1
|
Wang X, Shi X, Wang R. Regulating mRNA endosomal escape through lipid rafts: A review. Int J Pharm 2025; 675:125571. [PMID: 40199432 DOI: 10.1016/j.ijpharm.2025.125571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 04/05/2025] [Indexed: 04/10/2025]
Abstract
Messenger RNA (mRNA) therapeutics, enabled by lipid nanoparticles (LNPs) delivery systems, have revolutionized modern medicine by facilitating the delivery of genetic cargo to target cells. However, the efficient release of mRNA from LNPs within the endosomal pathways into the cytosol remains a major bottleneck in this field. Revisiting the formulation and function of mRNA-LNPs, it has been found that lipid rafts formed by cholesterol and distearoylphosphatidylcholine during the self-assembly process plan an essential role in the intracellular delivery and endosomal escape of mRNA-LNPs. These lipid rafts enhance the rigidity and stability of LNPs, facilitating mRNA encapsulation and closely contributing to improved intracellular delivery efficiency. By adjusting the composition or behavior of lipid rafts within LNPs-such as substituting cholesterol or altering the lipid phase-endosomal membranes can be destabilized, facilitating the escape of mRNA into the cytoplasm. This approach provides a promising strategy for rational design of mRNA delivery system and optimization of LNPs formulation. Additionally, methods for studying the mRNA escape process are summarized, as they serve as the foundation for achieving reliable and reproducible results.
Collapse
Affiliation(s)
- Xinxin Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin Shi
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ruifeng Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
2
|
Hlaváček A, Uhrová K, Weisová J, Brožková H, Pizúrová N. Optical Microscopy and Deep Learning for Absolute Quantification of Nanoparticles on a Macroscopic Scale and Estimating Their Number Concentration. Anal Chem 2025; 97:2588-2592. [PMID: 39886935 PMCID: PMC11822731 DOI: 10.1021/acs.analchem.4c05555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/25/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
We present a simplistic and absolute method for estimating the number concentration of nanoparticles. Macroscopic volumes of a nanoparticle dispersion (several μL) are dropped on a glass surface and the solvent is evaporated. The optical microscope scans the entire surface of the dried droplet (several mm2), micrographs are stitched together (several tens), and all nanoparticles are counted (several thousand per droplet) by using an artificial neural network. We call this method evaporated volume analysis (EVA) because nanoparticles are counted after droplet volume evaporation. As a model, the concentration of ∼60 nm Tm3+-doped photon-upconversion nanoparticles coated in carboxylated silica shells is estimated with a combined relative standard uncertainty of 2.7%. Two reference methods provided comparable concentration values. A wider applicability is tested by imaging ∼80 nm Nile red-doped polystyrene and ∼90 nm silver nanoparticles. Theoretical limits of EVA such as the limit of detection, limit of quantification, and optimal working range are discussed.
Collapse
Affiliation(s)
- Antonín Hlaváček
- Institute
of Analytical Chemistry of the Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Kateřina Uhrová
- Institute
of Analytical Chemistry of the Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Julie Weisová
- Institute
of Analytical Chemistry of the Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Hana Brožková
- Institute
of Analytical Chemistry of the Czech Academy of Sciences, Brno 602 00, Czech Republic
- Department
of Chemistry, Faculty of Science, Masaryk
University, Brno 602 00, Czech Republic
| | - Naděžda Pizúrová
- Institute
of Physics of Materials of the Czech Academy of Sciences, Brno 616 00, Czech Republic
| |
Collapse
|
3
|
Fernandes DA. Multifunctional gold nanoparticles for cancer theranostics. 3 Biotech 2024; 14:267. [PMID: 39416669 PMCID: PMC11473483 DOI: 10.1007/s13205-024-04086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
The diagnosis and treatment of cancer can often be challenging requiring more attractive options. Some types of cancers are more aggressive than others and symptoms for many cancers are subtle, especially in the early stages. Nanotechnology provides high sensitivity, specificity and multimodal capability for cancer detection, treatment and monitoring. In particular, metal nanoparticles (NPs) such as gold nanoparticles (AuNPs) are attractive nanosystems for researchers interested in bioimaging and therapy. The size, shape and surface of AuNPs can be modified for improving targeting and accumulation in cancer cells, for example through introduction of ligands and surface charge. The interactions of AuNPs with electromagnetic radiation (e.g., visible-near-infrared, X-rays) can be used for photothermal therapy and radiation therapy, through heat generated from light absorption and emission of Auger electrons, respectively. The subsequent expansion and high X-ray attenuation from AuNPs can be used for enhancing contrast for tumor detection (e.g., using photoacoustic, computed tomography imaging). Multi-functionality can be further extended through covalent/non-covalent functionalization, for loading additional imaging/therapeutic molecules for combination therapy and multimodal imaging. In order to cover the important aspects for designing and using AuNPs for cancer theranostics, this review focuses on the synthesis, functionalization and characterization methods that are important for AuNPs, and presents their unique properties and different applications in cancer theranostics.
Collapse
|
4
|
Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Toward a Better Understanding of Metal Nanoparticles, a Novel Strategy from Eucalyptus Plants. PLANTS 2021; 10:plants10050929. [PMID: 34066925 PMCID: PMC8148548 DOI: 10.3390/plants10050929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Nanotechnology is a promising tool that has opened the doors of improvement to the quality of human's lives through its potential in numerous technological aspects. Green chemistry of nanoscale materials (1-100 nm) is as an effective and sustainable strategy to manufacture homogeneous nanoparticles (NPs) with unique properties, thus making the synthesis of green NPs, especially metal nanoparticles (MNPs), the scientist's core theme. Researchers have tested different organisms to manufacture MNPs and the results of experiments confirmed that plants tend to be the ideal candidate amongst all entities and are suitable to synthesize a wide variety of MNPs. Natural and cultivated Eucalyptus forests are among woody plants used for landscape beautification and as forest products. The present review has been written to reflect the efficacious role of Eucalyptus in the synthesis of MNPs. To better understand this, the route of extracting MNPs from plants, in general, and Eucalyptus, in particular, are discussed. Furthermore, the crucial factors influencing the process of MNP synthesis from Eucalyptus as well as their characterization and recent applications are highlighted. Information gathered in this review is useful to build a basis for new prospective research ideas on how to exploit this woody species in the production of MNPs. Nevertheless, there is a necessity to feed the scientific field with further investigations on wider applications of Eucalyptus-derived MNPs.
Collapse
|
6
|
A Novel Microchip Technique for Quickly Identifying Nanogranules in an Aqueous Solution by Transmission Electron Microscopy: Imaging of Platelet Granules. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultrastructural observation of biological specimens or nanogranules usually requires the use of electron microscopy. Electron microscopy takes a lot of time, requires many steps, and uses many chemicals, which may affect the native state of biological specimens. A novel microchip (K-kit) was used as a specimen kit for in situ imaging of human platelet granules in an aqueous solution using a transmission electron microscope. This microchip enabled us to observe the native human platelet granules very quickly and easily. The protocols included blood collection, platelet purification, platelet granule isolation, sample loading into this microchip, and then observation by a transmission electron microscope. In addition, these granules could still remain in aqueous solution, and only a very small amount of the sample was required for observation and analysis. We used this microchip to identify the native platelet granules by negative staining. Furthermore, we used this microchip to perform immunoelectron microscopy and successfully label α-granules of platelets with the anti-P-selectin antibody. These results demonstrate that the novel microchip can provide researchers with faster and better choices when using a transmission electron microscope to examine nanogranules of biological specimens in aqueous conditions.
Collapse
|
7
|
Cai J, Luo S, Lv X, Deng Y, Huang H, Zhao B, Zhang Q, Li G. Formulation of injectable glycyrrhizic acid-hydroxycamptothecin micelles as new generation of DNA topoisomerase I inhibitor for enhanced antitumor activity. Int J Pharm 2019; 571:118693. [PMID: 31525442 DOI: 10.1016/j.ijpharm.2019.118693] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
To develop a new drug delivery system is one of the useful approaches to break through the limitation of hydroxycamptothecin (HCPT), a typical DNA topoisomerase I (Topo I) inhibitor in clinical appliance. Injectable glycyrrhizic acid-hydroxycamptothecin (GL-HCPT) micelles that were able to dramatically improve the solubility and stability of HCPT were prepared through self-assembly process and evaluated both in vitro and in vivo. With a mean particle size (PS) of 105.7 ± 9.7 nm and a drug loading (DL) of 9.0 ± 1.5%, GL-HCPT micelles were rapidly internalized by HepG2 cells after 1 h, significantly increasing the intracellular accumulation of HCPT. Compared with the current used HCPT injection and HCPT/GL physical mixture, GL-HCPT micelles showed enhanced antitumor activity against liver cancer cells (HepG2 and Huh7) as well as a superior suppression on the tumor growth of HepG2 tumor bearing mice. Interestingly, GL-HCPT micelles gathered in liver and simultaneously reduced the drug accumulation in normal tissues, thereby exhibiting minimal cytotoxicity to human normal liver cells (LO2). Therefore, we offered a convenient and cost-effective strategy to construct an intravenous drug delivery system (GL-HCPT micelles) as new generation of DNA Topo I inhibitor for enhanced cancer chemotherapy.
Collapse
Affiliation(s)
- Jieying Cai
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shiwen Luo
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xueli Lv
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingguang Deng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongyuan Huang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qing Zhang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guofeng Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Key Laboratory of new drug screening, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Montoro Bustos AR, Pettibone JM, Murphy KE. Characterization of Nanoparticles: Advances. NANOPARTICLE DESIGN AND CHARACTERIZATION FOR CATALYTIC APPLICATIONS IN SUSTAINABLE CHEMISTRY 2019. [DOI: 10.1039/9781788016292-00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Over the past two decades, the unique properties of engineered nanoparticles (NPs) have placed them at the centre of revolutionary advancements in many sectors of science, technology and commerce. Multi-technique and multi-disciplinary analytical approaches are required to identify, quantify, and characterize the chemical composition, size and size distribution, surface properties and the number and concentration of NPs. In this chapter, an overview of the recent advances in the characterization of NPs will be presented.
Collapse
Affiliation(s)
- A. R. Montoro Bustos
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| | - J. M. Pettibone
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| | - K. E. Murphy
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| |
Collapse
|
9
|
A fast and efficient stabilization of firefly luciferase on MIL-53(Al) via surface adsorption mechanism. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03748-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Akhatova F, Danilushkina A, Kuku G, Saricam M, Culha M, Fakhrullin R. Simultaneous Intracellular Detection of Plasmonic and Non-Plasmonic Nanoparticles Using Dark-Field Hyperspectral Microscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180198] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Farida Akhatova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| | - Anna Danilushkina
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| | - Gamze Kuku
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Melike Saricam
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Mustafa Culha
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| |
Collapse
|
11
|
Rajeshkumar S, Bharath L. Mechanism of plant-mediated synthesis of silver nanoparticles – A review on biomolecules involved, characterisation and antibacterial activity. Chem Biol Interact 2017. [DOI: 10.1016/j.cbi.2017.06.019] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Gholizadeh S, Shehata Draz M, Zarghooni M, Sanati-Nezhad A, Ghavami S, Shafiee H, Akbari M. Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: Current status and future directions. Biosens Bioelectron 2017; 91:588-605. [PMID: 28088752 PMCID: PMC5323331 DOI: 10.1016/j.bios.2016.12.062] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/14/2016] [Accepted: 12/29/2016] [Indexed: 01/24/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived vesicles present in body fluids that play an essential role in various cellular processes, such as intercellular communication, inflammation, cellular homeostasis, survival, transport, and regeneration. Their isolation and analysis from body fluids have a great clinical potential to provide information on a variety of disease states such as cancer, cardiovascular complications and inflammatory disorders. Despite increasing scientific and clinical interest in this field, there are still no standardized procedures available for the purification, detection, and characterization of EVs. Advances in microfluidics allow for chemical sampling with increasingly high spatial resolution and under precise manipulation down to single molecule level. In this review, our objective is to give a brief overview on the working principle and examples of the isolation and detection methods with the potential to be used for extracellular vesicles. This review will also highlight the integrated on-chip systems for isolation and characterization of EVs.
Collapse
Affiliation(s)
- Shima Gholizadeh
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mohamed Shehata Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Maryam Zarghooni
- Department of Laboratory Medicine and Pathobiology, University of Toronto Alumni, Toronto, Canada
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering, Center for Bioengineering Research and Education, Calgary, Alberta, Canada
| | - Saeid Ghavami
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto Alumni, Toronto, Canada; Department of Mechanical and Manufacturing Engineering, Center for Bioengineering Research and Education, Calgary, Alberta, Canada; Department of Human Anatomy& Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Canada; Health Research Policy Centre, Shiraz University of Medical Science, Shiraz, Iran
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC, Canada V8P 2C5; Center for Biomedical Research, University of Victoria, Victoria, Canada; Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, Canada.
| |
Collapse
|
13
|
Chen NT, Souris JS, Cheng SH, Chu CH, Wang YC, Konda V, Dougherty U, Bissonnette M, Mou CY, Chen CT, Lo LW. Lectin-functionalized mesoporous silica nanoparticles for endoscopic detection of premalignant colonic lesions. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1941-1952. [PMID: 28363770 DOI: 10.1016/j.nano.2017.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-deaths worldwide. Methods for the early in situ detection of colorectal adenomatous polyps and their precursors - prior to their malignancy transformation into CRC - are urgently needed. Unfortunately at present, the primary diagnostic method, colonoscopy, can only detect polyps and carcinomas by shape/morphology; with sessile polyps more likely to go unnoticed than polypoid lesions. Here we describe our development of polyp-targeting, fluorescently-labeled mesoporous silica nanoparticles (MSNs) that serve as targeted endoscopic contrast agents for the early detection of colorectal polyps and cancer. In vitro cell studies, ex vivo histopathological analysis, and in vivo colonoscopy and endoscopy of murine colorectal cancer models, demonstrate significant binding specificity of our nanoconstructs to pathological lesions via targeting aberrant α-L-fucose expression. Our findings strongly suggest that lectin-functionalized fluorescent MSNs could serve as a promising endoscopic contrast agent for in situ diagnostic imaging of premalignant colonic lesions.
Collapse
Affiliation(s)
- Nai-Tzu Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan; Department of Chemistry, National Taiwan University Taipei, Taiwan; Department of Radiology, The University of Chicago, Chicago, IL, USA; Institute of New Drug Development, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Jeffrey S Souris
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Shih-Hsun Cheng
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan; Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Chia-Hui Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan
| | - Yu-Chao Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan
| | - Vani Konda
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University Taipei, Taiwan
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan.
| |
Collapse
|
14
|
Elci SG, Yan B, Kim ST, Saha K, Jiang Y, Klemmer GA, Moyano DF, Tonga GY, Rotello VM, Vachet RW. Quantitative imaging of 2 nm monolayer-protected gold nanoparticle distributions in tissues using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). Analyst 2016; 141:2418-25. [PMID: 26979648 DOI: 10.1039/c6an00123h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Functionalized gold nanoparticles (AuNPs) have unique properties that make them important biomedical materials. Optimal use of these materials, though, requires an understanding of their fate in vivo. Here we describe the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to image the biodistributions of AuNPs in tissues from mice intravenously injected with AuNPs. We demonstrate for the first time that the distributions of very small (∼2 nm core) monolayer-protected AuNPs can be imaged in animal tissues at concentrations in the low parts-per-billion range. Moreover, the LA-ICP-MS images reveal that the monolayer coatings on the injected AuNPs influence their distributions, suggesting that the AuNPs remain intact in vivo and their surface chemistry influences how they interact with different organs. We also demonstrate that quantitative images of the AuNPs can be generated when the appropriate tissue homogenates are chosen for matrix matching. Overall, these results demonstrate the utility of LA-ICP-MS for tracking the fate of biomedically-relevant AuNPs in vivo, facilitating the design of improved AuNP-based therapeutics.
Collapse
Affiliation(s)
- S Gokhan Elci
- Deparment of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hong YJ, Tai LA, Chen HJ, Chang P, Yang CS, Yew TR. Stable water layers on solid surfaces. Phys Chem Chem Phys 2016; 18:5905-9. [DOI: 10.1039/c5cp07866k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A water layer adhered to a microchannel wall is 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique.
Collapse
Affiliation(s)
- Ying-Jhan Hong
- Department of Materials Science and Engineering
- National Tsing-Hua University
- Kuang-Fu Road Hsinchu
- Taiwan
| | - Lin-Ai Tai
- Bio Materials Analysis Technology
- Hsinchu County
- Taiwan
| | - Hung-Jen Chen
- Bio Materials Analysis Technology
- Hsinchu County
- Taiwan
| | - Pin Chang
- Bio Materials Analysis Technology
- Hsinchu County
- Taiwan
| | | | - Tri-Rung Yew
- Department of Materials Science and Engineering
- National Tsing-Hua University
- Kuang-Fu Road Hsinchu
- Taiwan
| |
Collapse
|
16
|
Lai SE, Hong YJ, Chen YT, Kang YT, Chang P, Yew TR. Direct-Writing of Cu Nano-Patterns with an Electron Beam. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:1639-1643. [PMID: 26381450 DOI: 10.1017/s1431927615015111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate direct electron beam writing of a nano-scale Cu pattern on a surface with a thin aqueous layer of CuSO4 solution. Electron beams are highly maneuverable down to nano-scales. Aqueous solutions facilitate a plentiful metal ion supply for practical industrial applications, which may require continued reliable writing of sophisticated patterns. A thin aqueous layer on a surface helps to confine the writing on the surface. For this demonstration, liquid sample holder (K-kit) for transmission electron microscope (TEM) was employed to form a sealed space in a TEM. The aqueous CuSO4 solution inside the sample holder was allowed to partially dry until a uniform thin layer was left on the surface. The electron beam thus reduced Cu ions in the solution to form the desired patterns. Furthermore, the influence of e-beam exposure time and CuSO4(aq) concentration on the Cu reduction was studied in this work. Two growth stages of Cu were shown in the plot of Cu thickness versus e-beam exposure time. The measured Cu reduction rate was found to be proportional to the CuSO4(aq) concentration.
Collapse
Affiliation(s)
- Shih-En Lai
- Department of Materials Science and Engineering,National Tsing-Hua University,Hsinchu 30013,Taiwan,R.O.C
| | - Ying-Jhan Hong
- Department of Materials Science and Engineering,National Tsing-Hua University,Hsinchu 30013,Taiwan,R.O.C
| | - Yu-Ting Chen
- Department of Materials Science and Engineering,National Tsing-Hua University,Hsinchu 30013,Taiwan,R.O.C
| | - Yu-Ting Kang
- Department of Materials Science and Engineering,National Tsing-Hua University,Hsinchu 30013,Taiwan,R.O.C
| | - Pin Chang
- Department of Materials Science and Engineering,National Tsing-Hua University,Hsinchu 30013,Taiwan,R.O.C
| | - Tri-Rung Yew
- Department of Materials Science and Engineering,National Tsing-Hua University,Hsinchu 30013,Taiwan,R.O.C
| |
Collapse
|
17
|
Hong YJ, Tai LA, Chen HJ, Yang CS, Chang P, Yew TR. B11-P-03Interactions of TEM electron beam with liquid and nanoparticles in the liquid. Microscopy (Oxf) 2015. [DOI: 10.1093/jmicro/dfv207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Lu PJ, Cheng WL, Huang SC, Chen YP, Chou HK, Cheng HF. Characterizing titanium dioxide and zinc oxide nanoparticles in sunscreen spray. Int J Cosmet Sci 2015; 37:620-6. [DOI: 10.1111/ics.12239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/22/2015] [Indexed: 01/16/2023]
Affiliation(s)
- P. J. Lu
- Food and Drug Administration; Ministry of Health and Welfare; No.161-2, Kunyang St, Nangang District Taipei City 115-61 Taiwan
| | - W. L. Cheng
- Food and Drug Administration; Ministry of Health and Welfare; No.161-2, Kunyang St, Nangang District Taipei City 115-61 Taiwan
| | - S. C. Huang
- Food and Drug Administration; Ministry of Health and Welfare; No.161-2, Kunyang St, Nangang District Taipei City 115-61 Taiwan
| | - Y. P. Chen
- Food and Drug Administration; Ministry of Health and Welfare; No.161-2, Kunyang St, Nangang District Taipei City 115-61 Taiwan
| | - H. K. Chou
- Food and Drug Administration; Ministry of Health and Welfare; No.161-2, Kunyang St, Nangang District Taipei City 115-61 Taiwan
| | - H. F. Cheng
- Food and Drug Administration; Ministry of Health and Welfare; No.161-2, Kunyang St, Nangang District Taipei City 115-61 Taiwan
| |
Collapse
|
19
|
Shang J, Gao X. Nanoparticle counting: towards accurate determination of the molar concentration. Chem Soc Rev 2014; 43:7267-78. [PMID: 25099190 DOI: 10.1039/c4cs00128a] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Innovations in nanotechnology have brought tremendous opportunities for the advancement of many research frontiers, ranging from electronics, photonics, energy, to medicine. To maximize the benefits of nano-scaled materials in different devices and systems, precise control of their concentration is a prerequisite. While concentrations of nanoparticles have been provided in other forms (e.g., mass), accurate determination of molar concentration, arguably the most useful one for chemical reactions and applications, has been a major challenge (especially for nanoparticles smaller than 30 nm). Towards this significant yet chronic problem, a variety of strategies are currently under development. Most of these strategies are applicable to a specialized group of nanoparticles due to their restrictions on the composition and size range of nanoparticles. As research and uses of nanomaterials are being explored in an unprecedented speed, it is necessary to develop universal strategies that are easy to use and are compatible with nanoparticles of different sizes, compositions, and shapes. This review outlines the theories and applications of current strategies to measure nanoparticle molar concentration, discusses the advantages and limitations of these methods, and provides insights into future directions.
Collapse
Affiliation(s)
- Jing Shang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
20
|
Chen YT, Wang CY, Hong YJ, Kang YT, Lai SE, Chang P, Yew TR. Electron beam manipulation of gold nanoparticles external to the beam. RSC Adv 2014. [DOI: 10.1039/c4ra03350g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Stoll JD, Kolmakov A. Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases. NANOTECHNOLOGY 2012; 23:505704. [PMID: 23165114 DOI: 10.1088/0957-4484/23/50/505704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Due to its ultrahigh electron transmissivity in a wide electron energy range, molecular impermeability, high electrical conductivity and excellent mechanical stiffness, suspended graphene membranes appear to be a nearly ideal window material for in situ (in vivo) environmental electron microscopy of nano- and mesoscopic objects (including bio-medical samples) immersed in liquids and/or in dense gaseous media. In this paper, taking advantage of a small modification of the graphene transfer protocol onto metallic and SiN supporting orifices, reusable environmental cells with exchangeable graphene windows have been designed. Using colloidal gold nanoparticles (50 nm) dispersed in water as model objects for scanning electron microscopy in liquids as proof of concept, different conditions for imaging through the graphene membrane were tested. Limiting factors for electron microscopy in liquids, such as electron beam induced water radiolysis and damage of the graphene membrane at high electron doses, are discussed.
Collapse
Affiliation(s)
- Joshua D Stoll
- Department of Physics, Southern Illinois University, Carbondale, IL 62901, USA
| | | |
Collapse
|