1
|
El Hanafi K, Fernández-Bautista T, Ouerdane L, Corns WT, Bueno M, Fontagné-Dicharry S, Amouroux D, Pedrero Z. Exploring mercury detoxification in fish: The role of selenium from tuna byproduct diets for sustainable aquaculture. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135779. [PMID: 39298964 DOI: 10.1016/j.jhazmat.2024.135779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Exposure to mercury (Hg) through fish consumption poses significant environmental and public health risks, given its status as one of the top ten hazardous chemicals. Aquaculture is expanding, driving a surge in demand for sustainable aquafeeds. Tuna byproducts, which are rich in protein, offer potential for aquafeed production, yet their use is challenged by the high content of heavy metals, particularly Hg. However, these byproducts also contain elevated levels of selenium (Se), which may counteract Hg adverse effects. This study examines the fate of dietary Hg and Se in an aquaculture model fish. Biomolecular speciation analyses through hyphenated analytical approaches were conducted on the water-soluble protein fraction of key organs of juvenile rainbow trout (Oncorhynchus mykiss) exposed to various combinations of Hg and Se species, including diets containing tuna byproducts, over a six-month period. The findings shed light on the dynamics of Hg and Se compounds in fish revealing potential Hg detoxification mechanisms through complexation with Hg-biomolecules, such as cysteine, glutathione, and metallothionein. Furthermore, the trophic transfer of selenoneine is demonstrated, revealing novel opportunities for sustainable aquafeed production. Understanding the interactions between Hg and Se in aquaculture systems is crucial for optimizing feed formulations and mitigating environmental risks. This research contributes to the broader goal of advancing sustainable practices in aquaculture while addressing food security challenges.
Collapse
Affiliation(s)
- Khouloud El Hanafi
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Tamara Fernández-Bautista
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laurent Ouerdane
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Warren T Corns
- PS Analytical, Arthur House, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3HP, United Kingdom
| | - Maite Bueno
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | | | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Zoyne Pedrero
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France.
| |
Collapse
|
2
|
Chen B, Peng L, He M, Wang C, Hu B. Identification of cadmium containing metabolites in HepG2 cells after treatment with cadmium-selenium quantum dots. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Nickel Nanoparticles Induce the Synthesis of a Tumor-Related Polypeptide in Human Epidermal Keratinocytes. NANOMATERIALS 2020; 10:nano10050992. [PMID: 32455808 PMCID: PMC7279538 DOI: 10.3390/nano10050992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 01/29/2023]
Abstract
Although nickel allergy and carcinogenicity are well known, their molecular mechanisms are still uncertain, thus demanding studies at the molecular level. The nickel carcinogenicity is known to be dependent on the chemical form of nickel, since only certain nickel compounds can enter the cell. This study investigates, for the first time, the cytotoxicity, cellular uptake, and molecular targets of nickel nanoparticles (NiNPs) in human skin cells in comparison with other chemical forms of nickel. The dose-response curve that was obtained for NiNPs in the cytotoxicity assays showed a linear behavior typical of genotoxic carcinogens. The exposure of keratinocytes to NiNPs leads to the release of Ni2+ ions and its accumulation in the cytosol. A 6 kDa nickel-binding molecule was found to be synthesized by cells exposed to NiNPs at a dose corresponding to medium mortality. This molecule was identified to be tumor-related p63-regulated gene 1 protein.
Collapse
|
4
|
Determination of Metallothionein Isoforms in Fish by Cadmium Saturation Combined with Anion Exchange HPLC-ICP-MS. Chromatographia 2018. [DOI: 10.1007/s10337-018-3523-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Krizkova S, Kepinska M, Emri G, Eckschlager T, Stiborova M, Pokorna P, Heger Z, Adam V. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol Ther 2017; 183:90-117. [PMID: 28987322 DOI: 10.1016/j.pharmthera.2017.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metallothioneins (MTs) belong to a group of small cysteine-rich proteins that are ubiquitous throughout all kingdoms. The main function of MTs is scavenging of free radicals and detoxification and homeostating of heavy metals. In humans, 16 genes localized on chromosome 16 have been identified to encode four MT isoforms labelled by numbers (MT-1-MT-4). MT-2, MT-3 and MT-4 proteins are encoded by a single gene. MT-1 comprises many (sub)isoforms. The known active MT-1 genes are MT-1A, -1B, -1E, -1F, -1G, -1H, -1M and -1X. The rest of the MT-1 genes (MT-1C, -1D, -1I, -1J and -1L) are pseudogenes. The expression and localization of individual MT (sub)isoforms and pseudogenes vary at intra-cellular level and in individual tissues. Changes in MT expression are associated with the process of carcinogenesis of various types of human malignancies, or with a more aggressive phenotype and therapeutic resistance. Hence, MT (sub)isoform profiling status could be utilized for diagnostics and therapy of tumour diseases. This review aims on a comprehensive summary of methods for analysis of MTs at (sub)isoforms levels, their expression in single tumour diseases and strategies how this knowledge can be utilized in anticancer therapy.
Collapse
Affiliation(s)
- Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Marta Kepinska
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic
| | - Petra Pokorna
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic; Department of Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
6
|
Coufalíková K, Benešová I, Vaculovič T, Kanický V, Preisler J. LC coupled to ESI, MALDI and ICP MS - A multiple hyphenation for metalloproteomic studies. Anal Chim Acta 2017; 968:58-65. [PMID: 28395775 DOI: 10.1016/j.aca.2017.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
A new multiple detection arrangement for liquid chromatography (LC) that supplements conventional electrospray ionization (ESI) mass spectrometry (MS) detection with two complementary detection techniques, matrix-assisted laser desorption/ionization (MALDI) MS and substrate-assisted laser desorption inductively coupled plasma (SALD ICP) MS has been developed. The combination of the molecular and elemental detectors in a single separation run is accomplished by utilizing a commercial MALDI target made of conductive plastic. The proposed platform provides a number of benefits in today's metalloproteomic applications, which are demonstrated by analysis of a metallothionein mixture. To maintain metallothionein complexes, separation is carried out at a neutral pH. The effluent is split; a major portion is directed to ESI MS while the remaining 1.8% fraction is deposited onto a plastic MALDI target. Dried droplets are overlaid with MALDI matrix and analysed consecutively by MALDI MS and SALD ICP MS. In the ESI MS spectra, the MT isoform complexes with metals and their stoichiometry are determined; the apoforms are revealed in the MALDI MS spectra. Quantitative determination of metallothionein isoforms is performed via determination of metals in the complexes of the individual protein isoforms using SALD ICP MS.
Collapse
Affiliation(s)
- Kateřina Coufalíková
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Iva Benešová
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Tomáš Vaculovič
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Viktor Kanický
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Jan Preisler
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
7
|
Shabb J, Muhonen W, Mehus A. Quantitation of Human Metallothionein Isoforms in Cells, Tissues, and Cerebrospinal Fluid by Mass Spectrometry. Methods Enzymol 2017; 586:413-431. [DOI: 10.1016/bs.mie.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. Metallothioneins: Structure and Functions. METALLOTHIONEINS IN NORMAL AND CANCER CELLS 2016. [DOI: 10.1007/978-3-319-27472-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Leclercq A, Nonell A, Todolí Torró JL, Bresson C, Vio L, Vercouter T, Chartier F. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part II. Practical considerations. Anal Chim Acta 2015; 885:57-91. [PMID: 26231892 DOI: 10.1016/j.aca.2015.04.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 01/21/2023]
Abstract
Inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are increasingly used to carry out analyses in organic/hydro-organic matrices. The introduction of such matrices into ICP sources is particularly challenging and can be the cause of numerous drawbacks. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP sources. Part I provided theoretical considerations associated with the physico-chemical properties of such matrices, in an attempt to understand the induced phenomena. Part II of this tutorial review is dedicated to more practical considerations on instrumentation, instrumental and operating parameters, as well as analytical strategies for elemental quantification in such matrices. Two important issues are addressed in this part: the first concerns the instrumentation and optimization of instrumental and operating parameters, pointing out (i) the description, benefits and drawbacks of different kinds of nebulization and desolvation devices and the impact of more specific instrumental parameters such as the injector characteristics and the material used for the cone; and, (ii) the optimization of operating parameters, for both ICP-OES and ICP-MS. Even if it is at the margin of this tutorial review, Electrothermal Vaporization and Laser Ablation will also be shortly described. The second issue is devoted to the analytical strategies for elemental quantification in such matrices, with particular insight into the isotope dilution technique, particularly used in speciation analysis by ICP-coupled separation techniques.
Collapse
Affiliation(s)
- Amélie Leclercq
- CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette, France.
| | - Anthony Nonell
- CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette, France.
| | - José Luis Todolí Torró
- Universidad de Alicante, Departamento de Quimica Analitica, Nutricion y Bromatología, Ap. de Correos, 99, 03080 Alicante, Spain.
| | - Carole Bresson
- CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette, France.
| | - Laurent Vio
- CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette, France.
| | - Thomas Vercouter
- CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette, France.
| | | |
Collapse
|
10
|
Yan YQ, Tang X, Wang YS, Li MH, Cao JX, Chen SH, Zhu YF, Wang XF, Huang YQ. A sensitive and selective fluorescence assay for metallothioneins by exploiting the surface energy transfer between rhodamine 6G and gold nanoparticles. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1457-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Jiménez-Lamana J, Laborda F, Bolea E, Abad-Álvaro I, Castillo JR, Bianga J, He M, Bierla K, Mounicou S, Ouerdane L, Gaillet S, Rouanet JM, Szpunar J. An insight into silver nanoparticles bioavailability in rats. Metallomics 2014; 6:2242-9. [PMID: 25363792 DOI: 10.1039/c4mt00200h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comprehensive study of the bioavailability of orally administered silver nanoparticles (AgNPs) was carried out using a rat model. The silver uptake was monitored in liver and kidney tissues, as well as in urine and in feces. Significant accumulation of silver was found in both organs, the liver being the principal target of AgNPs. A significant (∼50%) fraction of silver was found in feces whereas the fraction excreted via urine was negligible (< 0.01%). Intact silver nanoparticles were found in feces by asymmetric flow field-flow fractionation (AsFlFFF) coupled with UV-Vis analysis. Laser ablation-ICP MS imaging showed that AgNPs were able to penetrate into the liver, in contrast to kidneys where they were retained in the cortex. Silver speciation analysis in cytosols from kidneys showed the metallothionein complex as the major species whereas in the liver the majority of silver was bound to high-molecular (70-25 kDa) proteins. These findings demonstrate the presence of Ag(i), released by the oxidation of AgNPs in the biological environment.
Collapse
Affiliation(s)
- Javier Jiménez-Lamana
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mehus AA, Muhonen WW, Garrett SH, Somji S, Sens DA, Shabb JB. Quantitation of human metallothionein isoforms: a family of small, highly conserved, cysteine-rich proteins. Mol Cell Proteomics 2014; 13:1020-33. [PMID: 24493013 DOI: 10.1074/mcp.m113.033373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human metallothioneins (MTs) are important regulators of metal homeostasis and protectors against oxidative damage. Their altered mRNA expression has been correlated with metal toxicity and a variety of cancers. Current immunodetection methods lack the specificity to distinguish all 12 human isoforms. Each, however, can be distinguished by the mass of its acetylated, cysteine-rich, hydrophilic N-terminal tryptic peptides. These properties were exploited to develop a bottom-up MALDI-TOF/TOF-MS-based method for their simultaneous quantitation. Key features included enrichment of N-terminal acetylated peptides by strong cation exchange chromatography, optimization of C18 reversed-phase chromatography, and control of methionine oxidation. Combinations of nine isoforms were identified in seven cell lines and two tissues. Relative quantitation was accomplished by comparing peak intensities of peptides generated from pooled cytosolic proteins alkylated with ¹⁴N- or ¹⁵N-iodoacetamide. Absolute quantitation was achieved using ¹⁵N-iodoacetamide-labeled synthetic peptides as internal standards. The method was applied to the cadmium induction of MTs in human kidney HK-2 epithelial cells expressing recombinant MT-3. Seven isoforms were detected with abundances spanning almost 2 orders of magnitude and inductions up to 12-fold. The protein-to-mRNA ratio for MT-1E was one-tenth that of other MTs, suggesting isoform-specific differences in protein expression efficiency. Differential expression of MT-1G1 and MT-1G2 suggested tissue- and cell-specific alternative splicing for the MT-1G isoform. Protein expression of MT isoforms was also evaluated in human breast epithelial cancer cell lines. Estrogen-receptor-positive cell lines expressed only MT-2 and MT-1X, whereas estrogen-receptor-negative cell lines additionally expressed MT-1E. The combined expression of MT isoforms was 38-fold greater in estrogen-receptor-negative cell lines than in estrogen-receptor-positive cells. These findings demonstrate that individual human MT isoforms can be accurately quantified in cells and tissues at the protein level, complementing and expanding mRNA measurement as a means for evaluating MTs as potential biomarkers for cancers or heavy metal toxicity.
Collapse
Affiliation(s)
- Aaron A Mehus
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 Columbia Road N., Grand Forks, North Dakota 58203
| | | | | | | | | | | |
Collapse
|
13
|
Campanella B, Bramanti E. Detection of proteins by hyphenated techniques with endogenous metal tags and metal chemical labelling. Analyst 2014; 139:4124-53. [DOI: 10.1039/c4an00722k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The absolute and relative quantitation of proteins plays a fundamental role in modern proteomics, as it is the key to understand still unresolved biological questions in medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Beatrice Campanella
- National Research Council of Italy
- C.N.R
- Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa
- 56124 Pisa, Italy
| | - Emilia Bramanti
- National Research Council of Italy
- C.N.R
- Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa
- 56124 Pisa, Italy
| |
Collapse
|
14
|
L'Azou B, Passagne I, Mounicou S, Tréguer-Delapierre M, Puljalté I, Szpunar J, Lobinski R, Ohayon-Courtès C. Comparative cytotoxicity of cadmium forms (CdCl2, CdO, CdS micro- and nanoparticles) in renal cells. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50063b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Hemoglobin as a major binding protein for methylmercury in white-sided dolphin liver. Anal Bioanal Chem 2013; 406:1121-9. [PMID: 23942567 DOI: 10.1007/s00216-013-7274-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
Abstract
As methylmercury (MeHg) can be bioaccumulated and biomagnified in the trophic web, its toxicity for marine mammals is of major concern. Mercury speciation in marine biota has been widely studied, mainly focused on the discrimination and quantification of inorganic Hg and MeHg. Less attention has been paid to the interactions of Hg with biomolecules and the characterization of its specific binding, which play a key role in metabolic pathways controlling its uptake, transformation, and toxicity. In the studied white-sided dolphin (Lagenorhynchus acutus) liver homogenate (QC04LH4) sample, approximately 60% of the total MeHg was found in the water soluble fraction, specifically associated with high molecular weight biomolecules. The identity of the involved proteins was investigated (after tryptic digestion of the fraction) by μRPLC with parallel detection by ICP-MS and ESI-MS/MS. Molecular mass spectrometry experiments were carried out at high resolution (100000) to ensure accurate protein identification and determination of the MeHg binding sites. Cysteine residue on the dolphin hemoglobin β chain was found to be the main MeHg binding site, suggesting that hemoglobin is a major MeHg binding protein in this marine mammal and could be a potential carrier of this MeHg from blood to liver prior to its degradation in this organ. In parallel, a significant proportion of selenium was found to be present as selenoneine and a potential role for this compound in Hg detoxification is discussed.
Collapse
|
16
|
Jara-Biedma R, González-Dominguez R, García-Barrera T, Lopez-Barea J, Pueyo C, Gómez-Ariza JL. Evolution of metallotionein isoforms complexes in hepatic cells of Mus musculus along cadmium exposure. Biometals 2013; 26:639-50. [PMID: 23793301 DOI: 10.1007/s10534-013-9636-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 05/11/2013] [Indexed: 10/26/2022]
Abstract
Characterization of Cd-binding proteins has great analytical interest due to the high toxicity of Cd to living organisms. Metallothioneins (MTs), as Cd(II)-binding proteins are of increasing interest, since they form very stable Cd chelates and are involved in many detoxification processes. In this work, inductively coupled plasma octopole reaction cell mass spectrometry and nanospray ionization time-of-flight mass spectrometry were used in parallel and combined with two-dimensional chromatography: size exclusion followed by reversed-phase high performance liquid chromatography, to study metal complexes of MT isoforms produced in hepatic cytosols of Mus musculus during exposure experiments to Cd. Exposure experiments were carried out by subcutaneous injection of a growing dose of the toxic element ranging from 0.1 to 1.0 mg of Cd per kg of body weight per day during 10 days. A control group and three exposure groups at days 2, 6 and 10 of exposure were studied, and different cadmium, copper and zinc complexes with MTs isoforms were isolated and characterized from the two most exposed groups. The results allow gaining insight into the mechanisms involved in metal detoxification by MTs, showing the changes in the stoichiometry of metal complexes-MTs along cadmium exposure.
Collapse
Affiliation(s)
- R Jara-Biedma
- Department of Chemistry and Materials Science, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmenm, Fuerzas Armadas Ave., 21007 Huelva, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Sharma S, Rais A, Sandhu R, Nel W, Ebadi M. Clinical significance of metallothioneins in cell therapy and nanomedicine. Int J Nanomedicine 2013; 8:1477-88. [PMID: 23620664 PMCID: PMC3633583 DOI: 10.2147/ijn.s42019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammalian metallothioneins (MTs) are low molecular weight (6–7 kDa) cysteine-rich proteins that are specifically induced by metal nanoparticles (NPs). MT induction in cell therapy may provide better protection by serving as antioxidant, anti-inflammatory, antiapoptotic agents, and by augmenting zinc-mediated transcriptional regulation of genes involved in cell proliferation and differentiation. Liposome-encapsulated MT-1 promoter has been used extensively to induce growth hormone or other genes in culture and gene-manipulated animals. MTs are induced as a defensive mechanism in chronic inflammatory conditions including neurodegenerative diseases, cardiovascular diseases, cancer, and infections, hence can serve as early and sensitive biomarkers of environmental safety and effectiveness of newly developed NPs for clinical applications. Microarray analysis has indicated that MTs are significantly induced in drug resistant cancers and during radiation treatment. Nutritional stress and environmental toxins (eg, kainic acid and domoic acid) induce MTs and aggregation of multilamellar electron-dense membrane stacks (Charnoly body) due to mitochondrial degeneration. MTs enhance mitochondrial bioenergetics of reduced nicotinamide adenine dinucleotide–ubiquinone oxidoreductase (complex-1), a rate-limiting enzyme complex involved in the oxidative phosphorylation. Monoamine oxidase-B inhibitors (eg, selegiline) inhibit α-synuclein nitration, implicated in Lewy body formation, and inhibit 1-methyl 4-phenylpyridinium and 3-morpholinosydnonimine-induced apoptosis in cultured human dopaminergic neurons and mesencephalic fetal stem cells. MTs as free radical scavengers inhibit Charnoly body formation and neurodegenerative α-synucleinopathies, hence Charnoly body formation and α-synuclein index may be used as early and sensitive biomarkers to assess NP effectiveness and toxicity to discover better drug delivery and surgical interventions. Furthermore, pharmacological interventions augmenting MTs may facilitate the theranostic potential of NP-labeled cells and other therapeutic agents. These unique characteristics of MTs might be helpful in the synthesis, characterization, and functionalization of emerging NPs for theranostic applications. This report highlights the clinical significance of MTs and their versatility as early, sensitive biomarkers in cell-based therapy and nanomedicine.
Collapse
Affiliation(s)
- Sushil Sharma
- Saint James School of Medicine, Bonaire, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Chen SH, Russell WK, Russell DH. Combining chemical labeling, bottom-up and top-down ion-mobility mass spectrometry to identify metal-binding sites of partially metalated metallothionein. Anal Chem 2013; 85:3229-37. [PMID: 23421923 DOI: 10.1021/ac303522h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Metalation and demetalation of human metallothionein-2A (MT) with Cd(2+) is investigated by using chemical labeling and "bottom-up" and "top-down" proteomics approaches. Both metalation and demetalation of MT-2A by Cd(2+) are shown to be domain specific and occur as two distinct processes. Metalation involves sequential addition of Cd(2+) to the α-domain resulting in formation of an intermediate, Cd4MT. Chemical labeling with N-ethylmaleimide (NEM) and tandem mass spectrometry experiments clearly show that the four metal ions are located in the α-domain. In the presence of excess Cd(2+), the Cd4MT intermediate reacts to add Cd(2+) to the β-domain to yield the fully metalated Cd7MT. Demetalation occurs in the reverse order, i.e., Cd(2+) is removed (by EDTA) first from the β-domain followed by Cd(2+) removal from the α-domain. Metalation of human MT-2A is shown to be metal ion specific by comparing relative metal ion binding constants for Cd(2+) and Zn(2+).
Collapse
Affiliation(s)
- Shu-Hua Chen
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | | |
Collapse
|
19
|
Xu M, Yang L, Wang Q. Chemical interactions of mercury species and some transition and noble metals towards metallothionein (Zn7MT-2) evaluated using SEC/ICP-MS, RP-HPLC/ESI-MS and MALDI-TOF-MS. Metallomics 2013; 5:855-60. [DOI: 10.1039/c3mt00016h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Pedrero Z, Ouerdane L, Mounicou S, Lobinski R, Monperrus M, Amouroux D. Identification of mercury and other metals complexes with metallothioneins in dolphin liver by hydrophilic interaction liquid chromatography with the parallel detection by ICP MS and electrospray hybrid linear/orbital trap MS/MS. Metallomics 2012; 4:473-9. [DOI: 10.1039/c2mt00006g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Capdevila M, Bofill R, Palacios Ò, Atrian S. State-of-the-art of metallothioneins at the beginning of the 21st century. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.07.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Vašák M, Meloni G. Chemistry and biology of mammalian metallothioneins. J Biol Inorg Chem 2011; 16:1067-78. [PMID: 21647776 DOI: 10.1007/s00775-011-0799-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
Metallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators. In contrast, MT-3 and MT-4 are noninducible proteins, with their expression primarily confined to the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have been reported to be secreted, suggesting that they may play different biological roles in the intracellular and extracellular space. Recent reports established that these isoforms play an important protective role in brain injury and metal-linked neurodegenerative diseases. In the postgenomic era, it is becoming increasingly clear that MTs fulfill multiple functions, including the involvement in zinc and copper homeostasis, protection against heavy metal toxicity, and oxidative damage. All mammalian MTs are monomeric proteins, containing two metal-thiolate clusters. In this review, after a brief summary of the historical milestones of the MT-1/MT-2 research, the recent advances in the structure, chemistry, and biological function of MT-3 and MT-4 are discussed.
Collapse
Affiliation(s)
- Milan Vašák
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|