1
|
Chen L, Li Q, Qu G, Zhang J, Yang Z, Hu Y, Yang L. In-situ fixation (ISF): A rapid, reusable, and high-throughput nucleic acid extraction method for plant molecular analysis. Biosens Bioelectron 2025; 278:117344. [PMID: 40090259 DOI: 10.1016/j.bios.2025.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
Rapid, sensitive, and high-throughput nucleic acid testing (NAT) is crucial for diverse applications in plant breeding and crop protection, including genotyping, transgenic detection, and pathogen diagnosis. However, efficient plant DNA/RNA extraction methods suitable for point-of-care testing remain a significant challenge due to the complex plant cell composition. Here, we present a novel in-situ fixation (ISF) method that eliminates the need for sample grinding, water bath, centrifugation, and pipetting, enabling rapid (6 min) and high-throughput (96 samples) nucleic acid extraction from plant leaves. The ISF method fixes DNA/RNA within the cells, allowing reuse of the extraction reagents without cross-contamination. The extracted nucleic acids are suitable for various NAT techniques, including PCR, RT-PCR, qPCR, and LAMP. We demonstrate the integration of ISF with qPCR and LAMP for rapid detection of genetically modified content and plant pathogens. Furthermore, an ISF-based high-throughput device was developed for efficient genotyping of rice hybrid offspring. The ISF method's simplicity, reusability, and compatibility with field-deployable isothermal amplification offer a promising solution for on-site, rapid, and cost-effective plant molecular analysis.
Collapse
Affiliation(s)
- Lu Chen
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, PR China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qiang Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Guorun Qu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jiao Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ziqi Yang
- Shanghai Jiao Tong University Affiliated High School Minhang Branch, Shanghai, 200240, PR China
| | - Yuan Hu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Litao Yang
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, PR China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
2
|
Islam MA, Giorno R, Nestorova GG. Aptamer-Functionalized Platform for Selective Bacterial Isolation and Rapid RNA Purification Using Capture Pins. SENSORS (BASEL, SWITZERLAND) 2025; 25:1774. [PMID: 40292888 PMCID: PMC11945596 DOI: 10.3390/s25061774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025]
Abstract
Efficient bacterial lysis and RNA purification are essential for molecular diagnostics and biosensing applications. This study presents a piezoelectric platform integrated with gold-plated RNA capture pins (RCPs) functionalized with synthetic oligonucleotides to extract and enrich E. coli 16S ribosomal RNA (rRNA). The 3D-printed device enables selective bacterial capture using E. coli-specific aptamers and incorporates a piezoelectric transducer operating at 60 kHz to facilitate bacterial cell wall disruption. The platform demonstrated high specificity for E. coli over B. cereus, confirming aptamer selectivity. E. coli viability assessment demonstrated that positioning the piezoelectric plate in contact with the bacterial suspension significantly improved the bacterial lysis, reducing viability to 33.68% after 15 min. RNA quantification confirmed an increase in total RNA released by lysed E. coli, resulting in 10,913 ng after 15 min, compared to 4310 ng obtained via conventional sonication. RCP-extracted RNA has a threefold enrichment of 16S rRNA relative to 23S rRNA. RT-qPCR analysis indicated that the RCPs recovered, on average, 2.3 ng of 16S RNA per RCP from bacterial suspensions and 0.1 ng from aptamer-functionalized surfaces. This integrated system offers a rapid, selective, and label-free approach for bacterial lysis, RNA extraction, and enrichment for specific types of RNA with potential applications in clinical diagnostics and microbial biosensing.
Collapse
Affiliation(s)
- Md Aminul Islam
- Molecular Sciences and Nanotechnology, Louisiana Tech University, Ruston, LA 71272, USA;
| | - Rebecca Giorno
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA;
| | - Gergana G. Nestorova
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA;
| |
Collapse
|
3
|
Wang Y, Cheng P, Chen T, Li M, Guo Q, Cheng Q, Wang D, Liu K. Under Water Superelastic Porous Nanofibrous Sponge for Efficient RNA Separation and Purification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52867-52877. [PMID: 39312750 DOI: 10.1021/acsami.4c10047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Developing monolithic materials for chromatography columns with a novel interconnected porous structure is vital for the enhancement of the separation efficiency of RNA purification processes. Herein, a porous nanofibrous sponge (PNFS) is constructed by freeze molding and freeze-drying a nanofiber dispersion with ethylene vinyl alcohol copolymer nanofibers as the skeleton, chitosan (CS) and polyethylenimine (PEI) as the binders, and glutaraldehyde (GA) as the crosslinking agent. The results show that when the CS content of the dispersion is 1.5 wt %, PNFS demonstrates a high static adsorption capacity of 406.5 mg/g (30.7 mg/m2) and a dynamic adsorption capacity of 382.6 mg/g (28.9 mg/m2) at a flow rate of 1 mm/min. Moreover, PNFS shows a high specific adsorption performance toward RNA in the presence of bovine serum albumin, lecithin, or DNA by adjusting the solution pH value and the method of gradient elution. Besides, PNFS presents exceptional performance in the rapid separation of RNA from HT22 cells without degradation. This result can be attributed to optimized morphology, pore structure, and comprehensive performance of PNFS, benefiting from the synergistic effect of the highly oriented porous structure and CS-PEI interaction derived from the high-density adsorption ligands on the channel walls of PNFS. This work provided an efficient strategy to handle the permeability/adsorptivity trade-off for ion-exchange chromatographic materials.
Collapse
Affiliation(s)
- Yuxi Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Pan Cheng
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Tiange Chen
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Mingyue Li
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Qihao Guo
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Qin Cheng
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Ke Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
4
|
Surappa S, Multani P, Parlatan U, Sinawang PD, Kaifi J, Akin D, Demirci U. Integrated "lab-on-a-chip" microfluidic systems for isolation, enrichment, and analysis of cancer biomarkers. LAB ON A CHIP 2023; 23:2942-2958. [PMID: 37314731 PMCID: PMC10834032 DOI: 10.1039/d2lc01076c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liquid biopsy has garnered considerable attention as a complementary clinical tool for the early detection, molecular characterization and monitoring of cancer over the past decade. In contrast to traditional solid biopsy techniques, liquid biopsy offers a less invasive and safer alternative for routine cancer screening. Recent advances in microfluidic technologies have enabled handling of liquid biopsy-derived biomarkers with high sensitivity, throughput, and convenience. The integration of these multi-functional microfluidic technologies into a 'lab-on-a-chip' offers a powerful solution for processing and analyzing samples on a single platform, thereby reducing the complexity, bio-analyte loss and cross-contamination associated with multiple handling and transfer steps in more conventional benchtop workflows. This review critically addresses recent developments in integrated microfluidic technologies for cancer detection, highlighting isolation, enrichment, and analysis strategies for three important sub-types of cancer biomarkers: circulating tumor cells, circulating tumor DNA and exosomes. We first discuss the unique characteristics and advantages of the various lab-on-a-chip technologies developed to operate on each biomarker subtype. This is then followed by a discussion on the challenges and opportunities in the field of integrated systems for cancer detection. Ultimately, integrated microfluidic platforms form the core of a new class of point-of-care diagnostic tools by virtue of their ease-of-operation, portability and high sensitivity. Widespread availability of such tools could potentially result in more frequent and convenient screening for early signs of cancer at clinical labs or primary care offices.
Collapse
Affiliation(s)
- Sushruta Surappa
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Priyanka Multani
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Ugur Parlatan
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Prima Dewi Sinawang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jussuf Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
5
|
Gao D, Ma Z, Jiang Y. Recent advances in microfluidic devices for foodborne pathogens detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Xie Y, Li H, Chen F, Udayakumar S, Arora K, Chen H, Lan Y, Hu Q, Zhou X, Guo X, Xiu L, Yin K. Clustered Regularly Interspaced short palindromic repeats-Based Microfluidic System in Infectious Diseases Diagnosis: Current Status, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204172. [PMID: 36257813 PMCID: PMC9731715 DOI: 10.1002/advs.202204172] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Indexed: 06/02/2023]
Abstract
Mitigating the spread of global infectious diseases requires rapid and accurate diagnostic tools. Conventional diagnostic techniques for infectious diseases typically require sophisticated equipment and are time consuming. Emerging clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) detection systems have shown remarkable potential as next-generation diagnostic tools to achieve rapid, sensitive, specific, and field-deployable diagnoses of infectious diseases, based on state-of-the-art microfluidic platforms. Therefore, a review of recent advances in CRISPR-based microfluidic systems for infectious diseases diagnosis is urgently required. This review highlights the mechanisms of CRISPR/Cas biosensing and cutting-edge microfluidic devices including paper, digital, and integrated wearable platforms. Strategies to simplify sample pretreatment, improve diagnostic performance, and achieve integrated detection are discussed. Current challenges and future perspectives contributing to the development of more effective CRISPR-based microfluidic diagnostic systems are also proposed.
Collapse
Affiliation(s)
- Yi Xie
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Huimin Li
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Fumin Chen
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Srisruthi Udayakumar
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Khyati Arora
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Hui Chen
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Yang Lan
- Centre for Nature‐Inspired EngineeringDepartment of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Qinqin Hu
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Xiaonong Zhou
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Xiaokui Guo
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Leshan Xiu
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Kun Yin
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| |
Collapse
|
7
|
Sarcina L, Macchia E, Loconsole G, D'Attoma G, Bollella P, Catacchio M, Leonetti F, Di Franco C, Elicio V, Scamarcio G, Palazzo G, Boscia D, Saldarelli P, Torsi L. Fast and Reliable Electronic Assay of a Xylella fastidiosa Single Bacterium in Infected Plants Sap. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203900. [PMID: 36031404 PMCID: PMC9596825 DOI: 10.1002/advs.202203900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Pathogens ultra-sensitive detection is vital for early diagnosis and provision of restraining actions and/or treatments. Among plant pathogens, Xylella fastidiosa is among the most threatening as it can infect hundreds of plant species worldwide with consequences on agriculture and the environment. An electrolyte-gated transistor is here demonstrated to detect X. fastidiosa at a limit-of-quantification (LOQ) of 2 ± 1 bacteria in 0.1 mL (20 colony-forming-unit per mL). The assay is carried out with a millimeter-wide gate functionalized with Xylella-capturing antibodies directly in saps recovered from naturally infected plants. The proposed platform is benchmarked against the quantitave polymerase chain reaction (qPCR) gold standard, whose LOQ turns out to be at least one order of magnitude higher. Furthermore, the assay selectivity is proven against the Paraburkholderia phytofirmans bacterium (negative-control experiment). The proposed label-free, fast (30 min), and precise (false-negatives, false-positives below 1%) electronic assay, lays the ground for an ultra-high performing immunometric point-of-care platform potentially enabling large-scale screening of asymptomatic plants.
Collapse
Affiliation(s)
- Lucia Sarcina
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia – Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | | | - Giusy D'Attoma
- Institute for Sustainable Plant Protection CNRBari70125Italy
| | - Paolo Bollella
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Michele Catacchio
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia – Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Cinzia Di Franco
- Istituto di Fotonica e Nanotecnologie CNRc/o Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
| | - Vito Elicio
- Agritest SrlTecnopolisCasamassimaBA70010Italy
| | - Gaetano Scamarcio
- Istituto di Fotonica e Nanotecnologie CNRc/o Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
| | - Gerardo Palazzo
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Donato Boscia
- Institute for Sustainable Plant Protection CNRBari70125Italy
| | | | - Luisa Torsi
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| |
Collapse
|
8
|
|
9
|
Keller S, Teora SP, Boujemaa M, Wilson DA. Exploring New Horizons in Liquid Compartmentalization via Microfluidics. Biomacromolecules 2021; 22:1759-1769. [PMID: 33835788 PMCID: PMC8154250 DOI: 10.1021/acs.biomac.0c01796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/26/2021] [Indexed: 11/29/2022]
Abstract
Spatial organization of cellular processes is crucial to efficiently regulate life's essential reactions. Nature does this by compartmentalization, either using membranes, such as the cell and nuclear membrane, or by liquid-like droplets formed by aqueous liquid-liquid phase separation. Aqueous liquid-liquid phase separation can be divided in two different phenomena, associative and segregative phase separation, of which both are studied for their membraneless compartmentalization abilities. For centuries, segregative phase separation has been used for the extraction and purification of biomolecules. With the emergence of microfluidic techniques, further exciting possibilities were explored because of their ability to fine-tune phase separation within emulsions of various compositions and morphologies and achieve one of the simplest forms of compartmentalization. Lately, interest in aqueous liquid-liquid phase separation has been revived due to the discovery of membraneless phases within the cell. In this Perspective we focus on segregative aqueous phase separation, discuss the theory of this interesting phenomenon, and give an overview of the evolution of aqueous phase separation in microfluidics.
Collapse
Affiliation(s)
| | | | | | - Daniela A. Wilson
- Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Carvalho Â, Ferreira G, Seixas D, Guimarães-Teixeira C, Henrique R, Monteiro FJ, Jerónimo C. Emerging Lab-on-a-Chip Approaches for Liquid Biopsy in Lung Cancer: Status in CTCs and ctDNA Research and Clinical Validation. Cancers (Basel) 2021; 13:cancers13092101. [PMID: 33925308 PMCID: PMC8123575 DOI: 10.3390/cancers13092101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Lung cancer (LCa) remains the leading cause of cancer-related mortality worldwide, with late diagnosis and limited therapeutic approaches still constraining patient’s outcome. In recent years, liquid biopsies have significantly improved the disease characterization and brought new insights into LCa diagnosis and management. The integration of microfluidic devices in liquid biopsies have shown promising results regarding circulating biomarkers isolation and analysis and these tools are expected to establish automatized and standardized results for liquid biopsies in the near future. Herein, we review the status of lab-on-a-chip approaches for liquid biopsies in LCa and highlight their current applications for circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) research and clinical validation studies. Abstract Despite the intensive efforts dedicated to cancer diagnosis and treatment, lung cancer (LCa) remains the leading cause of cancer-related mortality, worldwide. The poor survival rate among lung cancer patients commonly results from diagnosis at late-stage, limitations in characterizing tumor heterogeneity and the lack of non-invasive tools for detection of residual disease and early recurrence. Henceforth, research on liquid biopsies has been increasingly devoted to overcoming these major limitations and improving management of LCa patients. Liquid biopsy is an emerging field that has evolved significantly in recent years due its minimally invasive nature and potential to assess various disease biomarkers. Several strategies for characterization of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have been developed. With the aim of standardizing diagnostic and follow-up practices, microfluidic devices have been introduced to improve biomarkers isolation efficiency and specificity. Nonetheless, implementation of lab-on-a-chip platforms in clinical practice may face some challenges, considering its recent application to liquid biopsies. In this review, recent advances and strategies for the use of liquid biopsies in LCa management are discussed, focusing on high-throughput microfluidic devices applied for CTCs and ctDNA isolation and detection, current clinical validation studies and potential clinical utility.
Collapse
Affiliation(s)
- Ângela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Correspondence: ; Tel.: +351-226-074-900
| | - Gabriela Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
| | - Duarte Seixas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Catarina Guimarães-Teixeira
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Fernando J. Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Carmen Jerónimo
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
11
|
Clark KD, Philip MC, Tan Y, Sweedler JV. Biphasic Liquid Microjunction Extraction for Profiling Neuronal RNA Modifications by Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2020; 92:12647-12655. [PMID: 32786436 PMCID: PMC7496823 DOI: 10.1021/acs.analchem.0c02830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RNA modifications are emerging as critical players in the spatiotemporal regulation of gene expression. Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) enables the simultaneous quantification of numerous enzymatically modified RNAs in a biological sample, conventional RNA extraction and enzymatic digestion protocols that are employed prior to analysis have precluded the application of this technique for small-volume samples. In this study, a biphasic liquid microjunction (LMJ) extraction system using coaxial capillaries that direct and aspirate extraction solvents onto a ∼350 μm diameter sample spot was developed and applied for the extraction of RNA from individual cell clusters in the central nervous system of the marine mollusk Aplysia californica. To maximize RNA recoveries, optimized extraction solvents consisting of 10% methanol and chloroform were evaluated under dynamic and static extraction conditions. An MS-compatible RNA digestion buffer was developed to minimize the number of sample-transfer steps and facilitate the direct enzymatic digestion of extracted RNA within the sample collection tube. Compared to RNA extraction using a conventional phenol-chloroform method, the LMJ-based method provided a 3-fold greater coverage of the neuronal epitranscriptome for similar amounts of tissues and also produced mRNA of sufficient purity for reverse transcription polymerase chain reaction amplification. Using this approach, the expression of RNA-modifying enzymes in a given neuronal cell cluster can be characterized and simultaneously correlated with the LC-MS/MS analysis of RNA modifications within the same subset of neurons.
Collapse
Affiliation(s)
- Kevin D. Clark
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Marina C. Philip
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yanqi Tan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Padmanabhan S, Han JY, Nanayankkara I, Tran K, Ho P, Mesfin N, White I, DeVoe DL. Enhanced sample filling and discretization in thermoplastic 2D microwell arrays using asymmetric contact angles. BIOMICROFLUIDICS 2020; 14:014113. [PMID: 32095199 PMCID: PMC7028432 DOI: 10.1063/1.5126938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/09/2020] [Indexed: 05/04/2023]
Abstract
Sample filling and discretization within thermoplastic 2D microwell arrays is investigated toward the development of low cost disposable microfluidics for passive sample discretization. By using a high level of contact angle asymmetry between the filling channel and microwell surfaces, a significant increase in the range of well geometries that can be successfully filled is revealed. The performance of various array designs is characterized numerically and experimentally to assess the impact of contact angle asymmetry and device geometry on sample filling and discretization, resulting in guidelines to ensure robust microwell filling and sample isolation over a wide range of well dimensions. Using the developed design rules, reliable and bubble-free sample filling and discretization is achieved in designs with critical dimensions ranging from 20 μm to 800 μm. The resulting devices are demonstrated for discretized nucleic acid amplification by performing loop-mediated isothermal amplification for the detection of the mecA gene associated with methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- S. Padmanabhan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - J. Y. Han
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - I. Nanayankkara
- Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - K. Tran
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - P. Ho
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - N. Mesfin
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - I. White
- Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - D. L. DeVoe
- Author to whom correspondence should be addressed:. Tel.: +1-301-405-8125
| |
Collapse
|
13
|
Xu Z, Qiao Y, Tu J. Microfluidic Technologies for cfDNA Isolation and Analysis. MICROMACHINES 2019; 10:mi10100672. [PMID: 31623361 PMCID: PMC6843514 DOI: 10.3390/mi10100672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022]
Abstract
Cell-free DNA (cfDNA), which promotes precision oncology, has received extensive concern because of its abilities to inform genomic mutations, tumor burden and drug resistance. The absolute quantification of cfDNA concentration has been proved as an independent prognostic biomarker of overall survival. However, the properties of low abundance and high fragmentation hinder the isolation and further analysis of cfDNA. Microfluidic technologies and lab-on-a-chip (LOC) devices provide an opportunity to deal with cfDNA sample at a micrometer scale, which reduces required sample volume and makes rapid isolation possible. Microfluidic platform also allow for high degree of automation and high-throughput screening without liquid transfer, where rapid and precise examination and quantification could be performed at the same time. Microfluidic technologies applied in cfDNA isolation and analysis are limited and remains to be further explored. This paper reviewed the existing and potential applications of microfluidic technologies in collection and enrichment of cfDNA, quantification, mutation detection and sequencing library construction, followed by discussion of future perspectives.
Collapse
Affiliation(s)
- Zheyun Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
14
|
Microfluidic-Based Approaches for Foodborne Pathogen Detection. Microorganisms 2019; 7:microorganisms7100381. [PMID: 31547520 PMCID: PMC6843441 DOI: 10.3390/microorganisms7100381] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
Food safety is of obvious importance, but there are frequent problems caused by foodborne pathogens that threaten the safety and health of human beings worldwide. Although the most classic method for detecting bacteria is the plate counting method, it takes almost three to seven days to get the bacterial results for the detection. Additionally, there are many existing technologies for accurate determination of pathogens, such as polymerase chain reaction (PCR), enzyme linked immunosorbent assay (ELISA), or loop-mediated isothermal amplification (LAMP), but they are not suitable for timely and rapid on-site detection due to time-consuming pretreatment, complex operations and false positive results. Therefore, an urgent goal remains to determine how to quickly and effectively prevent and control the occurrence of foodborne diseases that are harmful to humans. As an alternative, microfluidic devices with miniaturization, portability and low cost have been introduced for pathogen detection. In particular, the use of microfluidic technologies is a promising direction of research for this purpose. Herein, this article systematically reviews the use of microfluidic technology for the rapid and sensitive detection of foodborne pathogens. First, microfluidic technology is introduced, including the basic concepts, background, and the pros and cons of different starting materials for specific applications. Next, the applications and problems of microfluidics for the detection of pathogens are discussed. The current status and different applications of microfluidic-based technologies to distinguish and identify foodborne pathogens are described in detail. Finally, future trends of microfluidics in food safety are discussed to provide the necessary foundation for future research efforts.
Collapse
|
15
|
Yin J, Suo Y, Zou Z, Sun J, Zhang S, Wang B, Xu Y, Darland D, Zhao JX, Mu Y. Integrated microfluidic systems with sample preparation and nucleic acid amplification. LAB ON A CHIP 2019; 19:2769-2785. [PMID: 31365009 PMCID: PMC8876602 DOI: 10.1039/c9lc00389d] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Rapid, efficient and accurate nucleic acid molecule detection is important in the screening of diseases and pathogens, yet remains a limiting factor at point of care (POC) treatment. Microfluidic systems are characterized by fast, integrated, miniaturized features which provide an effective platform for qualitative and quantitative detection of nucleic acid molecules. The nucleic acid detection process mainly includes sample preparation and target molecule amplification. Given the advancements in theoretical research and technological innovations to date, nucleic acid extraction and amplification integrated with microfluidic systems has advanced rapidly. The primary goal of this review is to outline current approaches used for nucleic acid detection in the context of microfluidic systems. The secondary goal is to identify new approaches that will help shape future trends at the intersection of nucleic acid detection and microfluidics, particularly with regard to increasing disease and pathogen detection for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, China.
| | - Yuanjie Suo
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, China.
| | - Zheyu Zou
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, China.
| | - Jingjing Sun
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, China.
| | - Shan Zhang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, China.
| | - Beng Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China and Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029 China
| | - Yawei Xu
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, 132000 China
| | - Diane Darland
- Department of Biology, University of North Dakota, USA.
| | | | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Juang DS, Berry SM, Li C, Lang JM, Beebe DJ. Centrifugation-Assisted Immiscible Fluid Filtration for Dual-Bioanalyte Extraction. Anal Chem 2019; 91:11848-11855. [PMID: 31411020 DOI: 10.1021/acs.analchem.9b02572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The extraction of bioanalytes is the first step in many diagnostic and analytical assays. However, most bioanalyte extraction methods require extensive dilution-based washing processes that are not only time-consuming and laborious but can also result in significant sample loss, limiting their applications in rare sample analyses. Here, we present a method that enables the efficient extraction of multiple different bioanalytes from rare samples (down to 10 cells) without washing-centrifugation-assisted immiscible fluid filtration (CIFF). CIFF utilizes centrifugal force to drive the movement of analyte-bound glass microbeads from an aqueous sample into an immiscible hydrophobic solution to perform an efficient, simple, and nondilutive extraction. The method can be performed using conventional polymerase chain reaction (PCR) tubes with no requirement of specialized devices, columns, or instruments, making it broadly accessible and cost-effective. The CIFF process can effectively remove approximately 99.5% of the aqueous sample in one extraction with only 0.5% residual carryover, whereas a traditional "spin-down and aspirate" operation results in a higher 3.6% carryover. Another unique aspect of CIFF is its ability to perform two different solid-phase bioanalytes extractions simultaneously within a single vessel without fractionating the sample or performing serial extractions. Here we demonstrate efficient mRNA and DNA extraction from low-input samples (down to 10 cells) with slightly higher to comparable recovery compared to a traditional column-based extraction technique and the simultaneous extraction of two different proteins in the same tube using CIFF.
Collapse
|
17
|
Lee JW, Nguyen VD, Seo TS. Paper-based Molecular Diagnostics for the Amplification and Detection of Pathogenic Bacteria from Human Whole Blood and Milk Without a Sample Preparation Step. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3310-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Luo M, Jiang Y, Su J, Deng Z, Mou F, Xu L, Guan J. Surface Charge-Reversible Tubular Micromotors for Extraction of Nucleic Acids in Microsystems. Chem Asian J 2019; 14:2503-2511. [PMID: 30997736 DOI: 10.1002/asia.201900427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Extraction of nucleic acids in microsystems is of significance for biomedical applications, but the current extraction methods generally require sophisticated microchannels and external equipment, hindering their practical applications. In this work, we have demonstrated a simple, versatile and efficient approach to extract nucleic acids in microsystems by developing cationic branched polyethyleneimine (PEI)-functionalized tubular micromotors. The as-developed tubular micromotors are fabricated by a two-step process combining the template-assisted electrodeposition and carbodiimide chemistry, and contain an inner catalytic Pt layer, a middle magnetic Ni layer and an outer cationic PEI layer. They exhibit autonomous bubble-propelled motion in aqueous hydrogen peroxide solutions, which can be guided by an external magnetic field, and the surface charges can be reversibly modulated by changing the pH value of the solution. Consequently, the as-developed tubular micromotors can selectively absorb nucleic acids from acidic solutions and desorb them into alkaline solutions, leading to the extraction of nucleic acids with high efficiency without external stirring. Furthermore, they can be operated in a microchannel chip without the aid of a pumping system. Our results indicate that this PEI-functionalized tubular micromotor platform provides a novel, simple and versatile microsystem nucleic acid extraction technology, holding considerable promise for important practical applications.
Collapse
Affiliation(s)
- Ming Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yuzhou Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jingbei Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhuoyi Deng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Leilei Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
19
|
Review: Microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta 2018; 1012:10-29. [PMID: 29475470 DOI: 10.1016/j.aca.2017.12.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 12/19/2022]
Abstract
Blood-based liquid biopsies provide a minimally invasive alternative to identify cellular and molecular signatures that can be used as biomarkers to detect early-stage cancer, predict disease progression, longitudinally monitor response to chemotherapeutic drugs, and provide personalized treatment options. Specific targets in blood that can be used for detailed molecular analysis to develop highly specific and sensitive biomarkers include circulating tumor cells (CTCs), exosomes shed from tumor cells, cell-free circulating tumor DNA (cfDNA), and circulating RNA. Given the low abundance of CTCs and other tumor-derived products in blood, clinical evaluation of liquid biopsies is extremely challenging. Microfluidics technologies for cellular and molecular separations have great potential to either outperform conventional methods or enable completely new approaches for efficient separation of targets from complex samples like blood. In this article, we provide a comprehensive overview of blood-based targets that can be used for analysis of cancer, review microfluidic technologies that are currently used for isolation of CTCs, tumor derived exosomes, cfDNA, and circulating RNA, and provide a detailed discussion regarding potential opportunities for microfluidics-based approaches in cancer diagnostics.
Collapse
|
20
|
Kamat V, Pandey S, Paknikar K, Bodas D. A facile one-step method for cell lysis and DNA extraction of waterborne pathogens using a microchip. Biosens Bioelectron 2018; 99:62-69. [DOI: 10.1016/j.bios.2017.07.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/29/2017] [Accepted: 07/14/2017] [Indexed: 01/28/2023]
|
21
|
Messner JJ, Glenn HL, Meldrum DR. Laser-fabricated cell patterning stencil for single cell analysis. BMC Biotechnol 2017; 17:89. [PMID: 29258486 PMCID: PMC5735507 DOI: 10.1186/s12896-017-0408-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/06/2017] [Indexed: 11/10/2022] Open
Abstract
Precise spatial positioning and isolation of mammalian cells is a critical component of many single cell experimental methods and biological engineering applications. Although a variety of cell patterning methods have been demonstrated, many of these methods subject cells to high stress environments, discriminate against certain phenotypes, or are a challenge to implement. Here, we demonstrate a rapid, simple, indiscriminate, and minimally perturbing cell patterning method using a laser fabricated polymer stencil. The stencil fabrication process requires no stencil-substrate alignment, and is readily adaptable to various substrate geometries and experiments.
Collapse
Affiliation(s)
| | - Honor L Glenn
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA
| | - Deirdre R Meldrum
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., P.O. Box 877101, Tempe, AZ, 85287-7101, USA.
| |
Collapse
|
22
|
Koo KM, Wee EJH, Wang Y, Trau M. Enabling miniaturised personalised diagnostics: from lab-on-a-chip to lab-in-a-drop. LAB ON A CHIP 2017; 17:3200-3220. [PMID: 28850136 DOI: 10.1039/c7lc00587c] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The concept of personalised diagnostics is to direct accurate clinical decisions based on an individual's unique disease molecular profile. Lab-on-a-chip (LOC) systems are prime personalised diagnostics examples which seek to perform an entire sample-to-outcome detection of disease nucleic acid (NA) biomarkers on a single miniaturised platform with minimal user handling. Despite the great potential of LOC devices in providing rapid, portable, and inexpensive personalised diagnosis at the point-of-care (POC), the translation of this technology into widespread use has still been hampered by the need for sophisticated and complex engineering. As an alternative miniaturised diagnostics platform free of precision fabrication, there have been recent developments towards a solution-based lab-in-a-drop (LID) system by which an entire laboratory-based diagnostics workflow could be downscaled and integrated within a singular fluid droplet for POC detection of NA biomarkers. In contrast to existing excellent reviews on miniaturised LOC fabrication and individual steps of NA biomarker sensing, we herein focus on miniaturised solution-based NA biosensing strategies suited for integrated LID personalised diagnostics development. In this review, we first evaluate the three fundamental bioassay steps for miniaturised NA biomarker detection: crude sample preparation, isothermal target amplification, and detection readout of amplicons. Then, we provide insights into research advancements towards a functional LID system which integrates all three of the above-mentioned fundamental steps. Finally, we discuss perspectives and future directions of LID diagnostic platforms in personalised medicine applications.
Collapse
Affiliation(s)
- Kevin M Koo
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
23
|
Nestorova GG, Hasenstein K, Nguyen N, DeCoster MA, Crews ND. Lab-on-a-chip mRNA purification and reverse transcription via a solid-phase gene extraction technique. LAB ON A CHIP 2017; 17:1128-1136. [PMID: 28232986 DOI: 10.1039/c6lc01421f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Extraction and purification of high quality RNA is a crucial initial step required for a variety of genomic assays. We report a solid phase gene extraction (SPGE) method for automated extraction, purification and reverse transcription of mRNA in a microfluidic device. This is performed using a 130 μm diameter stainless steel needle that is amino-linked to dT(15) oligonucleotides for selective hybridization of mRNA. By inserting this probe into the biological sample for only 30 seconds, mRNA is captured with high selectivity and a yield greater than 10 pg per mm of probe length. The probe is then inserted into a lab-on-a-chip device, where the bound poly-adenylated RNA is thermally released and immediately reverse transcribed for subsequent PCR amplification. The insertion of the probe into the microfluidic device is straightforward: the microchannel is formed with an elastomer (PDMS) that, when punctured, will seal around the probe. The specificity and RNA loading capacity of the probes were evaluated using conventional qPCR. This procedure was successfully used to extract, purify, and transcribe mRNA from rat glioblastoma cell spheroids in less than seven minutes. Analysis of the product confirmed that the SPGE technique selectively captures and inherently purifies high-quality mRNA directly from biological material with no need for additional pre-processing steps. Integrating this elegant sample preparation method into a complete lab-on-a-chip system will substantially enhance the speed and automation of mRNA assays for research and clinical diagnostics.
Collapse
Affiliation(s)
- Gergana G Nestorova
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA. and Department of Biological Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Karl Hasenstein
- Biology Department, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Nam Nguyen
- Biomedical Engineering Department, Louisiana Tech University, Ruston, LA, USA
| | - Mark A DeCoster
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA. and Biomedical Engineering Department, Louisiana Tech University, Ruston, LA, USA
| | - Niel D Crews
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
24
|
Clark KD, Zhang C, Anderson JL. Sample Preparation for Bioanalytical and Pharmaceutical Analysis. Anal Chem 2016; 88:11262-11270. [PMID: 27779849 DOI: 10.1021/acs.analchem.6b02935] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biological and pharmaceutical samples represent formidable challenges in sample preparation that hold important consequences for bioanalysis and genotoxic impurity quantification. This Feature will emphasize significant advances toward the development of rapid, sensitive, and selective sample preparation methods.
Collapse
Affiliation(s)
- Kevin D Clark
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States
| | - Cheng Zhang
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States
| | - Jared L Anderson
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States
| |
Collapse
|
25
|
Kim H, Suk S, Lim K, Park N, Hahn JH. Continuous-Flow Microfluidic Device for Real-Time Polymerase Chain Reaction. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hanok Kim
- Department of Chemistry, BioNanotechnology Center; Pohang University of Science and Technology; Gyeongsangbuk-Do 790-784 South Korea
| | - Shinae Suk
- Department of Chemistry, BioNanotechnology Center; Pohang University of Science and Technology; Gyeongsangbuk-Do 790-784 South Korea
| | - Kwanseop Lim
- Department of Chemistry, BioNanotechnology Center; Pohang University of Science and Technology; Gyeongsangbuk-Do 790-784 South Korea
| | - Nokyoung Park
- Department of Chemistry; Myongji University; Gyeonggi-Do 449-728 South Korea
| | - Jong Hoon Hahn
- Department of Chemistry, BioNanotechnology Center; Pohang University of Science and Technology; Gyeongsangbuk-Do 790-784 South Korea
| |
Collapse
|
26
|
Parallel-processing continuous-flow device for optimization-free polymerase chain reaction. Anal Bioanal Chem 2016; 408:6751-8. [DOI: 10.1007/s00216-016-9798-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 01/29/2023]
|
27
|
Kim J, Biondi MJ, Feld JJ, Chan WCW. Clinical Validation of Quantum Dot Barcode Diagnostic Technology. ACS NANO 2016; 10:4742-4753. [PMID: 27035744 DOI: 10.1021/acsnano.6b01254] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There has been a major focus on the clinical translation of emerging technologies for diagnosing patients with infectious diseases, cancer, heart disease, and diabetes. However, most developments still remain at the academic stage where researchers use spiked target molecules to demonstrate the utility of a technology and assess the analytical performance. This approach does not account for the biological complexities and variabilities of human patient samples. As a technology matures and potentially becomes clinically viable, one important intermediate step in the translation process is to conduct a full clinical validation of the technology using a large number of patient samples. Here, we present a full detailed clinical validation of Quantum Dot (QD) barcode technology for diagnosing patients infected with Hepatitis B Virus (HBV). We further demonstrate that the detection of multiple regions of the viral genome using multiplexed QD barcodes improved clinical sensitivity from 54.9-66.7% to 80.4-90.5%, and describe how to use QD barcodes for optimal clinical diagnosis of patients. The use of QDs in biology and medicine was first introduced in 1998 but has not reached clinical care. This study describes our long-term systematic development strategy to advance QD technology to a clinically feasible product for diagnosing patients. Our "blueprint" for translating the QD barcode research concept could be adapted for other nanotechnologies, to efficiently advance diagnostic techniques discovered in the academic laboratory to patient care.
Collapse
Affiliation(s)
- Jisung Kim
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto , Toronto, Ontario M5S 3E1, Canada
| | - Mia J Biondi
- Sandra Rotman Centre for Global Health, University Health Network , Toronto, Ontario M5G 1L7, Canada
| | - Jordan J Feld
- Sandra Rotman Centre for Global Health, University Health Network , Toronto, Ontario M5G 1L7, Canada
| | - Warren C W Chan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto , Toronto, Ontario M5S 3E1, Canada
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering, University of Toronto , Toronto, Ontario M5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto , Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
28
|
Affiliation(s)
- Sheng Tang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hong Zhang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hian Kee Lee
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore Environmental Research Institute, T-Lab Building #02-01, 5A Engineering
Drive 1, Singapore 117411, Singapore
- Tropical
Marine Science Institute, National University of Singapore, S2S, 18
Kent Ridge Road, Singapore 119227, Singapore
| |
Collapse
|
29
|
Recent advances and current issues in single-cell sequencing of tumors. Cancer Lett 2015; 365:1-10. [PMID: 26003306 DOI: 10.1016/j.canlet.2015.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 12/28/2022]
Abstract
Intratumoral heterogeneity is a recently recognized but important feature of cancer that underlies the various biocharacteristics of cancer tissues. The advent of next-generation sequencing technologies has facilitated large scale capture of genomic data, while the recent development of single-cell sequencing has allowed for more in-depth studies into the complex molecular mechanisms of intratumoral heterogeneity. In this review, the recent advances and current challenges in single-cell sequencing methodologies are discussed, highlighting the potential power of these data to provide insights into oncological processes, from tumorigenesis through progression to metastasis and therapy resistance.
Collapse
|
30
|
Shi X, Chen CH, Gao W, Chao SH, Meldrum DR. Parallel RNA extraction using magnetic beads and a droplet array. LAB ON A CHIP 2015; 15:1059-65. [PMID: 25519439 PMCID: PMC4349128 DOI: 10.1039/c4lc01111b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nucleic acid extraction is a necessary step for most genomic/transcriptomic analyses, but it often requires complicated mechanisms to be integrated into a lab-on-a-chip device. Here, we present a simple, effective configuration for rapidly obtaining purified RNA from low concentration cell medium. This Total RNA Extraction Droplet Array (TREDA) utilizes an array of surface-adhering droplets to facilitate the transportation of magnetic purification beads seamlessly through individual buffer solutions without solid structures. The fabrication of TREDA chips is rapid and does not require a microfabrication facility or expertise. The process takes less than 5 minutes. When purifying mRNA from bulk marine diatom samples, its repeatability and extraction efficiency are comparable to conventional tube-based operations. We demonstrate that TREDA can extract the total mRNA of about 10 marine diatom cells, indicating that the sensitivity of TREDA approaches single-digit cell numbers.
Collapse
Affiliation(s)
- Xu Shi
- Center for Biosignatures Discovery Automation , The Biodesign Institute , Arizona State University Tempe , Arizona , USA .
| | - Chun-Hong Chen
- Center for Biosignatures Discovery Automation , The Biodesign Institute , Arizona State University Tempe , Arizona , USA .
- Department of Electrical Engineering , National Cheng Kung University Tainan , Taiwan
| | - Weimin Gao
- Center for Biosignatures Discovery Automation , The Biodesign Institute , Arizona State University Tempe , Arizona , USA .
| | - Shih-hui Chao
- Center for Biosignatures Discovery Automation , The Biodesign Institute , Arizona State University Tempe , Arizona , USA .
| | - Deirdre R. Meldrum
- Center for Biosignatures Discovery Automation , The Biodesign Institute , Arizona State University Tempe , Arizona , USA .
| |
Collapse
|
31
|
Jalali-Heravi M, Arrastia M, Gomez FA. How Can Chemometrics Improve Microfluidic Research? Anal Chem 2015; 87:3544-55. [DOI: 10.1021/ac504863y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mehdi Jalali-Heravi
- Department
of Chemistry and
Biochemistry, California State University, Los Angeles, 5151 State
University Drive, Los Angeles, California 90032-8202, United States
| | - Mary Arrastia
- Department
of Chemistry and
Biochemistry, California State University, Los Angeles, 5151 State
University Drive, Los Angeles, California 90032-8202, United States
| | - Frank A. Gomez
- Department
of Chemistry and
Biochemistry, California State University, Los Angeles, 5151 State
University Drive, Los Angeles, California 90032-8202, United States
| |
Collapse
|
32
|
|
33
|
Abstract
BACKGROUND Effective upstream preparation of nucleic acid (NA) is important for molecular techniques that detect unique DNA or RNA sequences. The isolated NA should be extracted efficiently and purified away from inhibitors of a downstream molecular assay. CONTENT Many NA sample preparation techniques and commercial kits are available. Techniques for cell lysis and isolation or purification of NA were discovered in early NA characterization studies, evolved in the 20th century with molecular techniques, and still serve as the foundation for current methods. Advances in solid phase extraction methods with nonhazardous chemicals and automated systems have changed the way NA is prepared. Factors to consider when selecting NA preparation methods for molecular detection include lysis (from sources as diverse as human cells, viruses, bacterial spores, or protozoan oocysts), DNA vs RNA, sample background, appropriate preparation chemicals, and required detection limits. Methods are also selected on the basis of requirements for a particular application, such as sample volume or removal of inhibitors. Sometimes tradeoffs are made. SUMMARY Good automated and manual methods are available to effectively prepare NA for molecular detection in under an hour. Numerous systems are available for various applications, including techniques that are flexible for multiple sample types, are capable of processing large batches, can be performed in <10 min, or that can yield high-purity NA. When methods are selected using the most applicable combination of lysis isolation efficiency and concentration, NA preparation can be very effective, even for molecular detection of multiple targets from the same sample.
Collapse
|
34
|
Reinholt SJ, Baeumner AJ. Microfluidic Isolation of Nucleic Acids. Angew Chem Int Ed Engl 2014; 53:13988-4001. [DOI: 10.1002/anie.201309580] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Indexed: 01/03/2023]
|
35
|
Khodakov DA, Ellis AV. Recent developments in nucleic acid identification using solid-phase enzymatic assays. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1167-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Culbertson CT, Mickleburgh TG, Stewart-James SA, Sellens KA, Pressnall M. Micro total analysis systems: fundamental advances and biological applications. Anal Chem 2014; 86:95-118. [PMID: 24274655 PMCID: PMC3951881 DOI: 10.1021/ac403688g] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Tom G. Mickleburgh
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | - Kathleen A. Sellens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Melissa Pressnall
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
37
|
Integration of sample pretreatment, μPCR, and detection for a total genetic analysis microsystem. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1128-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Hyphenation of optimized microfluidic sample preparation with nano liquid chromatography for faster and greener alkaloid analysis. Anal Chim Acta 2013; 797:50-6. [DOI: 10.1016/j.aca.2013.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 11/24/2022]
|