1
|
Dugan LD, Bier ME. Mechanospray Ionization MS of Proteins Including in the Folded State and Polymers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:772-782. [PMID: 35420806 DOI: 10.1021/jasms.1c00344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mechanospray ionization (MoSI) is a technique that produces ions directly from solution-like electrospray ionization (ESI) but without the need of a high voltage. In MoSI, mechanical vibrations aerosolize solution phase analytes, whereby the resulting microdroplets can be directed into the inlet orifice of a mass spectrometer. In this work, MoSI is applied to biomolecules up to 80 kDa in mass in both denatured and native conditions as well as polymers up to 12 kDa in mass. The various MoSI devices used in these analyses were all comprised of a piezoelectric annulus attached to a central metallic disk containing an array of 4 to 7 μm diameter holes. The devices vibrated in the 100-170 kHz range to generate a beam of microdroplets that ultimately resulted in ion formation. A linear quadrupole ion trap (LIT) and orbitrap mass spectrometer were used in the analysis to investigate higher mass proteins at both native (folded) and denatured (unfolded) conditions. MoSI native mass spectra of proteins acquired on the orbitrap and LIT instrument demonstrated that proteins could remain intact and in a folded state. In the case of native MS of holomyoglobin, the intact folded protein remained mostly bound noncovalently to the heme group, and typically, the spectra showed reduced loss of the heme group by MoSI as compared to ESI. In both non-native and native protein analyses examples, broader often multimodal distributions to lower charge states were observed. When using the LIT instrument, a significant increase in the relative abundance of dimers was observed by MoSI as compared to ESI. The softness of the MoSI technique was evidenced by the lack of fragmentation, the formation of dimers as also noted by others ( J. Mass Spectrom. 2016, 424-429) and under native conditions, the retention of proteins in one or more presumed folded structures and for holomyoglobin the high retention of the heme group. When analyzing polyethylene glycol (PEG) and polypropylene glycol (PPG), MoSI also generated a broader distribution to lower charge states than ESI. By using the improved separation of peaks at lower charge states and all the charge states available, MoSI data should provide an improved ionization method to obtain more accurate mass and dispersity values for some polymers.
Collapse
Affiliation(s)
- Liam D Dugan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mark E Bier
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Ha NS, de Raad M, Han LZ, Golini A, Petzold CJ, Northen TR. Faster, better, and cheaper: harnessing microfluidics and mass spectrometry for biotechnology. RSC Chem Biol 2021; 2:1331-1351. [PMID: 34704041 PMCID: PMC8496484 DOI: 10.1039/d1cb00112d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
High-throughput screening technologies are widely used for elucidating biological activities. These typically require trade-offs in assay specificity and sensitivity to achieve higher throughput. Microfluidic approaches enable rapid manipulation of small volumes and have found a wide range of applications in biotechnology providing improved control of reaction conditions, faster assays, and reduced reagent consumption. The integration of mass spectrometry with microfluidics has the potential to create high-throughput, sensitivity, and specificity assays. This review introduces the widely-used mass spectrometry ionization techniques that have been successfully integrated with microfluidics approaches such as continuous-flow system, microchip electrophoresis, droplet microfluidics, digital microfluidics, centrifugal microfluidics, and paper microfluidics. In addition, we discuss recent applications of microfluidics integrated with mass spectrometry in single-cell analysis, compound screening, and the study of microorganisms. Lastly, we provide future outlooks towards online coupling, improving the sensitivity and integration of multi-omics into a single platform.
Collapse
Affiliation(s)
- Noel S Ha
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
| | - Markus de Raad
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
| | - La Zhen Han
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| | - Amber Golini
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| | - Christopher J Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
| | - Trent R Northen
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| |
Collapse
|
3
|
Astefanei A, van den Berg KJ, Burnstock A, Corthals G. Surface Acoustic Wave Nebulization-Mass Spectrometry as a New Tool to Investigate the Water Sensitivity Behavior of 20th Century Oil Paints. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:444-454. [PMID: 33296200 DOI: 10.1021/jasms.0c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The sensitive surfaces of many unvarnished 20th century oil paintings are of great concern for conservators and collection keepers. They may show degradation problems such as paint delamination, dripping, and soft and sticky paint and pose challenges for cleaning due to solvent sensitivity. We report for the first time the use of an innovative ambient ionization technique, surface acoustic wave nebulization-mass spectrometry (SAWN-MS), for the identification and characterization of fatty acids, dicarboxylic species and glycerides in water-sensitive modern oil paints. The composition of 10 relevant Winsor and Newton 1964-1965 paint swatches that present different degrees of water sensitivity and two paint samples from a painting by the British artist Francis Bacon were studied. Principal component analysis was used for SAWN-MS data classification. Electrospray ionization (ESI)-MS was used as control method, specifically to compare the obtained ratios of markers of interest by the two ionization techniques. The results obtained by both ESI-MS and SAWN-MS are correlated and discussed in a broader context including the information on the oil media obtained by gas chromatography (GC-MS) and also on the inorganic materials and salts characterized using a combination of methods in previous reports on samples from the same manufacturer. SAWN-MS was found to be a suitable tool for the determination of soluble organic constituents present in the paints. The method provides an indication of the level of oxidation and hydrolysis of the paint film by monitoring specific markers such as free palmitic and stearic acids, azelaic acid, monoacylglycerols, and diacylglycerols. The data showed that a higher level of water sensitivity coupled with a high level of oxidation and hydrolysis is linked to higher dicarboxylic acid, diacyl- and triacylglyceride content and lower levels of short chain fatty acids. The data obtained by SAWN-MS provided a good correlation between the monitored species and the degree of water sensitivity.
Collapse
Affiliation(s)
- Alina Astefanei
- Van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park, 904, 1098 XH Amsterdam, The Netherlands
| | - Klaas Jan van den Berg
- Cultural Heritage Agency of The Netherlands (RCE), Hobbemastraat 22, 1071 ZC, Amsterdam, Netherlands
- Conservation and Restoration, Faculty for the Humanities, University of Amsterdam, Johannes Vermeerplein 1, 1071 DV Amsterdam, Netherlands
| | - Aviva Burnstock
- Courtauld Institute of Art, Somerset House, Strand, London, WC2R 0RN, United Kingdom
| | - Garry Corthals
- Van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park, 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Wang Y, Jin Q, Shiea J, Sun W. Wire Desorption Combined with Electrospray Ionization Mass Spectrometry: Direct Analysis of Small Organic and Large Biological Compounds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1656-1664. [PMID: 32559077 DOI: 10.1021/jasms.0c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel atmospheric pressure ionization mass spectrometry based on wire desorption and electrospray ionization (WD-ESI) for direct analysis was developed to characterize chemical compounds with different polarities and thermal stabilities at atmospheric pressure. This technique is a variant of the thermal desorption electrospray ion source developed by Shiea et al. One large improvement is that the heating speed (>500 °C/s) of the thermal desorption in this work is extremely fast, using a self-heating metal wire, with which sample solution can splash from the surface to form small droplets and thus the analytes can be protected from thermal decomposition. With this feature, we have successfully achieved soft ionization of highly polar organic and biological compounds such as aflatoxin, small peptides, and even large proteins from complex matrices. The simple structure and self-cleaning capability of the WD-ESI source make it ideal for on-site screening in various applications such as food safety and biodrug testing, especially when coupled with a transportable mass spectrometer.
Collapse
Affiliation(s)
- Yuanlong Wang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, People's Republic of China
| | - Qiao Jin
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, People's Republic of China
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, People's Republic of China
| |
Collapse
|
5
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
6
|
Wong KS, Lim WTH, Ooi CW, Yeo LY, Tan MK. In situ generation of plasma-activated aerosols via surface acoustic wave nebulization for portable spray-based surface bacterial inactivation. LAB ON A CHIP 2020; 20:1856-1868. [PMID: 32342089 DOI: 10.1039/d0lc00001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The presence of reactive species in plasma-activated water is known to induce oxidative stresses in bacterial species, which can result in their inactivation. By integrating a microfludic chipscale nebulizer driven by surface acoustic waves (SAWs) with a low-temperature atmospheric plasma source, we demonstrate an efficient technique for in situ production and application of plasma-activated aerosols for surface disinfection. Unlike bulk conventional systems wherein the water is separately batch-treated within a container, we show in this work the first demonstration of continuous plasma-treatment of water as it is transported through a paper strip from a reservoir onto the chipscale SAW device. The significantly larger surface area to volume ratio of the water within the paper strip leads to a significant reduction in the duration of the plasma-treatment, while maintaining the concentration of the reactive species. The subsequent nebulization of the plasma-activated water by the SAW then allows the generation of plasma-activated aerosols, which can be directly sprayed onto the contaminated surface, therefore eliminating the storage of the plasma-activated water and hence circumventing the typical limitation in conventional systems wherein the concentration of the reactive species diminishes over time during storage, resulting in a reduction in the efficacy of bacterial inactivation. In particular, we show up to 96% reduction in Escherichia coli colonies through direct spraying with the plasma-activated aerosols. This novel, low-cost, portable and energy-efficient hybrid system necessitates only minimal maintenance as it only requires the supply of tap water and battery power for operation, and is thus suitable for decontamination in home environments.
Collapse
Affiliation(s)
- Kiing S Wong
- School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| | | | | | | | | |
Collapse
|
7
|
Pintabona L, Astefanei A, Corthals GL, van Asten AC. Utilizing Surface Acoustic Wave Nebulization (SAWN) for the Rapid and Sensitive Ambient Ionization Mass Spectrometric Analysis of Organic Explosives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2655-2669. [PMID: 31659718 PMCID: PMC6914713 DOI: 10.1007/s13361-019-02335-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
When considering incident investigations and security checks focused on energetic materials, there is an ongoing need for rapid, on-scene chemical identification. Currently applied methods are not capable of meeting all requirements, and hence, portable mass spectrometry is an interesting alternative although many instrumental challenges still exist. To be able to analyze explosives with mass spectrometry outside the traditional laboratory, suitable ambient ionization methods need to be developed. Ideally such methods are also easily implemented in the field requiring limited to no power sources, gas supplies, flow controllers, and heating devices. For this reason, the potential of SAWN (surface acoustic wave nebulization) for the ambient ionization and subsequent mass spectrometric (MS) analysis of organic explosives was investigated in this study. Excellent sensitivity was observed for nitrate-based organic explosives when operating the MS in negative mode. No dominant adduct peaks were observed for the peroxides TATP and HMTD with SAWN-MS in positive mode. The MS spectra indicate extensive fragmentation of the peroxide explosives even under the mild ionization conditions provided by SAWN. The potential of SAWN-MS was demonstrated with the correct identification of nitrate-based organic explosives in pre- and post-explosion case samples in only a fraction of the time and effort required for the regular laboratory analysis. Results show that SAWN-MS can convincingly identify intact organic energetic compounds and mixtures but that sensitivity is not always sufficient to detect traces of explosives in post-explosion residues.
Collapse
Affiliation(s)
- Lauren Pintabona
- van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, PO Box 94157, 1090 GD, Amsterdam, The Netherlands
| | - Alina Astefanei
- van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, PO Box 94157, 1090 GD, Amsterdam, The Netherlands
| | - Garry L Corthals
- van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, PO Box 94157, 1090 GD, Amsterdam, The Netherlands.
| | - Arian C van Asten
- van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, PO Box 94157, 1090 GD, Amsterdam, The Netherlands.
- CLHC, Amsterdam Center for Forensic Science and Medicine, University of Amsterdam, P.O. Box 94157, 1090 GD, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Ahmed A, Islam S, Solihat NN, Acter T, Kim S. Systematic Investigation into the Differences in the (+) APPI Efficiencies of Positional (Ortho, Meta, and Para) Isomers. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Arif Ahmed
- Department of ChemistryKyungpook National University Daegu 41566 Republic of Korea
| | - Syful Islam
- Department of ChemistryKyungpook National University Daegu 41566 Republic of Korea
| | - Nissa Nurfajrin Solihat
- Department of ChemistryKyungpook National University Daegu 41566 Republic of Korea
- Research Center for BiomaterialsIndonesian Institute of Sciences (LIPI) Cibinong 16911 Indonesia
| | - Thamina Acter
- Department of Mathematical and Physical SciencesEast West University Dhaka 1212 Bangladesh
| | - Sunghwan Kim
- Department of ChemistryKyungpook National University Daegu 41566 Republic of Korea
- Green‐Nano Materials Research Center Daegu 41566 Republic of Korea
| |
Collapse
|
9
|
Yao YN, Wu L, Di D, Yuan ZC, Hu B. Vibrating tip spray ionization mass spectrometry for direct sample analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:772-779. [PMID: 31426121 DOI: 10.1002/jms.4429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
In this work, a vibrating tip spray ionization source was developed for direct mass spectrometric analysis of raw samples under voltage-free condition. A solid tip was mounted on a vibrator, and the solid tip was placed on the front of MS inlet. Liquid, viscous, and bulk solid samples could be directly loaded on the tip-end surface, and then a drop of solvent at microliter level was subsequently loaded on the tip for dissolution and extraction of analytes, and a vibrator was then started to atomize and ionize the analytes under ambient condition. We demonstrated vibrating tip spray mass spectrometry in various applications, including food safety, pharmaceutical analysis, and forensic science. Furthermore, in situ analysis of biological tissues and in vivo analysis of living plants were conveniently performed, due to voltage-free. Different vibration frequencies and solvent compositions were investigated. The analytical performances, including sensitivity, reproducibility, and linear range, were investigated. The ionization process and mechanism were also discussed in this work.
Collapse
Affiliation(s)
- Ya-Nan Yao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Lin Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Dandan Di
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Zi-Cheng Yuan
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
10
|
Dominguez-Medina S, Fostner S, Defoort M, Sansa M, Stark AK, Halim MA, Vernhes E, Gely M, Jourdan G, Alava T, Boulanger P, Masselon C, Hentz S. Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators. Science 2019; 362:918-922. [PMID: 30467165 DOI: 10.1126/science.aat6457] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/20/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022]
Abstract
Measurement of the mass of particles in the mega- to gigadalton range is challenging with conventional mass spectrometry. Although this mass range appears optimal for nanomechanical resonators, nanomechanical mass spectrometers often suffer from prohibitive sample loss, extended analysis time, or inadequate resolution. We report on a system architecture combining nebulization of the analytes from solution, their efficient transfer and focusing without relying on electromagnetic fields, and the mass measurements of individual particles using nanomechanical resonator arrays. This system determined the mass distribution of ~30-megadalton polystyrene nanoparticles with high detection efficiency and effectively performed molecular mass measurements of empty or DNA-filled bacteriophage T5 capsids with masses up to 105 megadaltons using less than 1 picomole of sample and with an instrument resolution above 100.
Collapse
Affiliation(s)
- Sergio Dominguez-Medina
- Université Grenoble Alpes, F-38000 Grenoble, France.,CEA, BIG, Biologie à Grande Echelle, F-38054 Grenoble, France.,Inserm, Unité 1038, F-38054 Grenoble, France
| | - Shawn Fostner
- Université Grenoble Alpes, CEA, LETI, 38000 Grenoble, France
| | - Martial Defoort
- Université Grenoble Alpes, CEA, LETI, 38000 Grenoble, France
| | - Marc Sansa
- Université Grenoble Alpes, CEA, LETI, 38000 Grenoble, France
| | - Ann-Kathrin Stark
- Université Grenoble Alpes, F-38000 Grenoble, France.,CEA, BIG, Biologie à Grande Echelle, F-38054 Grenoble, France.,Inserm, Unité 1038, F-38054 Grenoble, France
| | - Mohammad Abdul Halim
- Université Grenoble Alpes, F-38000 Grenoble, France.,CEA, BIG, Biologie à Grande Echelle, F-38054 Grenoble, France.,Inserm, Unité 1038, F-38054 Grenoble, France
| | - Emeline Vernhes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif sur Yvette cedex, France
| | - Marc Gely
- Université Grenoble Alpes, CEA, LETI, 38000 Grenoble, France
| | | | - Thomas Alava
- Université Grenoble Alpes, CEA, LETI, 38000 Grenoble, France
| | - Pascale Boulanger
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif sur Yvette cedex, France
| | - Christophe Masselon
- Université Grenoble Alpes, F-38000 Grenoble, France. .,CEA, BIG, Biologie à Grande Echelle, F-38054 Grenoble, France.,Inserm, Unité 1038, F-38054 Grenoble, France
| | - Sébastien Hentz
- Université Grenoble Alpes, CEA, LETI, 38000 Grenoble, France.
| |
Collapse
|
11
|
Abstract
Acoustics has a broad spectrum of applications, ranging from noise cancelation to ultrasonic imaging. In the past decade, there has been increasing interest in developing acoustic-based methods for biological and biomedical applications. This Perspective summarizes the recent progress in applying acoustofluidic methods (i.e., the fusion of acoustics and microfluidics) to bioanalytical chemistry. We describe the concepts of acoustofluidics and how it can be tailored to different types of bioanalytical applications, including sample concentration, fluorescence-activated cell sorting, label-free cell/particle separation, and fluid manipulation. Examples of each application are given, and the benefits and limitations of these methods are discussed. Finally, our perspectives on the directions that developing solutions should take to address the bottlenecks in the acoustofluidic applications in bioanalytical chemistry are presented.
Collapse
Affiliation(s)
- Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
12
|
Song L, You Y, Evans-Nguyen T. Surface Acoustic Wave Nebulization with Atmospheric-Pressure Chemical Ionization for Enhanced Ion Signal. Anal Chem 2018; 91:912-918. [PMID: 30481449 DOI: 10.1021/acs.analchem.8b03927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Many ambient desorption/ionization mass spectrometry (ADI-MS) techniques rely critically on thermal desorption. Meanwhile, the analyte classes that are successfully studied by any particular ADI-MS methods are strongly dependent on the type of ionization source. Generally, spray-based ionization sources favor polar analytes, whereas plasma-based sources can be used for more hydrophobic analytes and are more suitable for molecules with small molar masses. In the present work, classic atmospheric-pressure chemical ionization (APCI) is used. To provide improved desorption performance for APCI, a surface acoustic wave nebulization (SAWN) device was implemented to convert liquid analytes into fine airborne particles. Compared to conventional SAWN that is used solely as an ionization source for liquid samples, the coupling of SAWN and APCI significantly improves ion signal by up to 4 orders of magnitude, reaching comparable ion abundances to those of electrospray ionization (ESI). Additionally, this coupling also extends the applicable mass range of an APCI source, conventionally known for the ionization of small molecules <500 Da. Herein, we discuss cursory evidence of this applicability to a variety of analytes including both polar and nonpolar small molecules and novel peptides that mimic biomolecules upward of 1000 Da. Observed species are similar to ESI-derived ions including doubly charged analyte ions despite presumably different charging mechanisms. SAWN-APCI coupling may thus involve more nuanced ionization pathways in comparison to other ADI approaches.
Collapse
Affiliation(s)
- Linxia Song
- University of South Florida , Tampa , Florida 33620 , United States
| | - Yi You
- Federal Institute for Materials Research and Testing (BAM) , 12489 Berlin , Germany
| | | |
Collapse
|
13
|
Lee S, Ahmed A, Kim S. Solvent composition dependent signal reduction of molecular ions generated from aromatic compounds in (+) atmospheric pressure photoionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:973-980. [PMID: 29600539 DOI: 10.1002/rcm.8127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE The ionization process is essential for successful mass spectrometric (MS) analysis because of its influence on selectivity and sensitivity. In particular, certain solvents reduce the ionization of the analyte, thereby reducing the overall sensitivity in atmospheric pressure photoionization (APPI). Since the sensitivity varies greatly depending on the solvents, a fundamental understanding of the mechanism is required. METHODS Standard solutions were analyzed using a (+)-APPI Q Exactive ion trap mass spectrometer (Thermo Scientific). Each solution was infused directly into the APPI source at a flow rate of 100 μL/min and the APPI source temperature was 300°C. Other operating mass spectrometric parameters were maintained under the same conditions. Quantum mechanical calculations were carried out using the Gaussian 09 suite program. RESULTS Density functional theory was used to calculate the reaction enthalpies (∆H) of the reactions between toluene and other solvents. The experimental and theoretical results showed good agreement. The abundances of analyte ions were well correlated with the calculated ∆H values. Therefore, the results strongly support the suggested signal reduction mechanism. In addition, linear correlations between the abundance of toluene and analyte molecular ions were observed, which also supports the suggested mechanism. CONCLUSIONS A solvent composition dependent signal reduction mechanism was suggested and evaluated for the (+)-APPI-MS analysis of polyaromatic hydrocarbons (PAHs) generating mainly molecular ions. Overall, the evidence provided in this work suggests that reactions between solvent cluster(s) and toluene molecular ions are responsible for the observed reductions in signal.
Collapse
Affiliation(s)
- Seulgidaun Lee
- Department of Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Arif Ahmed
- Department of Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea
- Department of Chemistry, Green Nano Center, Daegu, 702-701, Republic of Korea
| |
Collapse
|
14
|
Rapid Food Product Analysis by Surface Acoustic Wave Nebulization Coupled Mass Spectrometry. FOOD ANAL METHOD 2018; 11:2447-2454. [PMID: 30271524 DOI: 10.1007/s12161-018-1232-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rapid food product analysis is of great interest for quality control and assurance during the production process. Conventional quality control protocols require time and labor intensive sample preparation for analysis by state-of-the-art analytical methods. To reduce overall cost and facilitate rapid qualitative assessments, food products need to be tested with minimal sample preparation. We present a novel and simple method for assessing food product compositions by mass spectrometry using a novel surface acoustic wave nebulization method. This method provides significant advantages over conventional methods requiring no pumps, capillaries, or additional chemicals to enhance ionization for mass spectrometric analysis. In addition, the surface acoustic wave nebulization - mass spectrometry method is ideal for rapid analysis and to investigate certain compounds by using the mass spectra as a type of species-specific fingerprint analysis. We present for the first time surface acoustic wave nebulization generated mass spectra of a variety of fermented food products from a small selection of vinegars, wines, and beers.
Collapse
|
15
|
Astefanei A, van Bommel M, Corthals GL. Surface Acoustic Wave Nebulisation Mass Spectrometry for the Fast and Highly Sensitive Characterisation of Synthetic Dyes in Textile Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2108-2116. [PMID: 28660500 PMCID: PMC5594053 DOI: 10.1007/s13361-017-1716-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 05/11/2023]
Abstract
Surface acoustic wave nebulisation (SAWN) mass spectrometry (MS) is a method to generate gaseous ions compatible with direct MS of minute samples at femtomole sensitivity. To perform SAWN, acoustic waves are propagated through a LiNbO3 sampling chip, and are conducted to the liquid sample, which ultimately leads to the generation of a fine mist containing droplets of nanometre to micrometre diameter. Through fission and evaporation, the droplets undergo a phase change from liquid to gaseous analyte ions in a non-destructive manner. We have developed SAWN technology for the characterisation of organic colourants in textiles. It generates electrospray-ionisation-like ions in a non-destructive manner during ionisation, as can be observed by the unmodified chemical structure. The sample size is decreased by tenfold to 1000-fold when compared with currently used liquid chromatography-MS methods, with equal or better sensitivity. This work underscores SAWN-MS as an ideal tool for molecular analysis of art objects as it is non-destructive, is rapid, involves minimally invasive sampling and is more sensitive than current MS-based methods. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Alina Astefanei
- Van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Maarten van Bommel
- Van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
- Faculty of Humanities, Conservation and Restoration of Cultural Heritage, University of Amsterdam, Johannes Vermeerplein 1, 1071 DV, Amsterdam, Netherlands
| | - Garry L Corthals
- Van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| |
Collapse
|
16
|
Ahmed A, Lim D, Choi CH, Kim S. Correlation between experimental data of protonation of aromatic compounds at (+) atmospheric pressure photoionization and theoretically calculated enthalpies. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1023-1030. [PMID: 28401729 DOI: 10.1002/rcm.7875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/22/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE The theoretical enthalpy calculated from the overall protonation reaction (electron transfer plus hydrogen transfer) in positive-mode (+) atmospheric-pressure photoionization (APPI) was compared with experimental results for 49 aromatic compounds. A linear relationship was observed between the calculated ΔH and the relative abundance of the protonated peak. The parameter gives reasonable predictions for all the aromatic hydrocarbon compounds used in this study. METHODS A parameter is devised by combining experimental MS data and high-level theoretical calculations. A (+) APPI Q Exactive Orbitrap mass spectrometer was used to obtain MS data for each solution. B3LYP exchange-correlation functions with the standard 6-311+G(df,2p) basis set was used to perform density functional theory (DFT) calculations. RESULTS All the molecules with ΔH <0 kcal/mol for the overall protonation reaction with toluene clusters produced protonated ions, regardless of the desolvation temperature. For molecules with ΔH >0, molecular ions were more abundant at typical APPI desolvation temperatures (300°C), while the protonated ions became comparable or dominant at higher temperatures (400°C). The toluene cluster size was an important factor when predicting the ionization behavior of aromatic hydrocarbon ions in (+) APPI. CONCLUSIONS The data used in this study clearly show that the theoretically calculated reaction enthalpy (ΔH) of protonation with toluene dimers can be used to predict the protonation behavior of aromatic compounds. When compounds have a negative ΔH value, the types of ions generated for aromatic compounds could be very well predicted based on the ΔH value. The ΔH can explain overall protonation behavior of compounds with ΔH values >0. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Arif Ahmed
- Department of Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Dongwon Lim
- Department of Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea
- Department of Chemistry, Green Nano Center, Daegu, 702-701, Republic of Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea
- Department of Chemistry, Green Nano Center, Daegu, 702-701, Republic of Korea
| |
Collapse
|
17
|
Go DB, Atashbar MZ, Ramshani Z, Chang HC. Surface acoustic wave devices for chemical sensing and microfluidics: A review and perspective. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:4112-4134. [PMID: 29151901 PMCID: PMC5685524 DOI: 10.1039/c7ay00690j] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Surface acoustic waves (SAWs), are electro-mechanical waves that form on the surface of piezoelectric crystals. Because they are easy to construct and operate, SAW devices have proven to be versatile and powerful platforms for either direct chemical sensing or for upstream microfluidic processing and sample preparation. This review summarizes recent advances in the development of SAW devices for chemical sensing and analysis. The use of SAW techniques for chemical detection in both gaseous and liquid media is discussed, as well as recent fabrication advances that are pointing the way for the next generation of SAW sensors. Similarly, applications and progress in using SAW devices as microfluidic platforms are covered, ranging from atomization and mixing to new approaches to lysing and cell adhesion studies. Finally, potential new directions and perspectives on the field as it moves forward are offered, with a specific focus on potential strategies for making SAW technologies for bioanalytical applications.
Collapse
Affiliation(s)
- David B. Go
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Masood Z. Atashbar
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Zeinab Ramshani
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
18
|
Schulze S, Pahl M, Stolz F, Appun J, Abel B, Schneider C, Belder D. Liquid Beam Desorption Mass Spectrometry for the Investigation of Continuous Flow Reactions in Microfluidic Chips. Anal Chem 2017; 89:6175-6181. [PMID: 28489359 DOI: 10.1021/acs.analchem.7b01026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we present the combination of microfluidic chips and mass spectrometry employing laser-induced liquid beam ionization/desorption. The developed system was evaluated with respect to stable beam generation and laser parameters as well as solvent compatibility. The device was exemplarily applied to study a vinylogous Mannich reaction performed in continuous flow on chip. Fast processes can be observed with this technique which in the future could be beneficial for studying intermediates or contribute to the elucidation of reaction mechanisms.
Collapse
Affiliation(s)
- Sandra Schulze
- Institute of Analytical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany
| | - Maik Pahl
- Institute of Analytical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany
| | - Ferdinand Stolz
- Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany.,Leibniz Institute of Surface Modification (IOM) , Permoserstraße 15, 04318 Leipzig, Germany
| | - Johannes Appun
- Institute of Organic Chemistry, University Leipzig , Johannisallee 29, 04103 Leipzig, Germany
| | - Bernd Abel
- Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany.,Leibniz Institute of Surface Modification (IOM) , Permoserstraße 15, 04318 Leipzig, Germany
| | - Christoph Schneider
- Institute of Organic Chemistry, University Leipzig , Johannisallee 29, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Usmanov DT, Ninomiya S, Chen LC, Saha S, Mandal MK, Sakai Y, Takaishi R, Habib A, Hiraoka K, Yoshimura K, Takeda S, Wada H, Nonami H. Desorption in Mass Spectrometry. ACTA ACUST UNITED AC 2017; 6:S0059. [PMID: 28337398 DOI: 10.5702/massspectrometry.s0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e., ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed.
Collapse
Affiliation(s)
| | - Satoshi Ninomiya
- Graduate School, Department of Interdisciplinary Research, University of Yamanashi
| | - Lee Chuin Chen
- Graduate School, Department of Interdisciplinary Research, University of Yamanashi
| | | | | | - Yuji Sakai
- Clean Energy Research Center, University of Yamanashi
| | - Rio Takaishi
- Clean Energy Research Center, University of Yamanashi
| | - Ahsan Habib
- Clean Energy Research Center, University of Yamanashi
| | - Kenzo Hiraoka
- Clean Energy Research Center, University of Yamanashi
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Hiroshi Wada
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization
| | - Hiroshi Nonami
- Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University
| |
Collapse
|
20
|
Kim S, Ahmed A. Protonation Sites of Aromatic Compounds in (+) Atmospheric Pressure Photoionization. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sunghwan Kim
- Department of Chemistry; Kyungpook National University; Daegu 702-701 Republic of Korea
- Department of Chemistry; Green Nano Center; Daegu 702-701 Republic of Korea
| | - Arif Ahmed
- Department of Chemistry; Kyungpook National University; Daegu 702-701 Republic of Korea
| |
Collapse
|
21
|
Yoon SH, Liang T, Schneider T, Oyler BL, Chandler CE, Ernst RK, Yen GS, Huang Y, Nilsson E, Goodlett DR. Rapid lipid a structure determination via surface acoustic wave nebulization and hierarchical tandem mass spectrometry algorithm. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2555-2560. [PMID: 27582344 DOI: 10.1002/rcm.7728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/19/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Surface acoustic wave nebulization (SAWN) is an easy to use sample transfer method for rapid mass spectrometric analysis. A new standing wave (SW) SAWN chip, with higher ionization efficiency than our previously reported design, is used for rapid analysis of lipids. METHODS The crude, yet fast, Caroff protocol was used for lipid A extraction from Francisella novicida. SW-SAWN with a Waters Synapt G2S quadrupole time-of-flight (QTOF) mass spectrometer was used to generate lipid A ions. Quadrupole collision-induced dissociation (Q-CID) of lipid A at varying CID energies was used to approximate the ion trap MSn data required for our hierarchical tandem mass spectrometry (HiTMS) algorithm. Structural hypotheses can be obtained directly from the HiTMS algorithm to identify species-specific lipid A molecules. RESULTS SW-SAWN successfully generated ions from lipid A extracted from Francisella novicida using the faster Caroff method. In addition, varying collision energies were used to generate tandem mass spectra similar to MS3 and MS4 spectra from an ion trap. The Q-CID spectra are compatible with our HiTMS algorithm and offer an improvement over lipid A tandem mass spectra acquired in an ion trap. CONCLUSIONS Combining SW-SAWN and Q-CID enabled more structural assignments than previously reported in half the time. The ease of generating spectra by SAWN tandem MS in combination with HiTMS interpretation offers high-throughput lipid A structural analysis and thereby rapid detection of pathogens based on lipid fingerprinting. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sung Hwan Yoon
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, 650W Baltimore St., Baltimore, MD, 21201, USA
| | - Tao Liang
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland, 20N Pine St., Baltimore, MD, 21201, USA
| | - Thomas Schneider
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland, 20N Pine St., Baltimore, MD, 21201, USA
| | - Benjamin L Oyler
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland, 20N Pine St., Baltimore, MD, 21201, USA
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, 650W Baltimore St., Baltimore, MD, 21201, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, 650W Baltimore St., Baltimore, MD, 21201, USA
| | - Gloria S Yen
- Deurion LLC, 3518 Fremont Ave #503, Seattle, WA, 98103, USA
| | - Yue Huang
- Deurion LLC, 3518 Fremont Ave #503, Seattle, WA, 98103, USA
| | - Erik Nilsson
- Deurion LLC, 3518 Fremont Ave #503, Seattle, WA, 98103, USA
| | - David R Goodlett
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland, 20N Pine St., Baltimore, MD, 21201, USA
- Deurion LLC, 3518 Fremont Ave #503, Seattle, WA, 98103, USA
| |
Collapse
|
22
|
Li Y, Yoon SH, Wang X, Ernst RK, Goodlett DR. Structural derivation of lipid A from Cronobacter sakazakii using tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2265-2270. [PMID: 27502448 DOI: 10.1002/rcm.7712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/18/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Cronobacter sakazakii is a Gram-negative opportunistic pathogen that can cause necrotizing enterocolitis, bacteremia, and meningitis. Lipid A, the glycolipid membrane anchor of lipopolysaccharide (LPS), is a potential virulence factor for C. sakazakii. Given the potential importance of this molecule in infection and virulence, structural characterization of lipid A was carried out. METHODS The structural characterization of lipid A extracted from C. sakazakii was performed using electrospray ionization and collision-induced dissociation in a linear ion trap mass spectrometer. Specifically, for detailed structural characterization, hierarchical tandem mass spectrometry was performed on the dominant ions present in the precursor ion mass spectra. By comparing the C. sakazakii fragmentation pathways to those of the known structure of E. coli lipid A, a structure of C. sakazakii lipid A was derived. RESULTS The precursor ion at m/z 1796 from C. sakazakii is produced from a lipid A molecule where the acyl chains between the 2'b (C14) and 3'b (C12) positions are reversed as compared to E. coli lipid A. Additionally, the precursor ion at m/z 1824 from C. sakazakii corresponds to an E. coli structure with the same acyl chain at the 2'b position (C14), but a longer acyl chain (C14) at the 3'b position versus m/z 1796. CONCLUSIONS Two lipid A structures were derived for the C. sakazakii ions at m/z 1796 and 1824. They differed in composition at the 2'b and 3'b acyl chain substituents, which may be a result of differences in substrate specificity of the two lipid A acyl chain transferases: LpxL and LpxM. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Joint International Research Laboratory of Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Sung Hwan Yoon
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Joint International Research Laboratory of Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - David R Goodlett
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
23
|
Huang Y, Heron SR, Clark AM, Edgar JS, Yoon SH, Kilgour DPA, Turecek F, Aliseda A, Goodlett DR. Surface acoustic wave nebulization device with dual interdigitated transducers improves SAWN-MS performance. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:424-429. [PMID: 27270865 DOI: 10.1002/jms.3766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/13/2016] [Accepted: 03/21/2016] [Indexed: 06/06/2023]
Abstract
We compared mass spectrometric (MS) performance of surface acoustic wave nebulization (SAWN) generated by a single interdigitated transducer (IDT) designed to produce a progressive wave (PW) to one with a dual IDT that can in theory generate standing waves (SW). Given that devices using dual IDTs had been shown to produce fewer large size droplets on average, we hypothesized they would improve MS performance by improving the efficiency of desolvation. Indeed, the SW-SAWN chip provided an improved limit of detection of 1 femtomole of peptide placed on chip making it 100× more sensitive than the PW design. However, as measured by high-speed image recording and phase Doppler particle analyzer measurements, there was only a 26% increase in the small diameter (1-10 µm) droplets produced from the new device, precluding a conclusion that the decrease in droplet size was solely responsible for the improvement in MS signal/noise. Given that the dual IDT design produced a more instantaneous plume than the PW design, the more likely contributor to improved MS signal/noise was concluded to be a higher ion flux entering the mass spectrometer for the dual IDT designs. Notably, the dual IDT device allowed production of much higher quality protein mass spectra up to about 20 kDa, compared with the single IDT device. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | - Alicia M Clark
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - J Scott Edgar
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Sung Hwan Yoon
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| | - David P A Kilgour
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | | | - Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - David R Goodlett
- Deurion, LLC, Seattle, WA, USA
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
24
|
Yen GS, Edgar JS, Yoon SH, Huang Y, Heron SR, Chiu DT, Goodlett DR. Polydimethylsiloxane microchannel coupled to surface acoustic wave nebulization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1096-1100. [PMID: 27003047 DOI: 10.1002/rcm.7531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/19/2016] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Gloria S Yen
- Deurion LLC, Seattle, 3518 Frement Avenue #503, WA, 98103, USA
| | - J Scott Edgar
- University of Washington, Department of Chemistry, Seattle, WA, 98195, USA
| | - Sung Hwan Yoon
- University of Maryland, Department of Pharmaceutical Sciences, 20 N Pine Street, Baltimore, MD, 21201, USA
| | - Yue Huang
- Deurion LLC, Seattle, 3518 Frement Avenue #503, WA, 98103, USA
| | - Scott R Heron
- Deurion LLC, Seattle, 3518 Frement Avenue #503, WA, 98103, USA
| | - Daniel T Chiu
- University of Washington, Department of Chemistry, Seattle, WA, 98195, USA
| | - David R Goodlett
- Deurion LLC, Seattle, 3518 Frement Avenue #503, WA, 98103, USA
- University of Maryland, Department of Pharmaceutical Sciences, 20 N Pine Street, Baltimore, MD, 21201, USA
| |
Collapse
|
25
|
Monkkonen L, Edgar JS, Winters D, Heron SR, Mackay CL, Masselon CD, Stokes AA, Langridge-Smith PR, Goodlett DR. Screen-printed digital microfluidics combined with surface acoustic wave nebulization for hydrogen-deuterium exchange measurements. J Chromatogr A 2016; 1439:161-166. [DOI: 10.1016/j.chroma.2015.12.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/16/2015] [Accepted: 12/17/2015] [Indexed: 01/15/2023]
|
26
|
Hommersom B, Syed SUAH, Eijkel GB, Kilgour DPA, Goodlett DR, Heeren RMA. An ambient detection system for visualization of charged particles generated with ionization methods at atmospheric pressure. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:352-358. [PMID: 26754127 DOI: 10.1002/rcm.7442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE With the current state-of-the-art detection of ions only taking place under vacuum conditions, active pixel detectors that operate under ambient conditions are of particular interest. These detectors are ideally suited to study and characterize the charge distributions generated by ambient ionization sources. METHODS The direct imaging capabilities of the active pixel detector are used to investigate the spatial distributions of charged droplets generated by three ionization sources, named electrospray ionization (ESI), paper spray ionization (PSI) and surface acoustic wave nebulization (SAWN). The ionization spray (ESI/PSI) and ionization plume (SAWN) originating from each source are directly imaged. The effect of source parameters such as spray voltage for ESI and PSI, and the angle of the paper spray tip on the charge distributions, is investigated. Two types of SAWN liquid interface, progressive wave (PW) and standing wave (SW), are studied. RESULTS Direct charge detection under ambient conditions is demonstrated using an active pixel detector. Direct charge distributions are obtained of weak, homogeneous/focused and dispersed spray plumes by applying low, intermediate and high spray potentials, respectively, for ESI. Spray plume footprints obtained for various angles of PSI shows the possibility to focus the ion beam as a function of the paper angle. Differences between two designs of the SAWN interface are determined. Droplet charge flux changes are illustrated in a way similar to a total ion chromatogram. CONCLUSIONS The use of this active pixel detector allows the rapid characterization and optimization of different ambient ionization sources without the actual use of a mass spectrometer. Valuable illustrations are obtained of changes in spatial distribution and number of charges detected for ESI, PSI and SAWN ion plumes. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bob Hommersom
- FOM Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
- M4I, The Maastricht MultiModal Molecular Imaging Institute, University of Maastricht, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Sarfaraz U A H Syed
- FOM Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
- Amsterdam Scientific Instruments B.V., Science Park 105, 1098 XG, Amsterdam, The Netherlands
| | - Gert B Eijkel
- FOM Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
- M4I, The Maastricht MultiModal Molecular Imaging Institute, University of Maastricht, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - David P A Kilgour
- University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, Maryland, 21201, USA
| | - David R Goodlett
- University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, Maryland, 21201, USA
- Deurion LLC, 3518 Fremont Avenue #503, Seatle, WA, 98103, USA
| | - Ron M A Heeren
- FOM Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
- M4I, The Maastricht MultiModal Molecular Imaging Institute, University of Maastricht, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
- Amsterdam Scientific Instruments B.V., Science Park 105, 1098 XG, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Usmanov DT, Hiraoka K, Wada H, Morita S, Nonami H. Desorption of low-volatility compounds induced by dynamic friction between microdroplets and an ultrasonically vibrating blade. Analyst 2016; 141:1398-404. [DOI: 10.1039/c5an02215k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Friction plays an important role in desorption and/or ionization of nonvolatile compounds in mass spectrometry, e.g., sonic spray, easy ambient sonic-spray ionization, solvent-assisted inlet ionization, desorption electrospray, etc.
Collapse
Affiliation(s)
- D. T. Usmanov
- Clean Energy Research Center
- University of Yamanashi
- Kofu 400-8511
- Japan
- Institute of Ion-Plasma and Laser Technologies
| | - K. Hiraoka
- Clean Energy Research Center
- University of Yamanashi
- Kofu 400-8511
- Japan
| | - H. Wada
- Kyushu Okinawa Agricultural Research Center
- National Agriculture and Food Research Organization
- Chikugo
- Japan
| | - S. Morita
- Kyushu Okinawa Agricultural Research Center
- National Agriculture and Food Research Organization
- Chikugo
- Japan
| | - H. Nonami
- Plant Biophysics/Biochemistry Research Laboratory
- Faculty of Agriculture
- Ehime University
- Matsuyama
- Japan
| |
Collapse
|
28
|
Tveen-Jensen K, Gesellchen F, Wilson R, Spickett CM, Cooper JM, Pitt AR. Interfacing low-energy SAW nebulization with Liquid Chromatography-Mass Spectrometry for the analysis of biological samples. Sci Rep 2015; 5:9736. [PMID: 25978651 PMCID: PMC4432867 DOI: 10.1038/srep09736] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/10/2015] [Indexed: 01/29/2023] Open
Abstract
Soft ionization methods for the introduction of labile biomolecules into a mass spectrometer are of fundamental importance to biomolecular analysis. Previously, electrospray ionization (ESI) and matrix assisted laser desorption-ionization (MALDI) have been the main ionization methods used. Surface acoustic wave nebulization (SAWN) is a new technique that has been demonstrated to deposit less energy into ions upon ion formation and transfer for detection than other methods for sample introduction into a mass spectrometer (MS). Here we report the optimization and use of SAWN as a nebulization technique for the introduction of samples from a low flow of liquid, and the interfacing of SAWN with liquid chromatographic separation (LC) for the analysis of a protein digest. This demonstrates that SAWN can be a viable, low-energy alternative to ESI for the LC-MS analysis of proteomic samples.
Collapse
Affiliation(s)
- Karina Tveen-Jensen
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK. B4 7ET
| | - Frank Gesellchen
- Division of Biomedical Engineering, University of Glasgow, Oakfield Avenue, Glasgow, UK. G12 8LT
| | - Rab Wilson
- Division of Biomedical Engineering, University of Glasgow, Oakfield Avenue, Glasgow, UK. G12 8LT
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK. B4 7ET
| | - Jonathan M Cooper
- Division of Biomedical Engineering, University of Glasgow, Oakfield Avenue, Glasgow, UK. G12 8LT
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK. B4 7ET
| |
Collapse
|
29
|
Li A, Hollerbach A, Luo Q, Cooks RG. On‐Demand Ambient Ionization of Picoliter Samples Using Charge Pulses. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Anyin Li
- Department of Chemistry and Center for Advanced Analytical Instrumentation Development, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 (USA)
| | - Adam Hollerbach
- Department of Chemistry and Center for Advanced Analytical Instrumentation Development, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 (USA)
| | - Qingjie Luo
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104 (USA)
| | - R. Graham Cooks
- Department of Chemistry and Center for Advanced Analytical Instrumentation Development, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 (USA)
| |
Collapse
|
30
|
Li A, Hollerbach A, Luo Q, Cooks RG. On‐Demand Ambient Ionization of Picoliter Samples Using Charge Pulses. Angew Chem Int Ed Engl 2015; 54:6893-5. [DOI: 10.1002/anie.201501895] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Anyin Li
- Department of Chemistry and Center for Advanced Analytical Instrumentation Development, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 (USA)
| | - Adam Hollerbach
- Department of Chemistry and Center for Advanced Analytical Instrumentation Development, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 (USA)
| | - Qingjie Luo
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104 (USA)
| | - R. Graham Cooks
- Department of Chemistry and Center for Advanced Analytical Instrumentation Development, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 (USA)
| |
Collapse
|
31
|
Boeri Erba E, Petosa C. The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes. Protein Sci 2015; 24:1176-92. [PMID: 25676284 DOI: 10.1002/pro.2661] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is a powerful tool for determining the mass of biomolecules with high accuracy and sensitivity. MS performed under so-called "native conditions" (native MS) can be used to determine the mass of biomolecules that associate noncovalently. Here we review the application of native MS to the study of protein-ligand interactions and its emerging role in elucidating the structure of macromolecular assemblies, including soluble and membrane protein complexes. Moreover, we discuss strategies aimed at determining the stoichiometry and topology of subunits by inducing partial dissociation of the holo-complex. We also survey recent developments in "native top-down MS", an approach based on Fourier Transform MS, whereby covalent bonds are broken without disrupting non-covalent interactions. Given recent progress, native MS is anticipated to play an increasingly important role for researchers interested in the structure of macromolecular complexes.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| |
Collapse
|
32
|
Salehi-Reyhani A, Gesellchen F, Mampallil D, Wilson R, Reboud J, Ces O, Willison KR, Cooper JM, Klug DR. Chemical-Free Lysis and Fractionation of Cells by Use of Surface Acoustic Waves for Sensitive Protein Assays. Anal Chem 2015; 87:2161-9. [DOI: 10.1021/ac5033758] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Frank Gesellchen
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Dileep Mampallil
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Rab Wilson
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Julien Reboud
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | | | | | - Jonathan M. Cooper
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | | |
Collapse
|
33
|
Forbes TP. Rapid detection and isotopic measurement of discrete inorganic samples using acoustically actuated droplet ejection and extractive electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:19-28. [PMID: 25462359 DOI: 10.1002/rcm.7074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 05/27/2023]
Abstract
RATIONALE The rapid detection, screening, and isotopic signature analysis of inorganics provide invaluable information for a variety of applications including explosive device detection, nuclear forensics, and environmental monitoring. The coupling of ultrasonic nebulization and extractive electrospray ionization (EESI) enabled the mass spectrometric (MS) detection and analysis of inorganics from microliter sample solution aliquots. METHODS Ultrasonic nebulization and acoustic pressure wave focusing within an array of exponential horn structures were utilized for the efficient atomization of discrete liquid samples ranging in volume from 3 μL to 10 μL pipetted aliquots. In conjunction with an electro-flow focusing source for extractive electrospray ionization (EESI), in-source collision-induced dissociation (CID) was utilized to enhance inorganic detection through fragmentation of adducts and reduction in chemical noise from organic compounds. RESULTS The investigated system enhanced detection of the singly charged elemental cation species and provided accurate measurements of isotopic distributions for a number of metal ions. The extent of CID demonstrated the competition between ligand loss from hydrate clusters and charge reduction from the doubly charged to singly charged cations for the alkaline earth metal ions of strontium and barium. Inorganics were also detected from complex matrices, including synthetic fingerprint material and sediment, without detriment to device operation. CONCLUSIONS The described system provides a versatile tool for the rapid detection, speciation, and isotopic identification of inorganic compounds at nanogram to sub-nanogram levels from microliter aliquots. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Thomas P Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| |
Collapse
|
34
|
|
35
|
O'Brien JP, Needham BD, Brown DB, Trent MS, Brodbelt JS. Top-Down Strategies for the Structural Elucidation of Intact Gram-negative Bacterial Endotoxins. Chem Sci 2014; 5:4291-4301. [PMID: 25386333 PMCID: PMC4224326 DOI: 10.1039/c4sc01034e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Re-modelling of lipopolysaccharides, which are the primary constituent of the outer cell membrane of Gram-negative bacteria, modulates pathogenesis and resistance to microbials. Reported herein is the characterization of intact Gram-negative bacterial lipooligosaccharides (LOS) via a new strategy utilizing online liquid chromatography (LC) coupled with ultraviolet photodissociation (UVPD) mass spectrometry. Compared to collision-based MS/MS methods, UVPD and UVPD/HCD promoted a greater array of cleavages within both the glycan and lipid moieties, including C-C, C-N, C-O cleavages in the acyl chains as well as glycosidic and cross-ring cleavages, thus providing the most far-reaching structural characterization of LOS. This LC-MS/MS strategy affords a robust analytical method to structurally characterize complex mixtures of bacterial endotoxins that maintains the integrity of the core oligosaccharide and lipid A domains of LOS, providing direct feedback about the cell envelope architectures and LOS modification strategies involved in resistance host innate immune defense.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX, USA 78712
| | - Brittany D Needham
- The University of Texas at Austin, Department of Molecular Biosciences, 2506 Speedway A5000, Austin, TX, USA 78712
| | - Dusty B Brown
- The University of Texas at Austin, Department of Molecular Biosciences, 2506 Speedway A5000, Austin, TX, USA 78712
| | - M Stephen Trent
- The University of Texas at Austin, Department of Molecular Biosciences, 2506 Speedway A5000, Austin, TX, USA 78712
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX, USA 78712
| |
Collapse
|
36
|
Boeri Erba E. Investigating macromolecular complexes using top-down mass spectrometry. Proteomics 2014; 14:1259-70. [PMID: 24723549 DOI: 10.1002/pmic.201300333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 12/25/2022]
Abstract
MS has emerged as an important tool to investigate noncovalent interactions between proteins and various ligands (e.g. other proteins, small molecules, or drugs). In particular, ESI under so-called "native conditions" (a.k.a. "native MS") has considerably expanded the scope of such investigations. For instance, ESI quadrupole time of flight (Q-TOF) instruments have been used to probe the precise stoichiometry of protein assemblies, the interactions between subunits and the position of subunits within the complex (i.e. defining core and peripheral subunits). This review highlights several illustrative native Q-TOF-based investigations and recent seminal contributions of top-down MS (i.e. Fourier transform (FT) MS) to the characterization of noncovalent complexes. Combined top-down and native MS, recently demonstrated in "high-mass modified" orbitrap mass spectrometers, and further improvements needed for the enhanced investigation of biologically significant noncovalent interactions by MS will be discussed.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Institute of Structural Biology (Institut de Biologie Structurale), Centre National de la Recherche Scientifique (CNRS), University of Grenoble Alpes (Université de Grenoble Alpes), Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), DSV, Grenoble, France
| |
Collapse
|
37
|
O'Brien JP, Needham BD, Henderson JC, Nowicki EM, Trent MS, Brodbelt JS. 193 nm ultraviolet photodissociation mass spectrometry for the structural elucidation of lipid A compounds in complex mixtures. Anal Chem 2014; 86:2138-45. [PMID: 24446701 PMCID: PMC3958132 DOI: 10.1021/ac403796n] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Here we implement ultraviolet photodissociation
(UVPD) in an online
liquid chromatographic tandem mass spectrometry (MS/MS) strategy to
support analysis of complex mixtures of lipid A combinatorially modified
during development of vaccine adjuvants. UVPD mass spectrometry at
193 nm was utilized to characterize the structures and fragment ion
types of lipid A from Escherichia coli, Vibrio
cholerae, and Pseudomonas aeruginosa using
an Orbitrap mass spectrometer. The fragment ions generated by UVPD
were compared to those from collision induced dissociation (CID) and
higher energy collision dissociation (HCD) with respect to the precursor
charge state. UVPD afforded the widest array of fragment ion types
including acyl chain C–O, C–N, and C–C bond cleavages
and glycosidic C–O and cross ring cleavages, thus providing
the most comprehensive structural analysis of the lipid A. UVPD exhibited
virtually no dependence on precursor ion charge state and was best
at determining lipid A structure including acyl chain length and composition,
giving it an advantage over collision based methods. UVPD was incorporated
into an LC–MS/MS methodology for the analysis of a number of
structural variants in a complex mixture of combinatorially engineered Escherichia coli lipid A.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry, The University of Texas at Austin , 1 University Station A5300, Austin, Texas 78712, United States
| | | | | | | | | | | |
Collapse
|
38
|
Tarbell JM, Shi ZD, Dunn J, Jo H. Fluid Mechanics, Arterial Disease, and Gene Expression. ANNUAL REVIEW OF FLUID MECHANICS 2014; 46:591-614. [PMID: 25360054 DOI: 10.1146/annurev-fluid-010313-141418] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065
| | - Jessilyn Dunn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| |
Collapse
|
39
|
Lin SH, Lo TJ, Kuo FY, Chen YC. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:50-56. [PMID: 24446263 DOI: 10.1002/jms.3319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/10/2013] [Accepted: 11/26/2013] [Indexed: 06/03/2023]
Abstract
Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions.
Collapse
Affiliation(s)
- Shu-Hsuan Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan
| | | | | | | |
Collapse
|
40
|
Li M, Yang L, Bai Y, Liu H. Analytical Methods in Lipidomics and Their Applications. Anal Chem 2013; 86:161-75. [DOI: 10.1021/ac403554h] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Min Li
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Li Yang
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Ding X, Li P, Lin SCS, Stratton ZS, Nama N, Guo F, Slotcavage D, Mao X, Shi J, Costanzo F, Huang TJ. Surface acoustic wave microfluidics. LAB ON A CHIP 2013; 13:3626-49. [PMID: 23900527 PMCID: PMC3992948 DOI: 10.1039/c3lc50361e] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.
Collapse
Affiliation(s)
- Xiaoyun Ding
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Peng Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sz-Chin Steven Lin
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zackary S. Stratton
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nitesh Nama
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel Slotcavage
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaole Mao
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jinjie Shi
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Francesco Costanzo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
42
|
Monge ME, Harris GA, Dwivedi P, Fernández FM. Mass Spectrometry: Recent Advances in Direct Open Air Surface Sampling/Ionization. Chem Rev 2013; 113:2269-308. [DOI: 10.1021/cr300309q] [Citation(s) in RCA: 404] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- María Eugenia Monge
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Glenn A. Harris
- Department
of Biochemistry and
the Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Prabha Dwivedi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| |
Collapse
|
43
|
Hammarström B, Yan H, Nilsson J, Ekström S. Efficient sample preparation in immuno-matrix-assisted laser desorption/ionization mass spectrometry using acoustic trapping. BIOMICROFLUIDICS 2013; 7:24107. [PMID: 24404012 PMCID: PMC3625219 DOI: 10.1063/1.4798473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/14/2013] [Indexed: 05/15/2023]
Abstract
Acoustic trapping of minute bead amounts against fluid flow allows for easy automation of multiple assay steps, using a convenient aspirate/dispense format. Here, a method based on acoustic trapping that allows sample preparation for immuno-matrix-assisted laser desorption/ionization mass spectrometry using only half a million 2.8 μm antibody covered beads is presented. The acoustic trapping is done in 200 × 2000 μm(2) glass capillaries and provides highly efficient binding and washing conditions, as shown by complete removal of detergents and sample processing times of 5-10 min. The versatility of the method is demonstrated using an antibody against Angiotensin I (Ang I), a peptide hormone involved in hypotension. Using this model system, the acoustic trapping was efficient in enriching Angiotensin at 400 pM spiked in plasma samples.
Collapse
Affiliation(s)
- Björn Hammarström
- Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Lund, Sweden
| | - Hong Yan
- Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Lund, Sweden
| | - Johan Nilsson
- Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Lund, Sweden
| | - Simon Ekström
- Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Lund, Sweden ; Lund University, CREATE Health, Lund, Sweden
| |
Collapse
|
44
|
Collins DJ, Manor O, Winkler A, Schmidt H, Friend JR, Yeo LY. Atomization off thin water films generated by high-frequency substrate wave vibrations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:056312. [PMID: 23214881 DOI: 10.1103/physreve.86.056312] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Indexed: 05/22/2023]
Abstract
Generating aerosol droplets via the atomization of thin aqueous films with high frequency surface acoustic waves (SAWs) offers several advantages over existing nebulization methods, particularly for pulmonary drug delivery, offering droplet sizes in the 1-5-μm range ideal for effective pulmonary therapy. Nevertheless, the physics underlying SAW atomization is not well understood, especially in the context of thin liquid film formation and spreading and how this affects the aerosol production. Here, we demonstrate that the film geometry, governed primarily by the applied power and frequency of the SAW, indeed plays a crucial role in the atomization process and, in particular, the size of the atomized droplets. In contrast to the continuous spreading of low surface energy liquids atop similar platforms, high surface energy liquids such as water, in the present case, are found to undergo transient spreading due to the SAW to form a quasisteady film whose height is determined by self-selection of the energy minimum state associated with the acoustic resonance in the film and whose length arises from a competition between acoustic streaming and capillary effects. This is elucidated from a fundamental model for the thin film spreading behavior under SAW excitation, from which we show good agreement between the experimentally measured and theoretically predicted droplet dimension, both of which consistently indicate a linear relationship between the droplet diameter and the mechanical power coupled into the liquid by the SAW (the latter captured by an acoustic Weber number to the two thirds power, and the reciprocal of the SAW frequency).
Collapse
|