-27.18‰). The average values of δ15N were 8.63‰ and 11.74‰ during deep-fry and hot-pot cooking, respectively. The δ13C values can be used to distinguish between cooking and other non-cooking sources and further assess the effect of different cooking activities on PM2.5. The δ15N only can be used to investigate the effect of deep-fry on PM2.5. Moreover, the δ13C signature suggested that fry emits higher products of incomplete combustion than do other cooking activities. These findings can assist in pollution source identification of PM2.5, emission control, and the study of combustion characteristics.
Collapse
Affiliation(s)
- Chien-Cheng Jung
- Department of Public Health, China Medical University, Taichung City, Taiwan.
| | - Huey-Jen Su
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
5
|
Felix JD, Thomas R, Casas M, Shimizu MS, Avery GB, Kieber RJ, Mead RN, Lane CS, Willey JD, Guy A, Campos MLAM. Compound-Specific Carbon Isotopic Composition of Ethanol in Brazil and US Vehicle Emissions and Wet Deposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1698-1705. [PMID: 30566835 DOI: 10.1021/acs.est.8b05325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Global atmospheric ethanol budget models include large uncertainties in the magnitude of ethanol emission sources and sinks. To apply stable isotope techniques to constrain ethanol emission sources, a headspace solid phase microextraction gas chromatograph-combustion-isotope ratio mass spectrometry method (HS-SPME-GC-C-IRMS) was developed to measure the carbon isotopic composition of aqueous phase ethanol at natural abundance levels (1-30 μM) with a precision of 0.4‰. The method was applied to determine the carbon isotope signatures (δ13C) of vehicle ethanol emission sources in Brazil (-12.8 ± 2.4‰) and the US (-9.8 ± 2.5‰), and to measure the carbon isotope composition of ethanol in wet deposition (-22.6 to -12.7‰). A two end-member isotope mixing model was developed using anthropogenic and biogenic end members and fractionation scenarios to estimate ethanol source contributions to wet deposition collected in Brazil and US. Mixing model results indicate anthropogenic sources contribute two and a half to four times more ethanol to the atmosphere than previously predicted in modeled global ethanol inventories. As established and developing countries continue to rapidly increase ethanol fuel consumption and subsequent emissions, understanding the magnitude of all ethanol sources and sinks will be essential for modeling future atmospheric chemistry and air quality impacts.
Collapse
Affiliation(s)
- J David Felix
- Department of Physical and Environmental Science , Texas A&M University-Corpus Christi , Corpus Christi , Texas , 78412 , United States
| | - Rachel Thomas
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina , 28403 , United States
| | - Matt Casas
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina , 28403 , United States
| | - Megumi S Shimizu
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina , 28403 , United States
| | - G Brooks Avery
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina , 28403 , United States
| | - Robert J Kieber
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina , 28403 , United States
| | - Ralph N Mead
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina , 28403 , United States
| | - Chad S Lane
- Department of Earth and Ocean Sciences , University of North Carolina Wilmington , Wilmington , North Carolina , 28403 , United States
| | - Joan D Willey
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina , 28403 , United States
| | - Amanda Guy
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina , 28403 , United States
| | - M Lucia A M Campos
- Departamento de Química, Faculdade de Filosofia, Ciencias e Letras de Ribeirão Preto , Universidade de São Paulo , Avenida dos Bandeirantes 3900 , 14040-901 Ribeirão Preto , São Paulo Brazil
| |
Collapse
|
6
|
Passeport E, Zhang N, Wu L, Herrmann H, Sherwood Lollar B, Richnow HH. Aqueous photodegradation of substituted chlorobenzenes: Kinetics, carbon isotope fractionation, and reaction mechanisms. WATER RESEARCH 2018; 135:95-103. [PMID: 29459118 DOI: 10.1016/j.watres.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Substituted chlorobenzenes are the basic substructure of many surface water contaminants. In this study, the isotope fractionation and reaction mechanisms involved during the aqueous direct and indirect photodegradation of CH3-, Cl-, and NO2- substituted chlorobenzenes were investigated in laboratory experiments. Only 4-nitrochlorobenzene showed slow but isotopically fractionating direct photolysis. During indirect photodegradation using UV/H2O2-generated OH radicals, the pseudo first-order reaction rate constants increased in the order of the NO2- < Cl- < CH3- substituted chlorobenzenes. The most pronounced carbon enrichment factors were observed for nitrochlorobenzenes (up to -4.8 ± 0.5‰), whereas the lowest were for chlorotoluenes (≤-1.0 ± 0.1‰). As the substituents became more electron-withdrawing, the activation energy barrier increased, leading to slower reaction rates, and the transition state changed to a more symmetrical or less reactant-like structure, resulting in larger apparent kinetic isotope effects. The results suggest that the rate-determining step in the reaction with OH radicals was the addition of the electrophile to the benzene ring. Even though further research is needed to quantify isotope fractionation during other transformation processes, these results showed evidence that compound specific isotope analysis can be used as a diagnostic tool for the fate of substituted chlorobenzenes in water.
Collapse
Affiliation(s)
- Elodie Passeport
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1, Canada.
| | - Ning Zhang
- Department of Isotope Biogeochemistry, Helmholtz Center for Environmental Research UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Center for Environmental Research UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- TROPOS Leibniz Institute for Tropospheric Research, Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Barbara Sherwood Lollar
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1, Canada
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Center for Environmental Research UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
7
|
Bouchard D, Hunkeler D. Solvent-based dissolution method to sample gas-phase volatile organic compounds for compound-specific isotope analysis. J Chromatogr A 2014; 1325:16-22. [DOI: 10.1016/j.chroma.2013.11.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
|
8
|
Vitzthum von Eckstaedt CD, Grice K, Ioppolo-Armanios M, Kelly D, Gibberd M. Compound specific carbon and hydrogen stable isotope analyses of volatile organic compounds in various emissions of combustion processes. CHEMOSPHERE 2012; 89:1407-1413. [PMID: 22921436 DOI: 10.1016/j.chemosphere.2012.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 06/05/2012] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
This study presents carbon (δ(13)C) and hydrogen (δD) isotope values of volatile organic compounds (VOCs) in various emission sources using thermal desorption-gas chromatography-isotope ratio mass spectrometry (TD-GC-irMS). The investigated VOCs ranged from C6 to C10. Samples were taken from (i) car exhaust emissions as well as from plant combustion experiments of (ii) various C3 and (iii) various C4 plants. We found significant differences in δ values of analysed VOCs between these sources, e.g. δ(13)C of benzene ranged between (i) -21.7 ± 0.2 ‰, (ii) -27.6 ± 1.6 ‰ and (iii) -16.3 ± 2.2 ‰, respectively and δD of benzene ranged between (i) -73 ± 13 ‰, (ii) -111 ± 10 ‰ and (iii) -70 ± 24 ‰, respectively. Results of VOCs present in investigated emission sources were compared to values from the literature (aluminium refinery emission). All source groups could be clearly distinguished using the dual approach of δ(13)C and δD analysis. The results of this study indicate that the correlation of compound specific carbon and hydrogen isotope analysis provides the potential for future research to trace the fate and to determine the origin of VOCs in the atmosphere using thermal desorption compound specific isotope analysis.
Collapse
Affiliation(s)
- Christiane D Vitzthum von Eckstaedt
- Department of Chemistry, WA-Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, John de Laeter Centre for Mass Spectrometry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| | | | | | | | | |
Collapse
|
9
|
Validation of adsorbents for sample preconcentration in compound-specific isotope analysis of common vapor intrusion pollutants. J Chromatogr A 2012. [PMID: 23177155 DOI: 10.1016/j.chroma.2012.10.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Isotope ratios of volatile organic compounds (VOCs) in the environment are often of interest in contaminant fate studies. Adsorbent preconcentration-thermal desorption of VOCs can be used to collect environmental vapor samples for compound-specific isotope analysis (CSIA). While active adsorbent samplers offer logistic benefits in handling large volumes of air, their performance in preserving VOCs isotope ratios was not previously tested under sampling conditions corresponding to typical indoor air sampling conditions. In this study, the performance of selected adsorbents was tested for preconcentration of TCE (for determination of C and Cl isotope ratios), PCE (C and Cl) and benzene (C and H). The key objective of the study was to identify the adsorbent(s) permitting preconcentration of the target VOCs present in air at low μg/m(3) concentrations, without significant alteration of their isotope ratios. Carboxen 1016 was found to perform well for the full range of tested parameters. Carboxen 1016 can be recommended for sampling of TCE, PCE and benzene, for CSIA, from air volumes up to 100 L. Variable extent of isotope ratio alteration was observed in the preconcentration of the target VOCs on Carbopack B and Carbopack X, resulting from partial analyte loss via adsorbent bed breakthrough and (possibly) via incomplete desorption. The results from testing the Carbopack B and Carbopack X highlight the need of adsorbent performance validation at conditions fully representative of actual sample collection conditions, and caution against extrapolation of performance data toward more challenging sampling conditions.
Collapse
|
10
|
Zhang Y, Tobias HJ, Sacks GL, Brenna JT. Calibration and data processing in gas chromatography combustion isotope ratio mass spectrometry. Drug Test Anal 2012; 4:912-22. [PMID: 22362612 DOI: 10.1002/dta.394] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/22/2011] [Accepted: 10/31/2011] [Indexed: 11/08/2022]
Abstract
Compound-specific isotope analysis (CSIA) by gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) is a powerful technique for the sourcing of substances, such as determination of the geographic or chemical origin of drugs and food adulteration, and it is especially invaluable as a confirmatory tool for detection of the use of synthetic steroids in competitive sport. We review here principles and practices for data processing and calibration of GCC-IRMS data with consideration to anti-doping analyses, with a focus on carbon isotopic analysis ((13)C/(12)C). After a brief review of peak definition, the isotopologue signal reduction methods of summation, curve-fitting, and linear regression are described and reviewed. Principles for isotopic calibration are considered in the context of the Δ(13)C = δ(13)C(M) - δ(13)C(E) difference measurements required for establishing adverse analytical findings for metabolites (M) relative to endogenous (E) reference compounds. Considerations for the anti-doping analyst are reviewed.
Collapse
Affiliation(s)
- Ying Zhang
- Cornell University, Division of Nutritional Sciences, Savage Hall, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
11
|
Oikawa PY, Giebel BM, da Silveira Lobo O'Reilly Sternberg L, Li L, Timko MP, Swart PK, Riemer DD, Mak JE, Lerdau MT. Leaf and root pectin methylesterase activity and 13C/12C stable isotopic ratio measurements of methanol emissions give insight into methanol production in Lycopersicon esculentum. THE NEW PHYTOLOGIST 2011; 191:1031-1040. [PMID: 21592134 DOI: 10.1111/j.1469-8137.2011.03770.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant production of methanol (MeOH) is a poorly understood aspect of metabolism, and understanding MeOH production in plants is crucial for modeling MeOH emissions. Here, we have examined the source of MeOH emissions from mature and immature leaves and whether pectin methylesterase (PME) activity is a good predictor of MeOH emission. We also investigated the significance of below-ground MeOH production for mature leaf emissions. We present measurements of MeOH emission, PME activity, and MeOH concentration in mature and immature tissues of tomato (Lycopersicon esculentum). We also present stable carbon isotopic signatures of MeOH emission and the pectin methoxyl pool. Our results suggest that below-ground MeOH production was not the dominant contributor to daytime MeOH emissions from mature and immature leaves. Stable carbon isotopic signatures of mature and immature leaf MeOH were similar, suggesting that they were derived from the same pathway. Foliar PME activity was related to MeOH flux, but unexplained variance suggested PME activity could not predict emissions. The data show that MeOH production and emission are complex and cannot be predicted using PME activity alone. We hypothesize that substrate limitation of MeOH synthesis and MeOH catabolism may be important regulators of MeOH emission.
Collapse
Affiliation(s)
| | - Brian M Giebel
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA
| | | | - Lei Li
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Peter K Swart
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA
| | - Daniel D Riemer
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA
| | - John E Mak
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | - Manuel T Lerdau
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904-4123, USA
- Xishuangbanna Tropical Botanic Garden, Melung, Xishuangbanna, Yunnan, China
| |
Collapse
|
12
|
δD and δ13C analyses of atmospheric volatile organic compounds by thermal desorption gas chromatography isotope ratio mass spectrometry. J Chromatogr A 2011; 1218:6511-7. [DOI: 10.1016/j.chroma.2011.06.098] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 06/16/2011] [Accepted: 06/27/2011] [Indexed: 11/18/2022]
|
13
|
Giebel BM, Swart PK, Riemer DD. New insights to the use of ethanol in automotive fuels: a stable isotopic tracer for fossil- and bio-fuel combustion inputs to the atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:6661-6669. [PMID: 21692481 DOI: 10.1021/es200982t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ethanol is currently receiving increased attention because of its use as a biofuel or fuel additive and because of its influence on air quality. We used stable isotopic ratio measurements of (13)C/(12)C in ethanol emitted from vehicles and a small group of tropical plants to establish ethanol's δ(13)C end-member signatures. Ethanol emitted in exhaust is distinctly different from that emitted by tropical plants and can serve as a unique stable isotopic tracer for transportation-related inputs to the atmosphere. Ethanol's unique isotopic signature in fuel is related to corn, a C4 plant and the primary source of ethanol in the U.S. We estimated a kinetic isotope effect (KIE) for ethanol's oxidative loss in the atmosphere and used previous assumptions with respect to the fractionation that may occur during wet and dry deposition. A small number of interpretive model calculations were used for source apportionment of ethanol and to understand the associated effects resulting from atmospheric removal. The models incorporated our end-member signatures and ambient measurements of ethanol, known or estimated source strengths and removal magnitudes, and estimated KIEs associated with atmospheric removal processes for ethanol. We compared transportation-related ethanol signatures to those from biogenic sources and used a set of ambient measurements to apportion each source contribution in Miami, Florida-a moderately polluted, but well ventilated urban location.
Collapse
Affiliation(s)
- Brian M Giebel
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida 33149, United States.
| | | | | |
Collapse
|