1
|
Tuttle LM, James EI, Georgescauld F, Wales TE, Weis DD, Engen JR, Nath A, Klevit RE, Guttman M. Rigorous Analysis of Multimodal HDX-MS Spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:416-423. [PMID: 39837577 PMCID: PMC12034455 DOI: 10.1021/jasms.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
An inherent strength of hydrogen/deuterium exchange coupled to mass spectrometry (HDX-MS) is its ability to detect the presence of multiple conformational states of a protein, which often manifest as multimodal isotopic envelopes. However, the statistical considerations for accurate analysis of multimodal spectra have yet to be established. Here we outline an unrestrained binomial distribution fitting approach with the corresponding statistical tests to accurately detect and, when possible, deconvolute isotopic distributions that contain multiple subpopulations. The algorithms have been incorporated into an updated version of the freely available software, HX-Express, and validated using known mixtures of peptides deuterated to varying degrees. This approach presents a readily accessible tool to fit and interpret bimodal and trimodal behavior in HDX-MS data for mixed populations, EX1 kinetics, and pulse labeling data.
Collapse
Affiliation(s)
- Lisa M. Tuttle
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Ellie I. James
- Department of Medicinal Chemistry; University of Washington, Seattle, WA 98195
| | | | - Thomas E. Wales
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - David D. Weis
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045
| | - John R. Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - Abhinav Nath
- Department of Medicinal Chemistry; University of Washington, Seattle, WA 98195
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Miklos Guttman
- Department of Medicinal Chemistry; University of Washington, Seattle, WA 98195
| |
Collapse
|
2
|
Langford JB, Ahmed E, Fang M, Cupp-Sutton K, Smith K, Wu S. Strategies for Top-Down Hydrogen Deuterium Exchange-Mass Spectrometry: A Mini Review and Perspective. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5097. [PMID: 39402881 PMCID: PMC11736408 DOI: 10.1002/jms.5097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 01/16/2025]
Abstract
Hydrogen deuterium-exchange mass spectrometry (HDX-MS) is commonly used in the study of protein dynamics and protein interactions. By measuring the isotopic exchange of backbone amide hydrogens in solution, HDX-MS offers valuable structural insights into challenging biological systems. Traditional HDX-MS approaches utilize bottom-up (BU) proteomics, in which deuterated proteins are digested before MS analysis. BU-HDX enables the characterization of proteins with various sizes in simple protein mixtures or complex biological samples such as cell lysates. However, BU methods are inherently limited by the inability to resolve protein sub-populations arising from different protein conformations, such as those arising from post-translational modifications (PTMs). Alternatively, top-down (TD) HDX-MS detects the global deuterium uptake at the intact proteoform level, allowing direct probing of structural changes due to protein-protein interactions, PTMs, or conformational changes. Combining TD-HDX-MS with electron-based fragmentation techniques, such as electron capture dissociation (ECD) and electron transfer dissociation (ETD), has demonstrated the feasibility of studying intact protein interactions with amino acid-level resolution. Here, we present a brief overview of methodologies, limitations, and applications of TD-HDX-MS using direct infusion techniques and LC-based approaches. Furthermore, we conclude with a perspective on the future directions for TD-HDX-MS.
Collapse
Affiliation(s)
- Joel B. Langford
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Elizabeth Ahmed
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Kellye Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL 35487, USA
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL 35487, USA
| |
Collapse
|
3
|
Konermann L, Scrosati PM. Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities. Mol Cell Proteomics 2024; 23:100853. [PMID: 39383946 PMCID: PMC11570944 DOI: 10.1016/j.mcpro.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as "residues X to Y become more protected after protein exposure to ligand Z"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m0)/(m100-m0) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Jethva PN, Gross ML. Hydrogen Deuterium Exchange and other Mass Spectrometry-based Approaches for Epitope Mapping. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1118749. [PMID: 37746528 PMCID: PMC10512744 DOI: 10.3389/frans.2023.1118749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antigen-antibody interactions are a fundamental subset of protein-protein interactions responsible for the "survival of the fittest". Determining the interacting interface of the antigen, called an epitope, and that on the antibody, called a paratope, is crucial to antibody development. Because each antigen presents multiple epitopes (unique footprints), sophisticated approaches are required to determine the target region for a given antibody. Although X-ray crystallography, Cryo-EM, and nuclear magnetic resonance can provide atomic details of an epitope, they are often laborious, poor in throughput, and insensitive. Mass spectrometry-based approaches offer rapid turnaround, intermediate structural resolution, and virtually no size limit for the antigen, making them a vital approach for epitope mapping. In this review, we describe in detail the principles of hydrogen deuterium exchange mass spectrometry in application to epitope mapping. We also show that a combination of MS-based approaches can assist or complement epitope mapping and push the limit of structural resolution to the residue level. We describe in detail the MS methods used in epitope mapping, provide our perspective about the approaches, and focus on elucidating the role that HDX-MS is playing now and in the future by organizing a discussion centered around several improvements in prototype instrument/applications used for epitope mapping. At the end, we provide a tabular summary of the current literature on HDX-MS-based epitope mapping.
Collapse
Affiliation(s)
- Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|
5
|
Peterle D, DePice D, Wales TE, Engen JR. Increase the flow rate and improve hydrogen deuterium exchange mass spectrometry. J Chromatogr A 2023; 1689:463742. [PMID: 36586285 PMCID: PMC9872520 DOI: 10.1016/j.chroma.2022.463742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Reversed-phase peptide separation in hydrogen deuterium exchange (HDX) mass spectrometry (MS) must be done with conditions where the back exchange is the slowest possible, the so-called quench conditions of low pH and low temperature. To retain maximum deuterium, separation must also be done as quickly as possible. The low temperature (0 °C) of quench conditions complicates the separation and leads primarily to a reduction in separation quality and an increase in chromatographic backpressure. To improve the separation in HDX MS, one could use a longer gradient, smaller particles, a different separation mechanism (for example, capillary electrophoresis), or multi-dimensional separations such as combining ion mobility separation with reversed-phase separation. Another way to improve separations under HDX MS quench conditions is to use a higher flow rate where separation efficiency at 0 °C is more ideal. Higher flow rates, however, require chromatographic systems (both pumps and fittings) with higher backpressure limits. We tested what improvements could be realized with a commercial UPLC/UHPLC system capable of ∼20,000 psi backpressure. We found that a maximum flow rate of 225 µL/min (using a 1 × 50 mm column packed with 1.8 µm particles) was possible and that higher flow rate clearly led to higher peak capacity. HDX MS analysis of both simple and particularly complex samples improved, permitting both shorter separation time, if desired, and providing more deuterium recovery.
Collapse
Affiliation(s)
- Daniele Peterle
- Department of Chemistry and Chemical Biology, Northeastern University, Mailstop 412 TF, 360 Huntington Avenue, Boston, MA 02115, United States
| | - David DePice
- Department of Chemistry and Chemical Biology, Northeastern University, Mailstop 412 TF, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Mailstop 412 TF, 360 Huntington Avenue, Boston, MA 02115, United States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Mailstop 412 TF, 360 Huntington Avenue, Boston, MA 02115, United States.
| |
Collapse
|
6
|
Anderson KW, Hudgens JW. Chromatography at -30 °C for Reduced Back-Exchange, Reduced Carryover, and Improved Dynamic Range for Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1282-1292. [PMID: 35732031 PMCID: PMC9264389 DOI: 10.1021/jasms.2c00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
For hydrogen-deuterium exchange mass spectrometry (HDX-MS) to have an increased role in quality control of biopharmaceuticals, H for D back-exchange occurring during protein analyses should be minimized to promote greater reproducibility. Standard HDX-MS analysis systems that digest proteins and separate peptides at pH 2.7 and 0 °C can lose >30% of the deuterium marker within 15 min of sample injection. This report describes the architecture and performance of a dual-enzyme, HDX-MS instrument that conducts liquid chromatography (LC) separations at subzero temperature, thereby reducing back-exchange and supporting longer LC separations with improved chromatographic resolution. LC separations of perdeuterated, fully reduced, iodoacetamide-treated BSA protein digest standard peptides were performed at 0, -10, -20, and -30 °C in ethylene glycol (EG)/H2O mixtures. Analyses conducted at -20 and -30 °C produced similar results. After subtracting for deuterium retained in arginine side chains, the average peptide eluted during a 40 min gradient contained ≈16% more deuterium than peptides eluted with a conventional 8 min gradient at 0 °C. A subset of peptides exhibited ≈26% more deuterium. Although chromatographic peaks shift with EG concentration and temperature, the apparatus elutes unbroadened LC peaks. Electrospray ion intensity does not decline with increasing EG fraction. To minimize bias from sample carryover, the fluidic circuits allow flush and backflush cleaning of all enzyme and LC columns. The system can perform LC separations and clean enzyme columns simultaneously. Temperature zones are controlled ±0.058 °C. The potential of increased sensitivity by mixing acetonitrile with the analytical column effluent was also examined.
Collapse
Affiliation(s)
- Kyle W. Anderson
- National
Institute of Standards and Technology, Bioprocess
Measurement Group, Biomolecular Measurements Division, Rockville, Maryland 20850, United States
- Institute
for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Jeffrey W. Hudgens
- National
Institute of Standards and Technology, Bioprocess
Measurement Group, Biomolecular Measurements Division, Rockville, Maryland 20850, United States
- Institute
for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
7
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Fang M, Wang Z, Cupp-Sutton KA, Welborn T, Smith K, Wu S. High-throughput hydrogen deuterium exchange mass spectrometry (HDX-MS) coupled with subzero-temperature ultrahigh pressure liquid chromatography (UPLC) separation for complex sample analysis. Anal Chim Acta 2021; 1143:65-72. [PMID: 33384131 PMCID: PMC8265693 DOI: 10.1016/j.aca.2020.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 11/23/2022]
Abstract
Hydrogen deuterium exchange coupled with mass spectrometry (HDX-MS) is a powerful technique for the characterization of protein dynamics and protein interactions. Recent technological developments in the HDX-MS field, such as sub-zero LC separations, large-scale data analysis tools, and efficient protein digestion methods, have allowed for the application of HDX-MS to the analysis of multi protein systems in addition to pure protein analysis. Still, high-throughput HDX-MS analysis of complex samples is not widespread because the co-elution of peptides combined with increased peak complexity after labeling makes peak de-convolution extremely difficult. Here, for the first time, we evaluated and optimized long gradient subzero-temperature ultra-high-pressure liquid chromatography (UPLC) separation conditions for the HDX-MS analysis of complex protein samples such as E. coli cell lysate digest. Under the optimized conditions, we identified 1419 deuterated peptides from 320 proteins at -10 °C, which is about 3-fold more when compared with a 15-min gradient separation under the same conditions. Interestingly, our results suggested that the peptides eluted late in the gradient are well-protected by peptide-column interactions at -10 °C so that peptides eluted even at the end of the gradient maintain high levels of deuteration. Overall, our study suggests that the optimized, sub-zero, long-gradient UPLC separation is capable of characterizing thousands of peptides in a single HDX-MS analysis with low back-exchange rates. As a result, this technique holds great potential for characterizing complex samples such as cell lysates using HDX-MS.
Collapse
Affiliation(s)
- Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Thomas Welborn
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
9
|
Modzel M, Wollenberg DTW, Trelle MB, Larsen MR, Jørgensen TJD. Ultraviolet Photodissociation of Protonated Peptides and Proteins Can Proceed with H/D Scrambling. Anal Chem 2021; 93:691-696. [PMID: 33295747 DOI: 10.1021/acs.analchem.0c02957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet photodissociation (UVPD) has recently been introduced as an ion activation method for the determination of single-residue deuterium levels in H/D exchange tandem mass spectrometry experiments. In this regard, it is crucial to know which fragment ion types can be utilized for this purpose. UVPD yields rich product ion spectra where all possible backbone fragment ion types (a/x, b/y, and c/z) are typically observed. Here we provide a detailed investigation of the level of H/D scrambling for all fragment ion types upon UVPD of the peptide scrambling probe P1 (HHHHHHIIKIIK) using an Orbitrap tribrid mass spectrometer equipped with a solid-state 213 nm UV laser. The most abundant UVPD-generated fragment ions (i.e., b/y ions) exhibit extensive H/D scrambling. Similarly, a/x and c/z ions have also undergone H/D scrambling due to UV-induced heating of the precursor ion population. Therefore, dominant b/y ions upon UVPD of protonated peptides are a strong indicator for the occurrence of extensive H/D scrambling of the precursor ion population. In contrast to peptide P1, UV-irradiation of ubiquitin did not induce H/D scrambling in the nonfragmented precursor ion population. However, the UVPD-generated b2 and a4 ions from ubiquitin exhibit extensive H/D scrambling. To minimize H/D scrambling, short UV-irradiation time and high gas pressures are recommended.
Collapse
Affiliation(s)
- Maciej Modzel
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.,Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Daniel T Weltz Wollenberg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.,Novozymes A/S, Krogshøjvej 36, Bagsværd 2880, Denmark
| | - Morten Beck Trelle
- Department of Clinical Biochemistry, Svendborg Hospital, Baagøes Allé 15, SVB Building 17.01, 5700 Svendborg, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| |
Collapse
|
10
|
Engen JR, Botzanowski T, Peterle D, Georgescauld F, Wales TE. Developments in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal Chem 2020; 93:567-582. [DOI: 10.1021/acs.analchem.0c04281] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas Botzanowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Daniele Peterle
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Florian Georgescauld
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Wollenberg DTW, Pengelley S, Mouritsen JC, Suckau D, Jørgensen CI, Jørgensen TJD. Avoiding H/D Scrambling with Minimal Ion Transmission Loss for HDX-MS/MS-ETD Analysis on a High-Resolution Q-TOF Mass Spectrometer. Anal Chem 2020; 92:7453-7461. [PMID: 32427467 DOI: 10.1021/acs.analchem.9b05208] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) enables the study of protein dynamics by measuring the time-resolved deuterium incorporation into a protein incubated in D2O. Using electron-based fragmentation in the gas phase it is possible to measure deuterium uptake at single-residue resolution. However, a prerequisite for this approach is that the solution-phase labeling is conserved in the gas phase prior to precursor fragmentation. It is therefore essential to reduce or even avoid intramolecular hydrogen/deuterium migration, which causes randomization of the deuterium labels along the peptide (hydrogen scrambling). Here, we describe an optimization strategy for reducing scrambling to a negligible level while minimizing the impact on sensitivity on a high-resolution Q-TOF equipped with ETD and an electrospray ionization interface consisting of a glass transfer capillary followed by a dual ion funnel. In our strategy we narrowed down the optimization to two accelerating potentials, and we defined the optimization of these in a simple rule by accounting for their interdependency in relation to scrambling and transmission efficiency. Using this rule, we were able to reduce scrambling from 75% to below 5% on average using the highly scrambling-sensitive quadruply charged P1 peptide scrambling probe resulting in a minor 33% transmission loss. To demonstrate the applicability of this approach, we probe the dynamics of certain regions in cytochrome c.
Collapse
Affiliation(s)
- Daniel T Weltz Wollenberg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.,Novozymes A/S, Krogshøjvej 36, Bagsværd 2280, Denmark
| | - Stuart Pengelley
- Bruker Daltonik GmbH, Fahrenheitstrasse 4, Bremen, 28359, Germany
| | | | - Detlev Suckau
- Bruker Daltonik GmbH, Fahrenheitstrasse 4, Bremen, 28359, Germany
| | | | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| |
Collapse
|
12
|
Karch KR, Coradin M, Zandarashvili L, Kan ZY, Gerace M, Englander SW, Black BE, Garcia BA. Hydrogen-Deuterium Exchange Coupled to Top- and Middle-Down Mass Spectrometry Reveals Histone Tail Dynamics before and after Nucleosome Assembly. Structure 2018; 26:1651-1663.e3. [PMID: 30293810 DOI: 10.1016/j.str.2018.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/21/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
Until recently, a major limitation of hydrogen-deuterium exchange mass spectrometry (HDX-MS) was that resolution of deuterium localization was limited to the length of the peptide generated during proteolysis. However, electron transfer dissociation (ETD) has been shown to preserve deuterium label in the gas phase, enabling better resolution. To date, this technology remains mostly limited to small, already well-characterized proteins. Here, we optimize, expand, and adapt HDX-MS tandem MS (MS/MS) capabilities to accommodate histone and nucleosomal complexes on top-down HDX-MS/MS and middle-down HDX-MS/MS platforms and demonstrate that near site-specific resolution of deuterium localization can be obtained with high reproducibility. We are able to study histone tail dynamics in unprecedented detail, which have evaded analysis by traditional structural biology techniques for decades, revealing important insights into chromatin biology. Together, the results of these studies highlight the versatility, reliability, and reproducibility of ETD-based HDX-MS/MS methodology to interrogate large protein and protein/DNA complexes.
Collapse
Affiliation(s)
- Kelly R Karch
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia 19104, USA
| | - Mariel Coradin
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia 19104, USA
| | - Levani Zandarashvili
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia 19104, USA
| | - Zhong-Yuan Kan
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - Morgan Gerace
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia 19104, USA
| | - S Walter Englander
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - Ben E Black
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia 19104, USA.
| |
Collapse
|
13
|
Trabjerg E, Nazari ZE, Rand KD. Conformational analysis of complex protein states by hydrogen/deuterium exchange mass spectrometry (HDX-MS): Challenges and emerging solutions. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Oganesyan I, Lento C, Wilson DJ. Contemporary hydrogen deuterium exchange mass spectrometry. Methods 2018; 144:27-42. [DOI: 10.1016/j.ymeth.2018.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 02/07/2023] Open
|
15
|
Wales TE, Fadgen KE, Eggertson MJ, Engen JR. Subzero Celsius separations in three-zone temperature controlled hydrogen deuterium exchange mass spectrometry. J Chromatogr A 2017; 1523:275-282. [PMID: 28596009 DOI: 10.1016/j.chroma.2017.05.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 02/04/2023]
Abstract
Hydrogen deuterium exchange mass spectrometry (HDX MS) reports on the conformational landscape of proteins by monitoring the exchange between backbone amide hydrogen atoms and deuterium in the solvent. To maintain the label for analysis, quench conditions of low temperature and pH are required during the chromatography step performed after protease digestion but before mass spectrometry. Separation at 0°C is often chosen as this is the temperature where the most deuterium can be recovered without freezing of the typical water and acetonitrile mobile phases. Several recent reports of separations at subzero Celsius emphasize the promise for retaining more deuterium and using a much longer chromatographic gradient or direct infusion time. Here we present the construction and validation of a modified Waters nanoACQUITY HDX manager with a third temperature-controlled zone for peptide separations at subzero temperatures. A new Peltier-cooled door replaces the door of a traditional main cooling chamber and the separations and trapping column are routed through the door housing. To prevent freezing, 35% methanol is introduced post online digestion. No new pumps are required and online digestion is performed as in the past. Subzero separations, using conventional HPLC column geometry of 3μ m particles in a 1×50mm column, did not result in major changes to chromatographic efficiency when lowering the temperature from 0 to -20°C. There were significant increases in deuterium recovery for both model peptides and biologically relevant protein systems. Given the higher levels of deuterium recovery, expanded gradient programs can be used to allow for higher chromatographic peak capacity and therefore the analysis of larger and more complex proteins and systems.
Collapse
Affiliation(s)
- Thomas E Wales
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Keith E Fadgen
- The Waters Corporation, Milford, MA 01757, United States
| | | | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
16
|
Pan J, Zhang S, Borchers CH. Comparative higher-order structure analysis of antibody biosimilars using combined bottom-up and top-down hydrogen-deuterium exchange mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1801-1808. [DOI: 10.1016/j.bbapap.2016.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/13/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
|
17
|
Protein species-specific characterization of conformational change induced by multisite phosphorylation. J Proteomics 2016; 134:138-143. [DOI: 10.1016/j.jprot.2015.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/29/2015] [Accepted: 12/01/2015] [Indexed: 01/29/2023]
|
18
|
Patrie SM. Top-Down Mass Spectrometry: Proteomics to Proteoforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:171-200. [PMID: 27975217 DOI: 10.1007/978-3-319-41448-5_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter highlights many of the fundamental concepts and technologies in the field of top-down mass spectrometry (TDMS), and provides numerous examples of contributions that TD is making in biology, biophysics, and clinical investigations. TD workflows include variegated steps that may include non-specific or targeted preparative strategies, orthogonal liquid chromatography techniques, analyte ionization, mass analysis, tandem mass spectrometry (MS/MS) and informatics procedures. This diversity of experimental designs has evolved to manage the large dynamic range of protein expression and diverse physiochemical properties of proteins in proteome investigations, tackle proteoform microheterogeneity, as well as determine structure and composition of gas-phase proteins and protein assemblies.
Collapse
Affiliation(s)
- Steven M Patrie
- Computational and Systems Biology & Biomedical Engineering Graduate Programs, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
19
|
Pan J, Zhang S, Chou A, Borchers CH. Higher-order structural interrogation of antibodies using middle-down hydrogen/deuterium exchange mass spectrometry. Chem Sci 2015; 7:1480-1486. [PMID: 29910905 PMCID: PMC5975933 DOI: 10.1039/c5sc03420e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/24/2015] [Indexed: 01/05/2023] Open
Abstract
Specific restricted proteolysis combined with subzero temperature HPLC and online ETD facilitates structural characterization of antibodies at high resolution.
Although X-ray crystallography is the “gold standard” method for protein higher-order structure analysis, the challenges of antibody crystallization and the time-consuming data analysis involved make this technique unsuitable for routine structural studies of antibodies. In addition, crystallography cannot be used for the structural characterization of an antibody in solution, under conditions where antibody drugs are active. Intact antibodies are also too large and too complex for NMR. Top-down mass spectrometry coupled to hydrogen/deuterium exchange (HDX) is a powerful tool for high-resolution protein structural characterization, but its success declines rapidly as protein size increases. Here we report for the first time a new hybrid “middle-down” HDX approach that overcomes this limitation through enabling the nonspecific enzyme pepsin to perform specific restricted digestion at low pH prior to HPLC separation at subzero temperatures and online electron transfer dissociation (ETD). Three large specific peptic fragments (12 to 25 kDa) were observed from the heavy chain and light chain of a therapeutic antibody Herceptin, together with a few smaller fragments from the middle portion of the heavy chain. The average amino-acid resolutions obtained by ETD were around two residues, with single-residue resolution in many regions. This middle-down approach is also applicable to other antibodies. It provided HDX information on the entire light chain, and 95.3% of the heavy chain, representing 96.8% of the entire antibody (150 kDa). The structural effects of glycosylation on Herceptin were determined at close-to-single residue level by this method.
Collapse
Affiliation(s)
- Jingxi Pan
- University of Victoria-Genome British Columbia Proteomics Centre , Vancouver Island Technology Park , #3101-4464 Markham St. , Victoria , BC V8Z 7X8 , Canada .
| | - Suping Zhang
- MRM Proteomics Inc. , 4464 Markham Street, Suite #2108 , Victoria , British Columbia V8Z 7X8 , Canada
| | - Albert Chou
- University of Victoria-Genome British Columbia Proteomics Centre , Vancouver Island Technology Park , #3101-4464 Markham St. , Victoria , BC V8Z 7X8 , Canada .
| | - Christoph H Borchers
- University of Victoria-Genome British Columbia Proteomics Centre , Vancouver Island Technology Park , #3101-4464 Markham St. , Victoria , BC V8Z 7X8 , Canada . .,Department of Biochemistry & Microbiology , University of Victoria , Petch Building Room 207, 3800 Finnerty Rd. , Victoria , BC V8P 5C2 , Canada
| |
Collapse
|
20
|
Lindner R, Heintz U, Winkler A. Applications of hydrogen deuterium exchange (HDX) for the characterization of conformational dynamics in light-activated photoreceptors. Front Mol Biosci 2015; 2:33. [PMID: 26157802 PMCID: PMC4477167 DOI: 10.3389/fmolb.2015.00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/26/2015] [Indexed: 11/13/2022] Open
Abstract
Rational design of optogenetic tools is inherently linked to the understanding of photoreceptor function. Structural analysis of elements involved in signal integration in individual sensor domains provides an initial idea of their mode of operation, but understanding how local structural rearrangements eventually affect signal transmission to output domains requires inclusion of the effector regions in the characterization. However, the dynamic nature of these assemblies renders their structural analysis challenging and therefore a combination of high- and low-resolution techniques is required to appreciate functional aspects of photoreceptors. This review focuses on the potential of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) for complementing the structural characterization of photoreceptors. In this respect, the ability of HDX-MS to provide information on conformational dynamics and the possibility to address multiple functionally relevant states in solution render this methodology ideally suitable. We highlight recent examples demonstrating the potential of HDX-MS and discuss how these results can help to improve existing optogenetic systems or guide the design of novel optogenetic tools.
Collapse
Affiliation(s)
- Robert Lindner
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Udo Heintz
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology Graz, Austria
| |
Collapse
|
21
|
Pan J, Zhang S, Chou A, Hardie DB, Borchers CH. Fast Comparative Structural Characterization of Intact Therapeutic Antibodies Using Hydrogen-Deuterium Exchange and Electron Transfer Dissociation. Anal Chem 2015; 87:5884-90. [PMID: 25927482 DOI: 10.1021/ac504809r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Higher-order structural characterization plays an important role in many stages of therapeutic antibody production. Herein, we report a new top-down mass spectrometry approach for characterizing the higher-order structure of intact antibodies, by combining hydrogen/deuterium exchange (HDX), subzero temperature chromatography, and electron transfer dissociation on the Orbitrap mass spectrometer. Individual IgG domain-level deuteration information was obtained for 6 IgG domains on Herceptin (HER), which included the antigen binding sites. This is the first time that top-down HDX has been applied to an intact protein as large as 150 kDa, which has never been done before on any instrument. Ligand-binding induced structural differences in HER were determined to be located only on the variable region of the light chain. Global glycosylation profile of antibodies and HDX property of the glycoforms were also determined by accurate intact mass measurements. Although the presence of disulfide bonds prevent the current approach from being able to obtain amino acid level structural information within the disulfide-linked regions, the advantages such as minimal sample manipulation, fast workflow, very low level of back exchange, and simple data analysis, make it well-suited for fast comparative structural evaluation of intact antibodies.
Collapse
Affiliation(s)
- Jingxi Pan
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Suping Zhang
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Albert Chou
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Darryl B Hardie
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Christoph H Borchers
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| |
Collapse
|
22
|
Affiliation(s)
- Gregory
F. Pirrone
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| | - Roxana E. Iacob
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| | - John R. Engen
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| |
Collapse
|
23
|
Rand KD, Zehl M, Jørgensen TJD. Measuring the hydrogen/deuterium exchange of proteins at high spatial resolution by mass spectrometry: overcoming gas-phase hydrogen/deuterium scrambling. Acc Chem Res 2014; 47:3018-27. [PMID: 25171396 DOI: 10.1021/ar500194w] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteins are dynamic molecules that exhibit conformational flexibility to function properly. Well-known examples of this are allosteric regulation of protein activity and ligand-induced conformational changes in protein receptors. Detailed knowledge of the conformational properties of proteins is therefore pertinent to both basic and applied research, including drug development, since the majority of drugs target protein receptors and a growing number of drugs introduced to the market are therapeutic peptides or proteins. X-ray crystallography provides a static picture at atomic resolution of the lowest-energy structure of the native ensemble. There is a growing need for sensitive analytical tools to explore all of the significant molecular structures in the conformational landscape of proteins. Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) has recently emerged as a powerful method for characterizing protein conformational dynamics. The basis of this method is the fact that backbone amides in stable hydrogen-bonded structures (e.g., α-helices and β-sheets) are protected against exchange with the aqueous solvent. All protein structures are dynamic, however, and eventually all of the protecting hydrogen bonds will transiently break as the protein--according to thermodynamic principles--cycles through partially unfolded states that correspond to excited free energy levels. As a result, all of the backbone amides will eventually become temporarily solvent-exposed and exchange-competent over time. Consequently, a folded protein in D2O will gradually incorporate deuterium into its backbone amides, and the kinetics of the process can be readily monitored by mass spectrometry. The deuterium uptake kinetics for the intact protein (global exchange kinetics) represents the sum of the exchange kinetics for the individual backbone amides. Local exchange kinetics is typically achieved by using pepsin digestion under quench conditions (i.e., under cold acidic conditions where the amide hydrogen exchange rate is slowed by many orders of magnitude). The ability to localize the individual deuterated residues (the spatial resolution) is determined by the size (typically ∼7-15 residues) and the number of peptic peptides. These peptides provide a relatively coarse-grained picture of the protein dynamics. A fundamental understanding of the relationship between protein function/dysfunction and conformational dynamics requires in many cases higher resolution and ultimately single-residue resolution. In this Account, we summarize our efforts to achieve single-residue deuterium levels in proteins by electron-based or laser-induced gas-phase fragmentation methods. A crucial analytical requirement for this approach is that the pattern of deuterium labeling from solution is retained in the gas-phase fragment ions. It is therefore essential to control and minimize any occurrence of gas-phase randomization of the solution deuterium label (H/D scrambling) during the MS experiment. For this purpose, we have developed model peptide probes to accurately measure the onset and extent of H/D scrambling. Our analytical procedures to control the occurrence of H/D scrambling are detailed along with the physical parameters that induce it during MS analysis. In light of the growing use of gas-phase dissociation experiments to measure the HDX of proteins in order to obtain a detailed characterization and understanding of the dynamic conformations and interactions of proteins at the molecular level, we discuss the perspectives and challenges of future high-resolution HDX-MS methodology.
Collapse
Affiliation(s)
- Kasper D. Rand
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Martin Zehl
- Department
of Pharmacognosy and Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|
24
|
Pan J, Zhang S, Parker CE, Borchers CH. Subzero Temperature Chromatography and Top-Down Mass Spectrometry for Protein Higher-Order Structure Characterization: Method Validation and Application to Therapeutic Antibodies. J Am Chem Soc 2014; 136:13065-71. [DOI: 10.1021/ja507880w] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jingxi Pan
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, 3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Suping Zhang
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, 3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Carol E. Parker
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, 3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Christoph H. Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, 3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
- Department
of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
25
|
Zhang Y, Majumder ELW, Yue H, Blankenship RE, Gross ML. Structural analysis of diheme cytochrome c by hydrogen-deuterium exchange mass spectrometry and homology modeling. Biochemistry 2014; 53:5619-30. [PMID: 25138816 PMCID: PMC4159202 DOI: 10.1021/bi500420y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
A lack
of X-ray or nuclear magnetic resonance structures of proteins
inhibits their further study and characterization, motivating the
development of new ways of analyzing structural information without
crystal structures. The combination of hydrogen–deuterium exchange
mass spectrometry (HDX-MS) data in conjunction with homology modeling
can provide improved structure and mechanistic predictions. Here a
unique diheme cytochrome c (DHCC) protein from Heliobacterium modesticaldum is studied with both HDX and homology modeling to bring some definition of the structure of the
protein and its role. Specifically, HDX data were used to guide the
homology modeling to yield a more functionally relevant structural
model of DHCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | | | |
Collapse
|
26
|
Pan J, Borchers CH. Top-down mass spectrometry and hydrogen/deuterium exchange for comprehensive structural characterization of interferons: Implications for biosimilars. Proteomics 2014; 14:1249-58. [DOI: 10.1002/pmic.201300341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/14/2013] [Accepted: 02/24/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Jingxi Pan
- University of Victoria - Genome BC Proteomics Centre; University of Victoria; Victoria BC Canada
| | - Christoph H. Borchers
- University of Victoria - Genome BC Proteomics Centre; University of Victoria; Victoria BC Canada
- Department of Biochemistry and Microbiology; University of Victoria; Victoria BC Canada
| |
Collapse
|
27
|
Konermann L, Rodriguez AD, Sowole MA. Type 1 and Type 2 scenarios in hydrogen exchange mass spectrometry studies on protein–ligand complexes. Analyst 2014; 139:6078-87. [DOI: 10.1039/c4an01307g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ligand binding to a protein can elicit a wide range of responses when studied by HDX mass spectrometry.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry
- The University of Western Ontario
- London, Canada
| | | | | |
Collapse
|
28
|
Mysling S, Salbo R, Ploug M, Jørgensen TJD. Electrochemical Reduction of Disulfide-Containing Proteins for Hydrogen/Deuterium Exchange Monitored by Mass Spectrometry. Anal Chem 2013; 86:340-5. [DOI: 10.1021/ac403269a] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Simon Mysling
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Rune Salbo
- Protein
Technology, Novo Nordisk A/S, Novo Nordisk Park, Måløv DK-2760, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet and Biotech Research
and Innovation Centre (BRIC), Copenhagen
Biocenter, Ole Maaløes Vej 5, Copenhagen N, DK-2200 Denmark
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| |
Collapse
|
29
|
Konermann L, Vahidi S, Sowole MA. Mass Spectrometry Methods for Studying Structure and Dynamics of Biological Macromolecules. Anal Chem 2013; 86:213-32. [DOI: 10.1021/ac4039306] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Modupeola A. Sowole
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
30
|
Lin SL, Lin TY, Fuh MR. Microfluidic chip-based liquid chromatography coupled to mass spectrometry for determination of small molecules in bioanalytical applications: An update. Electrophoresis 2013; 35:1275-84. [DOI: 10.1002/elps.201300415] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Shu-Ling Lin
- Department of Chemistry; Soochow University; Taipei Taiwan
| | | | - Ming-Ren Fuh
- Department of Chemistry; Soochow University; Taipei Taiwan
| |
Collapse
|
31
|
Lemaire P, Debois D, Smargiasso N, Quinton L, Gabelica V, De Pauw EA. Use of 1,5-diaminonaphthalene to combine matrix-assisted laser desorption/ionization in-source decay fragmentation with hydrogen/deuterium exchange. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1837-1846. [PMID: 23857929 DOI: 10.1002/rcm.6627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/12/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE In-Source Decay (ISD) in Matrix-Assisted Laser Desorption/Ionization (MALDI) mass spectrometry is a fast and easy top-down activation method. Our objective is to find a suitable matrix to locate the deuterons following in-solution hydrogen/deuterium exchange (HDX). This matrix must circumvent the commonly encountered undesired back-exchange reactions, in order to preserve the regioselective deuteration pattern. METHODS The 1,5-diaminonaphthalene (1,5-DAN) matrix is known to be suitable for MALDI-ISD fragmentation. MALDI Mass Spectrometry Imaging (MSI) was employed to compare 1,5-DAN and other commonly used MALDI matrices with respect to the extent of back-exchange and the uniformity of the H/D exchange profiles within the MALDI spots. We tested the back-exchange on the highly sensitive amyloid-beta peptide (1-40), and proved the regioselectivity on ubiquitin and β-endorphin. RESULTS MALDI-MSI results show that 1,5-DAN leads to the least back-exchange over all the spot. MALDI-ISD fragmentation combined with H/D exchange using 1,5-DAN matrix was validated by localizing deuterons in native ubiquitin. Results agree with previous data obtained by Nuclear Magnetic Resonance (NMR) and Electron Transfer Dissociation (ETD). Moreover, 1,5-DAN matrix was used to study the H/D exchange profile of the methanol-induced helical structure of β-endorphin, and the relative protection can be explained by the polarity of residues involved in hydrogen bond formation. CONCLUSIONS We found that controlling crystallization is the most important parameter when combining H/D exchange with MALDI. The 1,5-DAN matrix is characterized by a fast crystallization kinetics, and therefore gives robust and reliable H/D exchange profiles using MALDI-ISD.
Collapse
Affiliation(s)
- Pascale Lemaire
- GIGA-R, Mass Spectrometry Laboratory, Department of Chemistry, Chemistry Building B6c, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
32
|
Tittebrandt S, Edelson-Averbukh M, Spengler B, Lehmann WD. Abzählen von chemisch unterschiedlichen labilen Wasserstoffatomen über Wasserstoff-Deuterium-Austausch in einer ESI-Quelle. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Tittebrandt S, Edelson-Averbukh M, Spengler B, Lehmann WD. ESI Hydrogen/Deuterium Exchange Can Count Chemical Forms of Heteroatom-Bound Hydrogen. Angew Chem Int Ed Engl 2013; 52:8973-5. [DOI: 10.1002/anie.201304249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Indexed: 11/07/2022]
|
34
|
Sheff JG, Rey M, Schriemer DC. Peptide-column interactions and their influence on back exchange rates in hydrogen/deuterium exchange-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1006-15. [PMID: 23649779 DOI: 10.1007/s13361-013-0639-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 05/11/2023]
Abstract
Hydrogen/deuterium exchange (HDX) methods generate useful information on protein structure and dynamics, ideally at the individual residue level. Most MS-based HDX methods involve a rapid proteolytic digestion followed by LC/MS analysis, with exchange kinetics monitored at the peptide level. Localizing specific sites of HDX is usually restricted to a resolution the size of the host peptide because gas-phase processes can scramble deuterium throughout the peptide. Subtractive methods may improve resolution, where deuterium levels of overlapping and nested peptides are used in a subtractive manner to localize exchange to smaller segments. In this study, we explore the underlying assumption of the subtractive method, namely, that the measured back exchange kinetics of a given residue is independent of its host peptide. Using a series of deuterated peptides, we show that secondary structure can be partially retained under quenched conditions, and that interactions between peptides and reversed-phase LC columns may both accelerate and decelerate residue HDX, depending upon peptide sequence and length. Secondary structure is induced through column interactions in peptides with a solution-phase propensity for structure, which has the effect of slowing HDX rates relative to predicted random coil values. Conversely, column interactions can orient random-coil peptide conformers to accelerate HDX, the degree to which correlates with peptide charge in solution, and which can be reversed by using stronger ion pairing reagents. The dependency of these effects on sequence and length suggest that subtractive methods for improving structural resolution in HDX-MS will not offer a straightforward solution for increasing exchange site resolution.
Collapse
Affiliation(s)
- Joey G Sheff
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
35
|
Balasubramaniam D, Komives EA. Hydrogen-exchange mass spectrometry for the study of intrinsic disorder in proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1202-9. [PMID: 23099262 PMCID: PMC3600394 DOI: 10.1016/j.bbapap.2012.10.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 12/14/2022]
Abstract
Amide hydrogen/deuterium exchange detected by mass spectrometry (HXMS) is seeing wider use for the identification of intrinsically disordered parts of proteins. In this review, we discuss examples of how discovery of intrinsically disordered regions and their removal can aid in structure determination, biopharmaceutical quality control, the characterization of how post-translational modifications affect weak structuring of disordered regions, the study of coupled folding and binding, and the characterization of amyloid formation. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
Affiliation(s)
- Deepa Balasubramaniam
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378
| | - Elizabeth A. Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378
| |
Collapse
|
36
|
Pan J, Borchers CH. Top-down structural analysis of posttranslationally modified proteins by Fourier transform ion cyclotron resonance-MS with hydrogen/deuterium exchange and electron capture dissociation. Proteomics 2013; 13:974-81. [PMID: 23319428 DOI: 10.1002/pmic.201200246] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/21/2012] [Accepted: 12/10/2012] [Indexed: 11/08/2022]
Abstract
High-resolution structural characterization of posttranslationally modified proteins represents a challenge for traditional structural biology methods such as crystallography and NMR. In this study, we have used top-down hydrogen/deuterium exchange MS (HDX-MS) with precursor ion selection and electron capture dissociation to determine the impact of oxidative modification on calmodulin (CaM) at an average resolution of 2.5 residues, with complete sequence coverage. The amide deuteration status of native CaM determined by this method correlates well with previously reported crystallographic and NMR data. In contrast, methionine oxidation caused almost complete deuteration of all residues in the protein in 10 s. The oxidative-modification-induced secondary and tertiary structure loss can be largely recovered upon calcium ligation, which also resulted in a substantial increase of amide protection in three of the four calcium-binding loops in oxidatively modified CaM (CaMox ). However, the structure of α-helix VI is not restored by cofactor binding. These results are discussed in terms of different target binding and activation capabilities displayed by CaM and CaMox . The isoform-specific top-down HDX structural analysis strategy demonstrated in this study should be readily applicable to other oxidatively modified proteins and other types of PTMs, and may help decipher the structure and function of specific protein isoforms.
Collapse
Affiliation(s)
- Jingxi Pan
- UVic-Genome BC Proteomics Centre, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
37
|
Venable JD, Okach L, Agarwalla S, Brock A. Subzero temperature chromatography for reduced back-exchange and improved dynamic range in amide hydrogen/deuterium exchange mass spectrometry. Anal Chem 2012; 84:9601-8. [PMID: 23025328 DOI: 10.1021/ac302488h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amide hydrogen/deuterium exchange is a commonly used technique for studying the dynamics of proteins and their interactions with other proteins or ligands. When coupled with liquid chromatography and mass spectrometry, hydrogen/deuterium exchange provides several unique advantages over other structural characterization techniques including very high sensitivity, the ability to analyze proteins in complex environments, and a large mass range. A fundamental limitation of the technique arises from the loss of the deuterium label (back-exchange) during the course of the analysis. A method to limit loss of the label during the separation stage of the analysis using subzero temperature reversed-phase chromatography is presented. The approach is facilitated by the use of buffer modifiers that prevent freezing. We evaluated ethylene glycol, dimethyl formamide, formamide, and methanol for their freezing point suppression capabilities, effects on peptide retention, and their compatibilities with electrospray ionization. Ethylene glycol was used extensively because of its good electrospray ionization compatibility; however, formamide has potential to be a superior modifier if detrimental effects on ionization can be overcome. It is demonstrated using suitable buffer modifiers that separations can be performed at temperatures as low as -30 °C with negligible loss of the deuterium label, even during long chromatographic separations. The reduction in back-exchange is shown to increase the dynamic range of hydrogen/deuterium exchange mass spectrometry in terms of mixture complexity and the magnitude with which changes in deuteration level can be quantified.
Collapse
Affiliation(s)
- John D Venable
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | | | | | | |
Collapse
|