1
|
Britt H, Ben-Younis A, Page N, Thalassinos K. A Conformation-Specific Approach to Native Top-down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3203-3213. [PMID: 39453623 PMCID: PMC11622372 DOI: 10.1021/jasms.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Native top-down mass spectrometry is a powerful approach for characterizing proteoforms and has recently been applied to provide similarly powerful insights into protein conformation. Current approaches, however, are limited such that structural insights can only be obtained for the entire conformational landscape in bulk or without any direct conformational measurement. We report a new ion-mobility-enabled method for performing native top-down MS in a conformation-specific manner. Our approach identified conformation-linked differences in backbone dissociation for the model protein calmodulin, which simultaneously informs upon proteoform variations and provides structural insights. We also illustrate that our method can be applied to protein-ligand complexes, either to identify components or to probe ligand-induced structural changes.
Collapse
Affiliation(s)
- Hannah
M. Britt
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Aisha Ben-Younis
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Nathanael Page
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- LGC
Group, Teddington TW11 0LY, United Kingdom
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- Institute
of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United
Kingdom
| |
Collapse
|
2
|
Kuehl NJ, Taylor MT. Rapid Biomolecular Trifluoromethylation Using Cationic Aromatic Sulfonate Esters as Visible-Light-Triggered Radical Photocages. J Am Chem Soc 2023; 145:22878-22884. [PMID: 37819426 PMCID: PMC11076010 DOI: 10.1021/jacs.3c08098] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Described here is a photodecaging approach to radical trifluoromethylation of biomolecules. This was accomplished by designing a quinolinium sulfonate ester that, upon absorption of visible light, achieves decaging via photolysis of the sulfonate ester to ultimately liberate free trifluoromethyl radicals that are trapped by π-nucleophiles in biomolecules. This photodecaging process enables protein and protein-interaction mapping experiments using trifluoromethyl radicals that require only 1 s reaction times and low photocage concentrations. In these experiments, aromatic side chains are labeled in an environmentally dependent fashion, with selectivity observed for tryptophan (Trp), followed by histidine (His) and tyrosine (Tyr). Scalable peptide trifluoromethylation through photodecaging is also demonstrated, where bespoke peptides harboring trifluoromethyl groups at tryptophan residues can be synthesized with 5-7 min reaction times and good yields.
Collapse
Affiliation(s)
- Nicholas J. Kuehl
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, United States
| | - Michael T. Taylor
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
3
|
Kang J, Seshadri M, Cupp-Sutton KA, Wu S. Toward the analysis of functional proteoforms using mass spectrometry-based stability proteomics. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1186623. [PMID: 39072225 PMCID: PMC11281393 DOI: 10.3389/frans.2023.1186623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional proteomics aims to elucidate biological functions, mechanisms, and pathways of proteins and proteoforms at the molecular level to examine complex cellular systems and disease states. A series of stability proteomics methods have been developed to examine protein functionality by measuring the resistance of a protein to chemical or thermal denaturation or proteolysis. These methods can be applied to measure the thermal stability of thousands of proteins in complex biological samples such as cell lysate, intact cells, tissues, and other biological fluids to measure proteome stability. Stability proteomics methods have been popularly applied to observe stability shifts upon ligand binding for drug target identification. More recently, these methods have been applied to characterize the effect of structural changes in proteins such as those caused by post-translational modifications (PTMs) and mutations, which can affect protein structures or interactions and diversify protein functions. Here, we discussed the current application of a suite of stability proteomics methods, including thermal proteome profiling (TPP), stability of proteomics from rates of oxidation (SPROX), and limited proteolysis (LiP) methods, to observe PTM-induced structural changes on protein stability. We also discuss future perspectives highlighting the integration of top-down mass spectrometry and stability proteomics methods to characterize intact proteoform stability and understand the function of variable protein modifications.
Collapse
Affiliation(s)
- Ji Kang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Meena Seshadri
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Kellye A. Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
4
|
Cornwell O, Ault JR. Fast photochemical oxidation of proteins coupled with mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140829. [PMID: 35933084 DOI: 10.1016/j.bbapap.2022.140829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP) is a hydroxyl radical footprinting approach whereby radicals, produced by UV laser photolysis of hydrogen peroxide, induce oxidation of amino acid side-chains. Mass Spectrometry (MS) is employed to locate and quantify the resulting irreversible, covalent oxidations to use as a surrogate for side-chain solvent accessibility. Modulation of oxidation levels under different conditions allows for the characterisation of protein conformation, dynamics and binding epitopes. FPOP has been applied to structurally diverse and biopharmaceutically relevant systems from small, monomeric aggregation-prone proteins to proteome-wide analysis of whole organisms. This review evaluates the current state of FPOP, the progress needed to address data analysis bottlenecks, particularly for residue-level analysis, and highlights significant developments of the FPOP platform that have enabled its versatility and complementarity to other structural biology techniques.
Collapse
Affiliation(s)
- Owen Cornwell
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - James R Ault
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
5
|
Wagner ND, Moyle AB, Pabon JPR, Gross ML. Automated Specific Amino Acid Footprinting Mass Spectrometry: Repurposing an HDX Platform for Determining Reagent Feasibility. Anal Chem 2022; 94:10314-10319. [PMID: 35830607 PMCID: PMC10482561 DOI: 10.1021/acs.analchem.2c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein footprinting is a mass spectrometry (MS)-based approach to measure protein conformational changes. One approach, specific amino acid labeling, imparts often an irreversible modification to protein side chains but requires careful selection of the reactive reagent and often time-consuming optimization of experimental parameters prior to submission to bottom-up MS analysis. In this work, we repurpose a hydrogen-deuterium exchange MS (HDX-MS) LEAP HDX system for automated specific amino acid footprinting MS, demonstrating its efficacy in reaction optimization and monitoring applicability to specific ligand binding systems. We screened reagent conditions for two model ligand-binding systems and demonstrate the method's efficacy for measuring differences induced by ligand binding. Our proof-of-concept experiments provide a platform for rapidly screening specific amino acid reagents and reaction conditions for protein systems to be studied by footprinting.
Collapse
Affiliation(s)
- Nicole D. Wagner
- Washington University in St. Louis, Department of Chemistry, St. Louis, MO 63130
| | - Austin B. Moyle
- Washington University in St. Louis, Department of Chemistry, St. Louis, MO 63130
| | - Juan P. Rincon Pabon
- Washington University in St. Louis, Department of Chemistry, St. Louis, MO 63130
| | - Michael L. Gross
- Washington University in St. Louis, Department of Chemistry, St. Louis, MO 63130
| |
Collapse
|
6
|
Advances in Mass Spectrometry-based Epitope Mapping of Protein Therapeutics. J Pharm Biomed Anal 2022; 215:114754. [DOI: 10.1016/j.jpba.2022.114754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/16/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
|
7
|
Norton-Baker B, Rocha MA, Granger-Jones J, Fishman DA, Martin RW. Human γS-Crystallin Resists Unfolding Despite Extensive Chemical Modification from Exposure to Ionizing Radiation. J Phys Chem B 2022; 126:679-690. [PMID: 35021623 PMCID: PMC9977691 DOI: 10.1021/acs.jpcb.1c08157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ionizing radiation has dramatic effects on living organisms, causing damage to proteins, DNA, and other cellular components. γ radiation produces reactive oxygen species (ROS) that damage biological macromolecules. Protein modification due to interactions with hydroxyl radical is one of the most common deleterious effects of radiation. The human eye lens is particularly vulnerable to the effects of ionizing radiation, as it is metabolically inactive and its proteins are not recycled after early development. Therefore, radiation damage accumulates and eventually can lead to cataract formation. Here we explore the impact of γ radiation on a long-lived structural protein. We exposed the human eye lens protein γS-crystallin (HγS) to high doses of γ radiation and investigated the chemical and structural effects. HγS accumulated many post-translational modifications (PTMs), appearing to gain significant oxidative damage. Biochemical assays suggested that cysteines were affected, with the concentration of free thiol reduced with increasing γ radiation exposure. SDS-PAGE analysis showed that irradiated samples form protein-protein cross-links, including nondisulfide covalent bonds. Tandem mass spectrometry on proteolytic digests of irradiated samples revealed that lysine, methionine, tryptophan, leucine, and cysteine were oxidized. Despite these chemical modifications, HγS remained folded past 10.8 kGy of γ irradiation as evidenced by circular dichroism and intrinsic tryptophan fluorescence spectroscopy.
Collapse
Affiliation(s)
- Brenna Norton-Baker
- These authors contributed equally.,Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Megan A. Rocha
- These authors contributed equally.,Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | | - Dmitry A. Fishman
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| |
Collapse
|
8
|
Lin Y, Gross ML. Mass Spectrometry-Based Structural Proteomics for Metal Ion/Protein Binding Studies. Biomolecules 2022; 12:135. [PMID: 35053283 PMCID: PMC8773722 DOI: 10.3390/biom12010135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
Metal ions are critical for the biological and physiological functions of many proteins. Mass spectrometry (MS)-based structural proteomics is an ever-growing field that has been adopted to study protein and metal ion interactions. Native MS offers information on metal binding and its stoichiometry. Footprinting approaches coupled with MS, including hydrogen/deuterium exchange (HDX), "fast photochemical oxidation of proteins" (FPOP) and targeted amino-acid labeling, identify binding sites and regions undergoing conformational changes. MS-based titration methods, including "protein-ligand interactions by mass spectrometry, titration and HD exchange" (PLIMSTEX) and "ligand titration, fast photochemical oxidation of proteins and mass spectrometry" (LITPOMS), afford binding stoichiometry, binding affinity, and binding order. These MS-based structural proteomics approaches, their applications to answer questions regarding metal ion protein interactions, their limitations, and recent and potential improvements are discussed here. This review serves as a demonstration of the capabilities of these tools and as an introduction to wider applications to solve other questions.
Collapse
Affiliation(s)
- Yanchun Lin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
9
|
McKenzie-Coe A, Shortt R, Jones LM. THE MAKING OF A FOOTPRINT IN PROTEIN FOOTPRINTING: A REVIEW IN HONOR OF MICHAEL L. GROSS. MASS SPECTROMETRY REVIEWS 2021; 40:177-200. [PMID: 32400038 PMCID: PMC7849054 DOI: 10.1002/mas.21632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Within the past decade protein footprinting in conjunction with mass spectrometry has become a powerful and versatile means to unravel the higher order structure of proteins. Footprinting-based approaches has demonstrated the capacity to inform on interaction sites and dynamic regions that participate in conformational changes. These findings when set in a biological perspective inform on protein folding/unfolding, protein-protein interactions, and protein-ligand interactions. In this review, we will look at the contribution of Dr. Michael L. Gross to protein footprinting approaches such as hydrogen deuterium exchange mass spectrometry and hydroxyl radical protein footprinting. This review details the development of novel footprinting methods as well as their applications to study higher order protein structure. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Alan McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland, 21201
| | - Raquel Shortt
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland, 21201
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland, 21201
| |
Collapse
|
10
|
Liu XR, Rempel DL, Gross ML. Protein higher-order-structure determination by fast photochemical oxidation of proteins and mass spectrometry analysis. Nat Protoc 2020; 15:3942-3970. [PMID: 33169002 PMCID: PMC10476649 DOI: 10.1038/s41596-020-0396-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/03/2020] [Indexed: 11/09/2022]
Abstract
The higher-order structure (HOS) of proteins plays a critical role in their function; therefore, it is important to our understanding of their function that we have as much information as possible about their three-dimensional structure and how it changes with time. Mass spectrometry (MS) has become an important tool for determining protein HOS owing to its high throughput, mid-to-high spatial resolution, low sample amount requirement and broad compatibility with various protein systems. Modern MS-based protein HOS analysis relies, in part, on footprinting, where a reagent reacts 'to mark' the solvent-accessible surface of the protein, and MS-enabled proteomic analysis locates the modifications to afford a footprint. Fast photochemical oxidation of proteins (FPOP), first introduced in 2005, has become a powerful approach for protein footprinting. Laser-induced hydrogen peroxide photolysis generates hydroxyl radicals that react with solvent-accessible side chains (14 out of 20 amino acid side chains) to fulfill the footprinting. The reaction takes place at sub-milliseconds, faster than most of labeling-induced protein conformational changes, thus enabling a 'snapshot' of protein HOS in solution. As a result, FPOP has been employed in solving several important problems, including mapping epitopes, following protein aggregation, locating small molecule binding, measuring ligand-binding affinity, monitoring protein folding and unfolding and determining hidden conformational changes invisible to other methods. Broader adoption will be promoted by dissemination of the technical details for assembling the FPOP platform and for dealing with the complexities of analyzing FPOP data. In this protocol, we describe the FPOP platform, the conditions for successful footprinting and its examination by mass measurements of the intact protein, the post-labeling sample handling and digestion, the liquid chromatography-tandem MS analysis of the digested sample and the data analysis with Protein Metrics Suite. This protocol is intended not only as a guide for investigators trying to establish an FPOP platform in their own lab but also for those willing to incorporate FPOP as an additional tool in addressing their questions of interest.
Collapse
Affiliation(s)
- Xiaoran Roger Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Don L Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
11
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
12
|
Li KS, Schaper Bergman ET, Beno BR, Huang RYC, Deyanova E, Chen G, Gross ML. Hydrogen-Deuterium Exchange and Hydroxyl Radical Footprinting for Mapping Hydrophobic Interactions of Human Bromodomain with a Small Molecule Inhibitor. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2795-2804. [PMID: 31720974 PMCID: PMC6917846 DOI: 10.1007/s13361-019-02316-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 05/11/2023]
Abstract
Mass spectrometry (MS)-based protein footprinting, a valuable structural tool in mapping protein-ligand interaction, has been extensively applied to protein-protein complexes, showing success in mapping large interfaces. Here, we utilized an integrated footprinting strategy incorporating both hydrogen-deuterium exchange (HDX) and hydroxyl radical footprinting (i.e., fast photochemical oxidation of proteins (FPOP)) for molecular-level characterization of the interaction of human bromodomain-containing protein 4 (BRD4) with a hydrophobic benzodiazepine inhibitor. HDX does not provide strong evidence for the location of the binding interface, possibly because the shielding of solvent by the small molecule is not large. Instead, HDX suggests that BRD4 appears to be stabilized by showing a modest decrease in dynamics caused by binding. In contrast, FPOP points to a critical binding region in the hydrophobic cavity, also identified by crystallography, and, therefore, exhibits higher sensitivity than HDX in mapping the interaction of BRD4 with compound 1. In the absence or under low concentrations of the radical scavenger, FPOP modifications on Met residues show significant differences that reflect the minor change in protein conformation. This problem can be avoided by using a sufficient amount of proper scavenger, as suggested by the FPOP kinetics directed by a dosimeter of the hydroxyl radical.
Collapse
Affiliation(s)
- Ke Sherry Li
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | | | - Brett R Beno
- Molecular Structure & Design, Research and Development, Bristol-Myers Squibb, Princeton, NJ, 08540, USA
| | - Richard Y-C Huang
- Pharmaceutical Candidate Optimization, Research and Development, Bristol-Myers Squibb, Princeton, NJ, 08540, USA
| | - Ekaterina Deyanova
- Pharmaceutical Candidate Optimization, Research and Development, Bristol-Myers Squibb, Princeton, NJ, 08540, USA
| | - Guodong Chen
- Pharmaceutical Candidate Optimization, Research and Development, Bristol-Myers Squibb, Princeton, NJ, 08540, USA
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
13
|
Genereux JC. Mass spectrometric approaches for profiling protein folding and stability. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:111-144. [PMID: 31928723 DOI: 10.1016/bs.apcsb.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein stability reports on protein homeostasis, function, and binding interactions, such as to other proteins, metabolites and drugs. As such, there is a pressing need for technologies that can report on protein stability. The ideal technique could be applied in vitro or in vivo systems, proteome-wide, independently of matrix, under native conditions, with residue-level resolution, and on protein at endogenous levels. Mass spectrometry has rapidly become a preferred technology for identifying and quantifying proteins. As such, it has been increasingly incorporated into methodologies for interrogating protein stability and folding. Although no single technology can satisfy all desired applications, several emerging approaches have shown outstanding success at providing biological insight into the stability of the proteome. This chapter outlines some of these recent emerging technologies.
Collapse
Affiliation(s)
- Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA, United States
| |
Collapse
|
14
|
Chea EE, Deredge DJ, Jones LM. Insights on the Conformational Ensemble of Cyt C Reveal a Compact State during Peroxidase Activity. Biophys J 2019; 118:128-137. [PMID: 31810655 DOI: 10.1016/j.bpj.2019.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
Cytochrome c (cyt c) is known for its role in the electron transport chain but transitions to a peroxidase-active state upon exposure to oxidative species. The peroxidase activity ultimately results in the release of cyt c into the cytosol for the engagement of apoptosis. The accumulation of oxidative modifications that accompany the onset of the peroxidase function are well-characterized. However, the concurrent structural and conformational transitions of cyt c remain undercharacterized. Fast photochemical oxidation of proteins (FPOP) coupled with mass spectrometry is a protein footprinting technique used to structurally characterize proteins. FPOP coupled with native ion mobility separation shows that exposure to H2O2 results in the accumulation of a compact state of cyt c. Subsequent top-down fragmentation to localize FPOP modifications reveals changes in heme coordination between conformers. A time-resolved functional assay suggests that this compact conformer is peroxidase active. Altogether, combining FPOP, ion mobility separation, and top-down and bottom-up mass spectrometry allows us to discern individual conformations in solution and obtain a better understanding of the conformational ensemble and structural transitions of cyt c as it transitions from a respiratory role to a proapoptotic role.
Collapse
Affiliation(s)
- Emily E Chea
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland.
| |
Collapse
|
15
|
Liu T, Limpikirati P, Vachet RW. Synergistic Structural Information from Covalent Labeling and Hydrogen-Deuterium Exchange Mass Spectrometry for Protein-Ligand Interactions. Anal Chem 2019; 91:15248-15254. [PMID: 31664819 DOI: 10.1021/acs.analchem.9b04257] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen-deuterium exchange (HDX) mass spectrometry (MS) and covalent labeling (CL) MS are typically considered to be complementary methods for protein structural analysis, because one probes the protein backbone, while the other probes side chains. For protein-ligand interactions, we demonstrate in this work that the two labeling techniques can provide synergistic structural information about protein-ligand binding when reagents like diethylpyrocarbonate (DEPC) are used for CL because of the differences in the reaction rates of DEPC and HDX. Using three model protein-ligand systems, we show that the slower time scale for DEPC labeling makes it only sensitive to changes in solvent accessibility and insensitive to changes in protein structural fluctuations, whereas HDX is sensitive to changes in both solvent accessibility and structural fluctuations. When used together, the two methods more clearly reveal binding sites and ligand-induced changes to structural fluctuations that are distant from the binding site, which is more comprehensive information than either technique alone can provide. We predict that these two methods will find widespread usage together for more deeply understanding protein-ligand interactions.
Collapse
Affiliation(s)
- Tianying Liu
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Patanachai Limpikirati
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Richard W Vachet
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
16
|
Protein profiling and pseudo-parallel reaction monitoring to monitor a fusion-associated conformational change in hemagglutinin. Anal Bioanal Chem 2019; 411:4987-4998. [PMID: 31254054 DOI: 10.1007/s00216-019-01921-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/22/2022]
Abstract
Influenza infection requires viral escape from early endosomes into the cytosol, which is enabled by an acid-induced irreversible conformational transformation in the viral protein hemagglutinin. Despite the direct relationship between this conformational change and infectivity, label-free methods for characterizing this and other protein conformational changes in biological mixtures are limited. While the chemical reactivity of the protein backbone and side-chain residues is a proxy for protein conformation, coupling this reactivity to quantitative mass spectrometry is a challenge in complex environments. Herein, we evaluate whether electrophilic amidination coupled with pseudo-parallel reaction monitoring is an effective label-free approach to detect the fusion-associated conformational transformation in recombinant hemagglutinin (rHA). We identified rHA peptides that are differentially amidinated between the pre- and post-fusion states, and validated that this difference relies upon the fusion-associated conformational switch. We further demonstrate that we can distinguish the fusion profile in a matrix of digested cellular lysate. This fusion assay can be used to evaluate fusion competence for modified HA. Graphical abstract.
Collapse
|
17
|
Limpikirati P, Pan X, Vachet RW. Covalent Labeling with Diethylpyrocarbonate: Sensitive to the Residue Microenvironment, Providing Improved Analysis of Protein Higher Order Structure by Mass Spectrometry. Anal Chem 2019; 91:8516-8523. [PMID: 31150223 DOI: 10.1021/acs.analchem.9b01732] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covalent labeling with mass spectrometry is increasingly being used for the structural analysis of proteins. Diethylpyrocarbonate (DEPC) is a simple to use, commercially available covalent labeling reagent that can readily react with a range of nucleophilic residues in proteins. We find that in intact proteins weakly nucleophilic side chains (Ser, Thr, and Tyr) can be modified by DEPC in addition to other residues such as His, Lys, and Cys, providing very good structural resolution. We hypothesize that the microenvironment around these side chains, as formed by a protein's higher order structure, tunes their reactivity such that they can be labeled. To test this hypothesis, we compare DEPC labeling reactivity of Ser, Thr, and Tyr residues in intact proteins with peptide fragments from the same proteins. Results indicate that these residues almost never react with DEPC in free peptides, supporting the hypothesis that a protein's local microenvironment tunes the reactivity of these residues. From a close examination of the structural features near the reactive residues, we find that nearby hydrophobic residues are essential, suggesting that the enhanced reactivity of certain Ser, Thr, and Tyr residues occurs due to higher local concentrations of DEPC.
Collapse
Affiliation(s)
- Patanachai Limpikirati
- Department of Chemistry , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Xiao Pan
- Department of Chemistry , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Richard W Vachet
- Department of Chemistry , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
18
|
Abstract
![]()
Protein
footprinting coupled with mass spectrometry is being increasingly
used for the study of protein interactions and conformations. The
hydroxyl radical footprinting method, fast photochemical oxidation
of proteins (FPOP), utilizes hydroxyl radicals to oxidatively modify
solvent accessible amino acids. Here, we describe the further development
of FPOP for protein structural analysis in vivo (IV-FPOP) with Caenorhabditis elegans. C. elegans, part
of the nematode family, are used as model systems for many human diseases.
The ability to perform structural studies in these worms would provide
insight into the role of structure in disease pathogenesis. Many parameters
were optimized for labeling within the worms including the microfluidic
flow system and hydrogen peroxide concentration. IV-FPOP was able
to modify several hundred proteins in various organs within the worms.
The method successfully probed solvent accessibility similarily to
in vitro FPOP, demonstrating its potential for use as a structural
technique in a multiorgan system. The coupling of the method with
mass spectrometry allows for amino-acid-residue-level structural information,
a higher resolution than currently available in vivo methods.
Collapse
Affiliation(s)
- Jessica A Espino
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
19
|
Liu XR, Zhang MM, Rempel DL, Gross ML. A Single Approach Reveals the Composite Conformational Changes, Order of Binding, and Affinities for Calcium Binding to Calmodulin. Anal Chem 2019; 91:5508-5512. [PMID: 30963760 DOI: 10.1021/acs.analchem.9b01062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We found that a newly developed method named LITPOMS (ligand titration, fast photochemical oxidation of proteins and mass spectrometry) can characterize section-by-section of a protein the conformational changes induced by metal-ion binding. Peptide-level LITPOMS applied to Ca2+ binding to calmodulin reveals binding order and site-specific affinity, providing new insights on the behavior of proteins upon binding Ca2+. We established that EF hand-4 (EF-4) binds calcium first, followed by EF-3, EF-2, and EF-1 and determined the four affinity constants by modeling the extent-of-modification curves. We also found positive cooperativity between EF-4, EF-3 and EF-2, EF-1 and allostery involving the four EF-hands. LITPOMS recapitulates via one approach the calcium-calmodulin binding that required decades of sophisticated development to afford versatility, comprehensiveness, and outstanding spatial resolution.
Collapse
Affiliation(s)
- Xiaoran Roger Liu
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Mengru Mira Zhang
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Don L Rempel
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Michael L Gross
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| |
Collapse
|
20
|
Yi X, Liu W, Yu F. A simple MS method to characterize the higher order structures of antibody therapeutics. Eur J Pharm Sci 2019; 131:111-118. [DOI: 10.1016/j.ejps.2019.01.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/24/2022]
|
21
|
Sheng Y, Capri J, Waring A, Valentine JS, Whitelegge J. Exposure of Solvent-Inaccessible Regions in the Amyloidogenic Protein Human SOD1 Determined by Hydroxyl Radical Footprinting. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:218-226. [PMID: 30328005 PMCID: PMC6347482 DOI: 10.1007/s13361-018-2075-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Solvent-accessibility change plays a critical role in protein misfolding and aggregation, the culprit for several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mass spectrometry-based hydroxyl radical (·OH) protein footprinting has evolved as a powerful and fast tool in elucidating protein solvent accessibility. In this work, we used fast photochemical oxidation of protein (FPOP) hydroxyl radical (·OH) footprinting to investigate solvent accessibility in human copper-zinc superoxide dismutase (SOD1), misfolded or aggregated forms of which underlie a portion of ALS cases. ·OH-mediated modifications to 56 residues were detected with locations largely as predicted based on X-ray crystallography data, while the interior of SOD1 β-barrel is hydrophobic and solvent-inaccessible and thus protected from modification. There were, however, two notable exceptions-two closely located residues inside the β-barrel, predicted to have minimal or no solvent accessibility, that were found modified by FPOP (Phe20 and Ile112). Molecular dynamics (MD) simulations were consistent with differential access of peroxide versus quencher to SOD1's interior complicating surface accessibility considerations. Modification of these two residues could potentially be explained either by local motions of the β-barrel that increased peroxide/solvent accessibility to the interior or by oxidative events within the interior that might include long-distance radical transfer to buried sites. Overall, comparison of modification patterns for the metal-free apoprotein versus zinc-bound forms demonstrated that binding of zinc protected the electrostatic loop and organized the copper-binding site. Our study highlights SOD1 hydrophobic groups that may contribute to early events in aggregation and discusses caveats to surface accessibility conclusions. Graphical Abstract.
Collapse
Affiliation(s)
- Yuewei Sheng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Joseph Capri
- The Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, CA, USA
| | - Alan Waring
- Department of Medicine, University of California, Los Angeles, CA, USA
| | | | - Julian Whitelegge
- The Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, CA, USA.
- The Brain Research Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Liu XR, Zhang MM, Rempel DL, Gross ML. Protein-Ligand Interaction by Ligand Titration, Fast Photochemical Oxidation of Proteins and Mass Spectrometry: LITPOMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:213-217. [PMID: 30484077 PMCID: PMC6438201 DOI: 10.1007/s13361-018-2076-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 05/03/2023]
Abstract
We report a novel method named LITPOMS (ligand titration, fast photochemical oxidation of proteins and mass spectrometry) to characterize protein-ligand binding stoichiometry, binding sites, and site-specific binding constants. The system used to test the method is melittin-calmodulin, in which the peptide melittin binds to calcium-bound calmodulin. Global-level measurements reveal the binding stoichiometry of 1:1 whereas peptide-level data coupled with fitting reveal the binding sites and the site-specific binding affinity. Moreover, we extended the analysis to the residue level and identified six critical binding residues. The results show that melittin binds to the N-terminal, central linker, and C-terminal regions of holo-calmodulin with an affinity of 4.6 nM, in agreement with results of previous studies. LITPOMS, for the first time, brings high residue-level resolution to affinity measurements, providing simultaneously qualitative and quantitative understanding of protein-ligand binding. The approach can be expanded to other binding systems without tagging the protein to give high spatial resolution. Graphical Abstract.
Collapse
Affiliation(s)
- Xiaoran Roger Liu
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Mengru Mira Zhang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Don L Rempel
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
23
|
Abolhasani Khaje N, Mobley CK, Misra SK, Miller L, Li Z, Nudler E, Sharp JS. Variation in FPOP Measurements Is Primarily Caused by Poor Peptide Signal Intensity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1901-1907. [PMID: 29943081 PMCID: PMC6087495 DOI: 10.1007/s13361-018-1994-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 05/27/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP) may be used to characterize changes in protein structure by measuring differences in the apparent rate of peptide oxidation by hydroxyl radicals. The variability between replicates is high for some peptides and limits the statistical power of the technique, even using modern methods controlling variability in radical dose and quenching. Currently, the root cause of this variability has not been systematically explored, and it is unknown if the major source(s) of variability are structural heterogeneity in samples, remaining irreproducibility in FPOP oxidation, or errors in LC-MS quantification of oxidation. In this work, we demonstrate that coefficient of variation of FPOP measurements varies widely at low peptide signal intensity, but stabilizes to ≈ 0.13 at higher peptide signal intensity. We dramatically reduced FPOP variability by increasing the total sample loaded onto the LC column, indicating that the major source of variability in FPOP measurements is the difficulties in quantifying oxidation at low peptide signal intensities. This simple method greatly increases the sensitivity of FPOP structural comparisons, an important step in applying the technique to study subtle conformational changes and protein-ligand interactions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Niloofar Abolhasani Khaje
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA
| | - Charles K Mobley
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA
| | - Sandeep K Misra
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA
| | - Lindsey Miller
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA
| | - Zixuan Li
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Joshua S Sharp
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA.
| |
Collapse
|
24
|
Limpikirati P, Liu T, Vachet RW. Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions. Methods 2018; 144:79-93. [PMID: 29630925 PMCID: PMC6051898 DOI: 10.1016/j.ymeth.2018.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Using mass spectrometry (MS) to obtain information about a higher order structure of protein requires that a protein's structural properties are encoded into the mass of that protein. Covalent labeling (CL) with reagents that can irreversibly modify solvent accessible amino acid side chains is an effective way to encode structural information into the mass of a protein, as this information can be read-out in a straightforward manner using standard MS-based proteomics techniques. The differential reactivity of proteins under two or more conditions can be used to distinguish protein topologies, conformations, and/or binding sites. CL-MS methods have been effectively used for the structural analysis of proteins and protein complexes, particularly for systems that are difficult to study by other more traditional biochemical techniques. This review provides an overview of the non-specific CL approaches that have been combined with MS with a particular emphasis on the reagents that are commonly used, including hydroxyl radicals, carbenes, and diethylpyrocarbonate. We describe the reagent and protein factors that affect the reactivity of amino acid side chains. We also include details about experimental design and workflow, data analysis, recent applications, and some future prospects of CL-MS methods.
Collapse
Affiliation(s)
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States.
| |
Collapse
|
25
|
Tokmina-Lukaszewska M, Patterson A, Berry L, Scott L, Balasubramanian N, Bothner B. The Role of Mass Spectrometry in Structural Studies of Flavin-Based Electron Bifurcating Enzymes. Front Microbiol 2018; 9:1397. [PMID: 30026733 PMCID: PMC6041385 DOI: 10.3389/fmicb.2018.01397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/07/2018] [Indexed: 12/01/2022] Open
Abstract
For decades, biologists and biochemists have taken advantage of atomic resolution structural models of proteins from X-ray crystallography, nuclear magnetic resonance spectroscopy, and more recently cryo-electron microscopy. However, not all proteins relent to structural analyses using these approaches, and as the depth of knowledge increases, additional data elucidating a mechanistic understanding of protein function is desired. Flavin-based electron bifurcating enzymes, which are responsible for producing high energy compounds through the simultaneous endergonic and exergonic reduction of two intercellular electron carriers (i.e., NAD+ and ferredoxin) are one class of proteins that have challenged structural biologists and in which there is great interest to understand the mechanism behind electron gating. A limited number of X-ray crystallography projects have been successful; however, it is clear that to understand how these enzymes function, techniques that can reveal detailed in solution information about protein structure, dynamics, and interactions involved in the bifurcating reaction are needed. In this review, we cover a general set of mass spectrometry-based techniques that, combined with protein modeling, are capable of providing information on both protein structure and dynamics. Techniques discussed include surface labeling, covalent cross-linking, native mass spectrometry, and hydrogen/deuterium exchange. We cover how biophysical data can be used to validate computationally generated protein models and develop mechanistic explanations for regulation and performance of enzymes and protein complexes. Our focus will be on flavin-based electron bifurcating enzymes, but the broad applicability of the techniques will be showcased.
Collapse
Affiliation(s)
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Luke Berry
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Liam Scott
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | | | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| |
Collapse
|
26
|
MS methods to study macromolecule-ligand interaction: Applications in drug discovery. Methods 2018; 144:152-174. [PMID: 29890284 DOI: 10.1016/j.ymeth.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
The interaction of small compounds (i.e. ligands) with macromolecules or macromolecule assemblies (i.e. targets) is the mechanism of action of most of the drugs available today. Mass spectrometry is a popular technique for the interrogation of macromolecule-ligand interactions and therefore is also widely used in drug discovery and development. Thanks to its versatility, mass spectrometry is used for multiple purposes such as biomarker screening, identification of the mechanism of action, ligand structure optimization or toxicity assessment. The evolution and automation of the instruments now allows the development of high throughput methods with high sensitivity and a minimized false discovery rate. Herein, all these approaches are described with a focus on the methods for studying macromolecule-ligand interaction aimed at defining the structure-activity relationships of drug candidates, along with their mechanism of action, metabolism and toxicity.
Collapse
|
27
|
Implementing fast photochemical oxidation of proteins (FPOP) as a footprinting approach to solve diverse problems in structural biology. Methods 2018; 144:94-103. [PMID: 29800613 DOI: 10.1016/j.ymeth.2018.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 11/24/2022] Open
Abstract
Fast photochemical oxidation of proteins (FPOP) is a footprinting technique used in mass spectrometry-based structural proteomics. It has been applied to solve a variety of problems in different areas of biology. A FPOP platform requires a laser, optics, and sample flow path properly assembled to enable fast footprinting. Sample preparation, buffer conditions, and reagent concentrations are essential to obtain reasonable oxidations on proteins. FPOP samples can be analyzed by LC-MS methods to measure the modification extent, which is a function of the solvent-accessible surface area of the protein. The platform can be expanded to accommodate several new approaches, including dose-response studies, new footprinting reagents, and two-laser pump-probe experiments. Here, we briefly review FPOP applications and in a detailed manner describe the procedures to set up an FPOP protein footprinting platform.
Collapse
|
28
|
Chea EE, Jones LM. Modifications generated by fast photochemical oxidation of proteins reflect the native conformations of proteins. Protein Sci 2018; 27:1047-1056. [PMID: 29575296 DOI: 10.1002/pro.3408] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 01/08/2023]
Abstract
Hydroxyl radical footprinting (HRF) is a nonspecific protein footprinting method that has been increasingly used in recent years to analyze protein structure. The method oxidatively modifies solvent accessible sites in proteins, which changes upon alterations in the protein, such as ligand binding or a change in conformation. For HRF to provide accurate structural information, the method must probe the native structure of proteins. This requires careful experimental controls since an abundance of oxidative modifications can induce protein unfolding. Fast photochemical oxidation of proteins (FPOP) is a HRF method that generates hydroxyl radicals via photo-dissociation of hydrogen peroxide using an excimer laser. The addition of a radical scavenger to the FPOP reaction reduces the lifetime of the radical, limiting the levels of protein oxidation. A direct assay is needed to ensure FPOP is probing the native conformation of the protein. Here, we report using enzymatic activity as a direct assay to validate that FPOP is probing the native structure of proteins. By measuring the catalytic activity of lysozyme and invertase after FPOP modification, we demonstrate that FPOP does not induce protein unfolding.
Collapse
Affiliation(s)
- Emily E Chea
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, 21201
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, 21201
| |
Collapse
|
29
|
Chea EE, Jones LM. Analyzing the structure of macromolecules in their native cellular environment using hydroxyl radical footprinting. Analyst 2018; 143:798-807. [DOI: 10.1039/c7an01323j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hydroxyl radical footprinting (HRF) has been successfully used to study the structure of both nucleic acids and proteins in live cells.
Collapse
Affiliation(s)
- Emily E. Chea
- Department of Pharmaceutical Sciences
- University of Maryland
- Baltimore
- USA
| | - Lisa M. Jones
- Department of Pharmaceutical Sciences
- University of Maryland
- Baltimore
- USA
| |
Collapse
|
30
|
Niu B, Mackness BC, Rempel DL, Zhang H, Cui W, Matthews CR, Zitzewitz JA, Gross ML. Incorporation of a Reporter Peptide in FPOP Compensates for Adventitious Scavengers and Permits Time-Dependent Measurements. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:389-392. [PMID: 27924496 PMCID: PMC5233597 DOI: 10.1007/s13361-016-1552-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 05/11/2023]
Abstract
Incorporation of a reporter peptide in solutions submitted to fast photochemical oxidation of proteins (FPOP) allows for the correction of adventitious scavengers and enables the normalization and comparison of time-dependent results. Reporters will also be useful in differential experiments to control for the inclusion of a radical-reactive species. This incorporation provides a simple and quick check of radical dosage and allows comparison of FPOP results from day-to-day and lab-to-lab. Use of a reporter peptide in the FPOP workflow requires no additional measurements or spectrometers while building a more quantitative FPOP platform. It requires only measurement of the extent of reporter-peptide modification in a LC/MS/MS run, which is performed by using either data-dependent scanning or an inclusion list. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ben Niu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Brian C Mackness
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Don L Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Weidong Cui
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - C Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
31
|
Oxidative footprinting in the study of structure and function of membrane proteins: current state and perspectives. Biochem Soc Trans 2016; 43:983-94. [PMID: 26517913 DOI: 10.1042/bst20150130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membrane proteins, such as receptors, transporters and ion channels, control the vast majority of cellular signalling and metabolite exchange processes and thus are becoming key pharmacological targets. Obtaining structural information by usage of traditional structural biology techniques is limited by the requirements for the protein samples to be highly pure and stable when handled in high concentrations and in non-native buffer systems, which is often difficult to achieve for membrane targets. Hence, there is a growing requirement for the use of hybrid, integrative approaches to study the dynamic and functional aspects of membrane proteins in physiologically relevant conditions. In recent years, significant progress has been made in the field of oxidative labelling techniques and in particular the X-ray radiolytic footprinting in combination with mass spectrometry (MS) (XF-MS), which provide residue-specific information on the solvent accessibility of proteins. In combination with both low- and high-resolution data from other structural biology approaches, it is capable of providing valuable insights into dynamics of membrane proteins, which have been difficult to obtain by other structural techniques, proving a highly complementary technique to address structure and function of membrane targets. XF-MS has demonstrated a unique capability for identification of structural waters and conformational changes in proteins at both a high degree of spatial and a high degree of temporal resolution. Here, we provide a perspective on the place of XF-MS among other structural biology methods and showcase some of the latest developments in its usage for studying water-mediated transmembrane (TM) signalling, ion transport and ligand-induced allosteric conformational changes in membrane proteins.
Collapse
|
32
|
Zhang B, Rempel DL, Gross ML. Protein Footprinting by Carbenes on a Fast Photochemical Oxidation of Proteins (FPOP) Platform. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:552-5. [PMID: 26679355 PMCID: PMC4758905 DOI: 10.1007/s13361-015-1313-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/11/2015] [Accepted: 11/24/2015] [Indexed: 05/02/2023]
Abstract
Protein footprinting combined with mass spectrometry provides a method to study protein structures and interactions. To improve further current protein footprinting methods, we adapted the fast photochemical oxidation of proteins (FPOP) platform to utilize carbenes as the footprinting reagent. A Nd-YAG laser provides 355 nm laser for carbene generation in situ from photoleucine as the carbene precursor in a flow system with calmodulin as the test protein. Reversed-phase liquid chromatography coupled with mass spectrometry is appropriate to analyze the modifications produced in this footprinting. By comparing the modification extent of apo and holo calmodulin on the peptide level, we can resolve different structural domains of the protein. Carbene footprinting in a flow system is promising.
Collapse
Affiliation(s)
- Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Don L Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
33
|
Rinas A, Espino JA, Jones LM. An efficient quantitation strategy for hydroxyl radical-mediated protein footprinting using Proteome Discoverer. Anal Bioanal Chem 2016; 408:3021-31. [PMID: 26873216 DOI: 10.1007/s00216-016-9369-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/17/2016] [Accepted: 01/27/2016] [Indexed: 01/12/2023]
Abstract
Hydroxyl radical protein footprinting coupled with mass spectrometry has become an invaluable technique for protein structural characterization. In this method, hydroxyl radicals react with solvent exposed amino acid side chains producing stable, covalently attached labels. Although this technique yields beneficial information, the extensive list of known oxidation products produced make the identification and quantitation process considerably complex. Currently, the methods available for analysis either involve manual analysis steps, or limit the amount of searchable modifications or the size of sequence database. This creates a bottleneck which can result in a long and arduous analysis process, which is further compounded in a complex sample. Here, we report the use of a new footprinting analysis method for both peptide and residue-level analysis, demonstrated on the GCaMP2 synthetic construct in calcium free and calcium bound states. This method utilizes a customized multi-search node workflow developed for an on-market search platform in conjunction with a quantitation platform developed using a free Excel add-in. Moreover, the method expedites the analysis process, requiring only two post-search hours to complete quantitation, regardless of the size of the experiment or the sample complexity.
Collapse
Affiliation(s)
- Aimee Rinas
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St LD326, Indianapolis, IN, 46202, USA
| | - Jessica A Espino
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St LD326, Indianapolis, IN, 46202, USA
| | - Lisa M Jones
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St LD326, Indianapolis, IN, 46202, USA.
| |
Collapse
|
34
|
Yefremova Y, Al-Majdoub M, Opuni KF, Koy C, Yan Y, Gross M, Glocker MO. A Dynamic Model of pH-Induced Protein G'e Higher Order Structure Changes derived from Mass Spectrometric Analyses. Anal Chem 2016; 88:890-7. [PMID: 26606592 PMCID: PMC5201196 DOI: 10.1021/acs.analchem.5b03536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To obtain insight into pH change-driven molecular dynamics, we studied the higher order structure changes of protein G'e at the molecular and amino acid residue levels in solution by using nanoESI- and IM-mass spectrometry, CD spectroscopy, and protein chemical modification reactions (protein footprinting). We found a dramatic change of the overall tertiary structure of protein G'e when the pH was changed from neutral to acidic, whereas its secondary structure features remained nearly invariable. Limited proteolysis and surface-topology mapping of protein G'e by fast photochemical oxidation of proteins (FPOP) under neutral and acidic conditions reveal areas where higher order conformational changes occur on the amino-acid residue level. Under neutral solution conditions, lower oxidation occurs for residues of the first linker region, whereas greater oxidative modifications occur for amino-acid residues of the IgG-binding domains I and II. We propose a dynamic model of pH-induced structural changes in which protein G'e at neutral pH adopts an overall tight conformation with all four domains packed in a firm assembly, whereas at acidic pH, the three IgG-binding domains form an elongated alignment, and the N-terminal, His-tag-carrying domain unfolds. At the same time the individual IgG-binding domains themselves seem to adopt a more compacted fold. As the secondary structure features are nearly unchanged at either pH, interchange between both conformations is highly reversible, explaining the high reconditioning power of protein G'e-based affinity chromatography columns.
Collapse
Affiliation(s)
- Yelena Yefremova
- Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | | | | | - Cornelia Koy
- Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - Yuetian Yan
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 USA
| | - Michael Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 USA
| | | |
Collapse
|
35
|
Protein Structural Analysis via Mass Spectrometry-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:397-431. [PMID: 27975228 DOI: 10.1007/978-3-319-41448-5_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Modern mass spectrometry (MS) technologies have provided a versatile platform that can be combined with a large number of techniques to analyze protein structure and dynamics. These techniques include the three detailed in this chapter: (1) hydrogen/deuterium exchange (HDX), (2) limited proteolysis, and (3) chemical crosslinking (CX). HDX relies on the change in mass of a protein upon its dilution into deuterated buffer, which results in varied deuterium content within its backbone amides. Structural information on surface exposed, flexible or disordered linker regions of proteins can be achieved through limited proteolysis, using a variety of proteases and only small extents of digestion. CX refers to the covalent coupling of distinct chemical species and has been used to analyze the structure, function and interactions of proteins by identifying crosslinking sites that are formed by small multi-functional reagents, termed crosslinkers. Each of these MS applications is capable of revealing structural information for proteins when used either with or without other typical high resolution techniques, including NMR and X-ray crystallography.
Collapse
|
36
|
Calabrese AN, Ault JR, Radford SE, Ashcroft AE. Using hydroxyl radical footprinting to explore the free energy landscape of protein folding. Methods 2015; 89:38-44. [PMID: 25746386 PMCID: PMC4651025 DOI: 10.1016/j.ymeth.2015.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/17/2015] [Accepted: 02/23/2015] [Indexed: 01/26/2023] Open
Abstract
Characterisation of the conformational states adopted during protein folding, including globally unfolded/disordered structures and partially folded intermediate species, is vital to gain fundamental insights into how a protein folds. In this work we employ fast photochemical oxidation of proteins (FPOP) to map the structural changes that occur in the folding of the four-helical bacterial immunity protein, Im7. Oxidative footprinting coupled with mass spectrometry (MS) is used to probe changes in the solvent accessibility of amino acid side-chains concurrent with the folding process, by quantifying the degree of oxidation experienced by the wild-type protein relative to a kinetically trapped, three-helical folding intermediate and an unfolded variant that lacks secondary structure. Analysis of the unfolded variant by FPOP-MS shows oxidative modifications consistent with the species adopting a solution conformation with a high degree of solvent accessibility. The folding intermediate, by contrast, experiences increased levels of oxidation relative to the wild-type, native protein only in regions destabilised by the amino acid substitutions introduced. The results demonstrate the utility of FPOP-MS to characterise protein variants in different conformational states and to provide insights into protein folding mechanisms that are complementary to measurements such as hydrogen/deuterium exchange labelling and Φ-value analysis.
Collapse
Affiliation(s)
- Antonio N Calabrese
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - James R Ault
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Alison E Ashcroft
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
37
|
Gómez GE, Monti JLE, Mundo MR, Delfino JM. Solvent Mimicry with Methylene Carbene to Probe Protein Topography. Anal Chem 2015; 87:10080-7. [DOI: 10.1021/acs.analchem.5b02724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gabriela Elena Gómez
- Departamento de Química
Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - José Luis E. Monti
- Departamento de Química
Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Mariana Rocío Mundo
- Departamento de Química
Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - José María Delfino
- Departamento de Química
Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| |
Collapse
|
38
|
Niu B, Zhang H, Giblin D, Rempel DL, Gross ML. Dosimetry determines the initial OH radical concentration in fast photochemical oxidation of proteins (FPOP). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:843-6. [PMID: 25712620 PMCID: PMC5613943 DOI: 10.1007/s13361-015-1087-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/22/2015] [Accepted: 01/27/2015] [Indexed: 05/11/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP) employs laser photolysis of hydrogen peroxide to give OH radicals that label amino acid side-chains of proteins on the microsecond time scale. A method for quantitation of hydroxyl radicals after laser photolysis is of importance to FPOP because it establishes a means to adjust the yield of •OH, offers the opportunity of tunable modifications, and provides a basis for kinetic measurements. The initial concentration of OH radicals has yet to be measured experimentally. We report here an approach using isotope dilution gas chromatography/mass spectrometry (GC/MS) to determine quantitatively the initial •OH concentration (we found ~0.95 mM from 15 mM H2O2) from laser photolysis and to investigate the quenching efficiencies for various •OH scavengers.
Collapse
Affiliation(s)
- Ben Niu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130-4899, USA
| | | | | | | | | |
Collapse
|
39
|
Decoding mechanisms by which silent codon changes influence protein biogenesis and function. Int J Biochem Cell Biol 2015; 64:58-74. [PMID: 25817479 DOI: 10.1016/j.biocel.2015.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/02/2015] [Accepted: 03/14/2015] [Indexed: 02/07/2023]
Abstract
SCOPE Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. PURPOSE This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. PHYSIOLOGICAL AND MEDICAL RELEVANCE Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies.
Collapse
|
40
|
Kaur P, Kiselar J, Yang S, Chance MR. Quantitative protein topography analysis and high-resolution structure prediction using hydroxyl radical labeling and tandem-ion mass spectrometry (MS). Mol Cell Proteomics 2015; 14:1159-68. [PMID: 25687570 DOI: 10.1074/mcp.o114.044362] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 11/06/2022] Open
Abstract
Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca(+2)-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes.
Collapse
Affiliation(s)
- Parminder Kaur
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| | - Janna Kiselar
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| | - Sichun Yang
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| | - Mark R Chance
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| |
Collapse
|
41
|
Lei M, Kao YH, Schöneich C. Using lysine-reactive fluorescent dye for surface characterization of a mAb. J Pharm Sci 2014; 104:995-1004. [PMID: 25538029 DOI: 10.1002/jps.24308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022]
Abstract
The biopharmaceutical industry increasingly demands thorough characterization of protein conformation and conformational dynamics to ensure product quality and consistency. Here, we present a chromatography-based method that is able to characterize protein conformation and conformational dynamics at peptide level resolution in a high-throughput manner. The surface lysine residues of the protein were labeled with a fluorescent dye prior to enzyme digestion. The resulting peptide maps were monitored by fluorescence detection where fluorescence peak area indicates higher solvent accessibility at a specific site. The peptides of reactivity difference and the extent of the difference can be detected by HPLC with fluorescent detector alone, whereas the identity of these peptides can then be determined by mass spectrometry if desired. We first demonstrated this method is suitable for probing protein surface/conformation by studying the effect of deglycosylation on a recombinant mAb, IgG 1. We then applied our method to study the interaction of the mAb with a common excipient, polysorbate-20 (PS-20). The presence of PS-20 increased the fluorescent labeling of several lysine residues on the mAb. This result provides a first insight into PS20-mAb interaction at peptide level resolution.
Collapse
Affiliation(s)
- Ming Lei
- Protein Analytical Chemistry, Genentech, Inc, South San Francisco, California, 94080
| | | | | |
Collapse
|
42
|
Yan Y, Chen G, Wei H, Huang RYC, Mo J, Rempel DL, Tymiak AA, Gross ML. Fast photochemical oxidation of proteins (FPOP) maps the epitope of EGFR binding to adnectin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:2084-92. [PMID: 25267085 PMCID: PMC4224620 DOI: 10.1007/s13361-014-0993-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/15/2014] [Accepted: 08/21/2014] [Indexed: 05/11/2023]
Abstract
Epitope mapping is an important tool for the development of monoclonal antibodies, mAbs, as therapeutic drugs. Recently, a class of therapeutic mAb alternatives, adnectins, has been developed as targeted biologics. They are derived from the 10th type III domain of human fibronectin ((10)Fn3). A common approach to map the epitope binding of these therapeutic proteins to their binding partners is X-ray crystallography. Although the crystal structure is known for Adnectin 1 binding to human epidermal growth factor receptor (EGFR), we seek to determine complementary binding in solution and to test the efficacy of footprinting for this purpose. As a relatively new tool in structural biology and complementary to X-ray crystallography, protein footprinting coupled with mass spectrometry is promising for protein-protein interaction studies. We report here the use of fast photochemical oxidation of proteins (FPOP) coupled with MS to map the epitope of EGFR-Adnectin 1 at both the peptide and amino-acid residue levels. The data correlate well with the previously determined epitopes from the crystal structure and are consistent with HDX MS data, which are presented in an accompanying paper. The FPOP-determined binding interface involves various amino-acid and peptide regions near the N terminus of EGFR. The outcome adds credibility to oxidative labeling by FPOP for epitope mapping and motivates more applications in the therapeutic protein area as a stand-alone method or in conjunction with X-ray crystallography, NMR, site-directed mutagenesis, and other orthogonal methods.
Collapse
Affiliation(s)
- Yuetian Yan
- Center for Biomedical and Bioorganic Mass Spectrometry, Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130-4899, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Probing the paramyxovirus fusion (F) protein-refolding event from pre- to postfusion by oxidative footprinting. Proc Natl Acad Sci U S A 2014; 111:E2596-605. [PMID: 24927585 DOI: 10.1073/pnas.1408983111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To infect a cell, the Paramyxoviridae family of enveloped viruses relies on the coordinated action of a receptor-binding protein (variably HN, H, or G) and a more conserved metastable fusion protein (F) to effect membrane fusion and allow genomic transfer. Upon receptor binding, HN (H or G) triggers F to undergo an extensive refolding event to form a stable postfusion state. Little is known about the intermediate states of the F refolding process. Here, a soluble form of parainfluenza virus 5 F was triggered to refold using temperature and was footprinted along the refolding pathway using fast photochemical oxidation of proteins (FPOP). Localization of the oxidative label to solvent-exposed side chains was determined by high-resolution MS/MS. Globally, metastable prefusion F is oxidized more extensively than postfusion F, indicating that the prefusion state is more exposed to solvent and is more flexible. Among the first peptides to be oxidatively labeled after temperature-induced triggering is the hydrophobic fusion peptide. A comparison of peptide oxidation levels with the values of solvent-accessible surface area calculated from molecular dynamics simulations of available structural data reveals regions of the F protein that lie at the heart of its prefusion metastability. The strong correlation between the regions of F that experience greater-than-expected oxidative labeling and epitopes for neutralizing antibodies suggests that FPOP has a role in guiding the development of targeted therapeutics. Analysis of the residue levels of labeled F intermediates provides detailed insights into the mechanics of this critical refolding event.
Collapse
|
44
|
Maleknia SD, Downard KM. Advances in radical probe mass spectrometry for protein footprinting in chemical biology applications. Chem Soc Rev 2014; 43:3244-58. [PMID: 24590115 DOI: 10.1039/c3cs60432b] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical Probe Mass Spectrometry (RP-MS), first introduced in 1999, utilizes hydroxyl radicals generated directly within aqueous solutions using synchrotron radiolysis, electrical discharge, and photochemical laser sources to probe protein structures and their interactions. It achieves this on millisecond and submillisecond timescales that can be used to capture protein dynamics and folding events. Hydroxyl radicals are ideal probes of solvent accessibility as their size approximates a water molecule. Their high reactivity results in oxidation at a multitude of amino acid side chains providing greater structural information than a chemical cross-linker that reacts with only one or few residues. The oxidation of amino acid side chains occurs at rates in accord with the solvent accessibility of the residue so that the extent of oxidation can be quantified to reveal a three-dimensional map or footprint of the protein's surface. Mass spectrometry is central to this analysis of chemical oxidative labelling. This tutorial review, some 15 years on from the first reports, highlights the development and significant growth of the application of RP-MS including its validation and utility with ion-mobility mass spectrometry (IM-MS), the use of RP-MS data to help model protein complexes, studies of the onset of oxidative damage, and more recent advances that enable high throughput applications through simultaneous protein oxidation and on-plate deposition. The accessibility of the RP-MS technology, by means of a modified electrospray ionization source, enables the approach to be implemented in many laboratories to address a wide range of applications in chemical biology.
Collapse
Affiliation(s)
- Simin D Maleknia
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
45
|
Cammarata M, Lin KY, Pruet J, Liu HW, Brodbelt J. Probing the Unfolding of Myoglobin and Domain C of PARP-1 with Covalent Labeling and Top-Down Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2014; 86:2534-42. [DOI: 10.1021/ac4036235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Michael Cammarata
- Department of Chemistry, University of Texas at Austin, 1 University
Station A5300, Austin, Texas 78212, United States
| | - Ke-Yi Lin
- Department of Chemistry, University of Texas at Austin, 1 University
Station A5300, Austin, Texas 78212, United States
| | - Jeff Pruet
- Department of Chemistry, University of Texas at Austin, 1 University
Station A5300, Austin, Texas 78212, United States
| | - Hung-wen Liu
- Department of Chemistry, University of Texas at Austin, 1 University
Station A5300, Austin, Texas 78212, United States
| | - Jennifer Brodbelt
- Department of Chemistry, University of Texas at Austin, 1 University
Station A5300, Austin, Texas 78212, United States
| |
Collapse
|
46
|
Konermann L, Vahidi S, Sowole MA. Mass Spectrometry Methods for Studying Structure and Dynamics of Biological Macromolecules. Anal Chem 2013; 86:213-32. [DOI: 10.1021/ac4039306] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Modupeola A. Sowole
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
47
|
Zhang H, Cui W, Gross ML. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett 2013; 588:308-17. [PMID: 24291257 DOI: 10.1016/j.febslet.2013.11.027] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/16/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Monoclonal antibodies (mAbs) are powerful therapeutics, and their characterization has drawn considerable attention and urgency. Unlike small-molecule drugs (150-600 Da) that have rigid structures, mAbs (∼150 kDa) are engineered proteins that undergo complicated folding and can exist in a number of low-energy structures, posing a challenge for traditional methods in structural biology. Mass spectrometry (MS)-based biophysical characterization approaches can provide structural information, bringing high sensitivity, fast turnaround, and small sample consumption. This review outlines various MS-based strategies for protein biophysical characterization and then reviews how these strategies provide structural information of mAbs at the protein level (intact or top-down approaches), peptide, and residue level (bottom-up approaches), affording information on higher order structure, aggregation, and the nature of antibody complexes.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Weidong Cui
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
48
|
O'Brien JP, Mayberry LK, Murphy PA, Browning KS, Brodbelt JS. Evaluating the conformation and binding interface of cap-binding proteins and complexes via ultraviolet photodissociation mass spectrometry. J Proteome Res 2013; 12:5867-77. [PMID: 24200290 DOI: 10.1021/pr400869u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the structural analysis of cap-binding proteins using a chemical probe/ultraviolet photodissociation (UVPD) mass spectrometry strategy for evaluating solvent accessibility of proteins. Our methodology utilized a chromogenic probe (NN) to probe the exposed amine residues of wheat eukaryotic translation initiation factor 4E (eIF4E), eIF4E in complex with a fragment of eIF4G ("mini-eIF4F"), eIF4E in complex with full length eIF4G, and the plant specific cap-binding protein, eIFiso4E. Structural changes of eIF4E in the absence and presence of excess dithiothreitol and in complex with a fragment of eIF4G or full-length eIF4G are mapped. The results indicate that there are particular lysine residues whose environment changes in the presence of dithiothreitol or eIF4G, suggesting that changes in the structure of eIF4E are occurring. On the basis of the crystal structure of wheat eIF4E and a constructed homology model of the structure for eIFiso4E, the reactivities of lysines in each protein are rationalized. Our results suggest that chemical probe/UVPD mass spectrometry can successfully predict dynamic structural changes in solution that are consistent with known crystal structures. Our findings reveal that the binding of m(7)GTP to eIF4E and eIFiso4E appears to be dependent on the redox state of a pair of cysteines near the m(7)GTP binding site. In addition, tertiary structural changes of eIF4E initiated by the formation of a complex containing a fragment of eIF4G and eIF4E were observed.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry and Biochemistry and ‡Institute for Cell and Molecular Biology, The University of Texas at Austin , 1 University Station A5300, Austin, Texas 78712, United States
| | | | | | | | | |
Collapse
|
49
|
Li X, Li Z, Xie B, Sharp JS. Improved identification and relative quantification of sites of peptide and protein oxidation for hydroxyl radical footprinting. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1767-76. [PMID: 24014150 PMCID: PMC3814024 DOI: 10.1007/s13361-013-0719-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 05/08/2023]
Abstract
Protein oxidation is typically associated with oxidative stress and aging and affects protein function in normal and pathological processes. Additionally, deliberate oxidative labeling is used to probe protein structure and protein-ligand interactions in hydroxyl radical protein footprinting (HRPF). Oxidation often occurs at multiple sites, leading to mixtures of oxidation isomers that differ only by the site of modification. We utilized sets of synthetic, isomeric "oxidized" peptides to test and compare the ability of electron-transfer dissociation (ETD) and collision-induced dissociation (CID), as well as nano-ultra high performance liquid chromatography (nanoUPLC) separation, to quantitate oxidation isomers with one oxidation at multiple adjacent sites in mixtures of peptides. Tandem mass spectrometry by ETD generates fragment ion ratios that accurately report on relative oxidative modification extent on specific sites, regardless of the charge state of the precursor ion. Conversely, CID was found to generate quantitative MS/MS product ions only at the higher precursor charge state. Oxidized isomers having multiple sites of oxidation in each of two peptide sequences in HRPF product of protein Robo-1 Ig1-2, a protein involved in nervous system axon guidance, were also identified and the oxidation extent at each residue was quantified by ETD without prior liquid chromatography (LC) separation. ETD has proven to be a reliable technique for simultaneous identification and relative quantification of a variety of functionally different oxidation isomers, and is a valuable tool for the study of oxidative stress, as well as for improving spatial resolution for HRPF studies.
Collapse
Affiliation(s)
- Xiaoyan Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | | | | | | |
Collapse
|
50
|
Monroe EB, Heien ML. Electrochemical generation of hydroxyl radicals for examining protein structure. Anal Chem 2013; 85:6185-9. [PMID: 23777226 DOI: 10.1021/ac400107c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of hydroxyl radicals to covalently label the solvent-exposed surface of proteins has been shown to be a powerful tool to examine the structure of proteins and intermolecular interfaces. Current methods to generate hydroxyl radicals for footprinting experiments rely on the laser photolysis of H2O2 or the synchrotron radiolysis of water, which adds significant costs and/or complexity to the experiments. In this work, we develop the electro-Fenton reaction as a means to generate hydroxyl radicals for structural footprinting mass spectrometry experiments to complement current laser and synchrotron-based methods, while reducing the costs and complexity of initiating such experiments. The use of an electrochemical flow cell also enables control of the timing and extent of the radical generation process, while reducing the complexity typically associated with radical footprinting experiments. Ubiquitin, a model protein, was labeled with electro-Fenton generated hydroxyl radicals and top-down proteomics was used to verify oxidation sites on the protein surface.
Collapse
Affiliation(s)
- Eric B Monroe
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, USA
| | | |
Collapse
|