1
|
Salehirozveh M, Dehghani P, Mijakovic I. Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs). J Funct Biomater 2024; 15:340. [PMID: 39590545 PMCID: PMC11595413 DOI: 10.3390/jfb15110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Iron oxide nanoparticles (IONPs) have garnered significant attention in biomedical applications due to their unique magnetic properties, biocompatibility, and versatility. This review comprehensively examines the synthesis methods, surface functionalization techniques, and diverse biomedical applications of IONPs. Various chemical and physical synthesis techniques, including coprecipitation, sol-gel processes, thermal decomposition, hydrothermal synthesis, and sonochemical routes, are discussed in detail, highlighting their advantages and limitations. Surface functionalization strategies, such as ligand exchange, encapsulation, and silanization, are explored to enhance the biocompatibility and functionality of IONPs. Special emphasis is placed on the role of IONPs in biosensing technologies, where their magnetic and optical properties enable significant advancements, including in surface-enhanced Raman scattering (SERS)-based biosensors, fluorescence biosensors, and field-effect transistor (FET) biosensors. The review explores how IONPs enhance sensitivity and selectivity in detecting biomolecules, demonstrating their potential for point-of-care diagnostics. Additionally, biomedical applications such as magnetic resonance imaging (MRI), targeted drug delivery, tissue engineering, and stem cell tracking are discussed. The challenges and future perspectives in the clinical translation of IONPs are also addressed, emphasizing the need for further research to optimize their properties and ensure safety and efficacy in medical applications. This review aims to provide a comprehensive understanding of the current state and future potential of IONPs in both biosensing and broader biomedical fields.
Collapse
Affiliation(s)
- Mostafa Salehirozveh
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
| | - Parisa Dehghani
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
3
|
Yarana C, Maneechote C, Khuanjing T, Ongnok B, Prathumsap N, Thanasrisuk S, Pattanapanyasat K, Chattipakorn SC, Chattipakorn N. Potential roles of 4HNE-adducted protein in serum extracellular vesicles as an early indicator of oxidative response against doxorubicin-induced cardiomyopathy in rats. Curr Res Toxicol 2023; 5:100134. [PMID: 37964944 PMCID: PMC10641738 DOI: 10.1016/j.crtox.2023.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
Late-onset cardiomyopathy is becoming more common among cancer survivors, particularly those who received doxorubicin (DOXO) treatment. However, few clinically available cardiac biomarkers can predict an unfavorable cardiac outcome before cell death. Extracellular vesicles (EVs) are emerging as biomarkers for cardiovascular diseases and others. This study aimed to measure dynamic 4-hydroxynonenal (4HNE)-adducted protein levels in rats treated chronically with DOXO and examine their link with oxidative stress, antioxidant gene expression in cardiac tissues, and cardiac function. Twenty-two male Wistar rats were randomly assigned to receive intraperitoneal injection of normal saline (n = 8) or DOXO (3 mg/kg, 6 doses, n = 14). Before and after therapy, serum EVs and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels were determined. Tunable resistive pulse sensing was used to measure EV size and concentration. ELISA was used to assess 4HNE-adducted protein in EVs and cardiac tissues. Differential-display reverse transcription-PCR was used to quantitate cardiac Cat and Gpx1 gene expression. Potential correlations between 4HNE-adducted protein levels in EVs, cardiac oxidative stress, antioxidant gene expression, and cardiac function were determined. DOXO-treated rats showed more serum EV 4HNE-adducted protein than NSS-treated rats at day 9 and later endpoints, whereas NT-proBNP levels were not different between groups. Moreover, on day 9, surviving rats' EVs had higher levels of 4HNE-adducted protein, and these correlated positively with concentrations of heart tissue 4HNE adduction and copy numbers of Cat and Gpx1, while at endpoint correlated negatively with cardiac functions. Therefore, 4HNE-adducted protein in serum EVs could be an early, minimally invasive biomarker of the oxidative response and cardiac function in DOXO-induced cardiomyopathy.
Collapse
Affiliation(s)
- Chontida Yarana
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasa Thanasrisuk
- Faculty of Medical Technology, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Kovit Pattanapanyasat
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Xu R, Ouyang L, Shaik R, Chen H, Zhang G, Zhe J. Rapid Detection of Microparticles Using a Microfluidic Resistive Pulse Sensor Based on Bipolar Pulse-Width Multiplexing. BIOSENSORS 2023; 13:721. [PMID: 37504119 PMCID: PMC10377334 DOI: 10.3390/bios13070721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Rapid and accurate analysis of micro/nano bio-objects (e.g., cells, biomolecules) is crucial in clinical diagnostics and drug discovery. While a traditional resistive pulse sensor can provide multiple kinds of information (size, count, surface charge, etc.) about analytes, it has low throughput. We present a unique bipolar pulse-width, multiplexing-based resistive pulse sensor for high-throughput analysis of microparticles. Signal multiplexing is enabled by exposing the central electrode at different locations inside the parallel sensing channels. Together with two common electrodes, the central electrode encodes the electrical signal from each sensing channel, generating specific bipolar template waveforms with different pulse widths. Only one DC source is needed as input, and only one combined electrical output is collected. The combined signal can be demodulated using correlation analysis and a unique iterative cancellation scheme. The accuracy of particle counting and sizing was validated using mixtures of various sized microparticles. Results showed errors of 2.6% and 6.1% in sizing and counting, respectively. We further demonstrated its accuracy for cell analysis using HeLa cells.
Collapse
Affiliation(s)
- Ruiting Xu
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Leixin Ouyang
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Rubia Shaik
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA
| | - Heyi Chen
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
5
|
Xu R, Ouyang L, Chen H, Zhang G, Zhe J. Recent Advances in Biomolecular Detection Based on Aptamers and Nanoparticles. BIOSENSORS 2023; 13:bios13040474. [PMID: 37185549 PMCID: PMC10136534 DOI: 10.3390/bios13040474] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
The fast, accurate detection of biomolecules, ranging from nucleic acids and small molecules to proteins and cellular secretions, plays an essential role in various biomedical applications. These include disease diagnostics and prognostics, environmental monitoring, public health, and food safety. Aptamer recognition (DNA or RNA) has gained extensive attention for biomolecular detection due to its high selectivity, affinity, reproducibility, and robustness. Concurrently, biosensing with nanoparticles has been widely used for its high carrier capacity, stability and feasibility of incorporating optical and catalytic activity, and enhanced diffusivity. Biosensors based on aptamers and nanoparticles utilize the combination of their advantages and have become a promising technology for detecting of a wide variety of biomolecules with high sensitivity, reliability, specificity, and detection speed. Via various sensing mechanisms, target biomolecules have been quantified in terms of optical (e.g., colorimetric and fluorometric), magnetic, and electrical signals. In this review, we summarize the recent advances in and compare different aptamer-nanoparticle-based biosensors by nanoparticle types and detection mechanisms. We also share our views on the highlights and challenges of the different nanoparticle-aptamer-based biosensors.
Collapse
Affiliation(s)
- Ruiting Xu
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Leixin Ouyang
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Heyi Chen
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
6
|
Liu L, Liang X, Li Z, Zhang M, Gao M. Detection of ATP in cancer cells with a label-free fluorescent aptasensor. Nanomedicine (Lond) 2022; 17:765-774. [PMID: 35642581 DOI: 10.2217/nnm-2021-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop a new detection technique for ATP in cancer cells using fluorescent biosensing. Materials & methods: This research presents a new label-free fluorescent aptasensor for ATP measurement that incorporates a DNA aptamer, SYBR Gold and single-walled carbon nanohorns. Results: The aptasensor showed selectivity toward ATP and a low limit of detection (37.6 nM). The linear detection range was 100-50,000 nM, and the fluorescence intensity and ATP concentration logarithm showed an excellent linear correlation (R2 = 0.9924). Conclusion: The developed aptasensor may be used to detect cellular ATP in cancer cells and could be employed for biological sample analysis. The benefits of the aptasensor, such as its simplicity, speed, cost-effectiveness, specificity and sensitivity, give it promising implications as a potentially adaptable sensing platform.
Collapse
Affiliation(s)
- Liying Liu
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiuju Liang
- Department of Oncology, No. 960 Hospital, The People's Liberation Army, Jinan, 250031, China
| | - Zhaoming Li
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - MingZhi Zhang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ming Gao
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
7
|
Recent Advances in Aptamer‐Based Nanopore Sensing at Single‐Molecule Resolution. Chem Asian J 2022; 17:e202200364. [DOI: 10.1002/asia.202200364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Indexed: 11/07/2022]
|
8
|
Xu R, Abune L, Davis B, Ouyang L, Zhang G, Wang Y, Zhe J. Ultrasensitive detection of small biomolecules using aptamer-based molecular recognition and nanoparticle counting. Biosens Bioelectron 2022; 203:114023. [DOI: 10.1016/j.bios.2022.114023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/12/2023]
|
9
|
Neutrophil-derived extracellular vesicles induce endothelial inflammation and damage through the transfer of miRNAs. J Autoimmun 2022; 129:102826. [DOI: 10.1016/j.jaut.2022.102826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 01/22/2023]
|
10
|
Fang B, Isobe K, Handa A, Nakagawa K. Microstructure change in whole egg protein aggregates upon freezing: Effects of freezing time and sucrose addition. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Maugi R, Gamble B, Bunka D, Platt M. A simple displacement aptamer assay on resistive pulse sensor for small molecule detection. Talanta 2020; 225:122068. [PMID: 33592786 DOI: 10.1016/j.talanta.2020.122068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 11/26/2022]
Abstract
A universal aptamer-based sensing strategy is proposed using DNA modified nanocarriers and Resistive Pulse Sensing (RPS) for the rapid (≤20 min) and label free detection of small molecules. The surface of a magnetic nanocarrier was first modified with a ssDNA (anchor) which is designed to be partially complimentary in sequence to the ssDNA aptamer. The aptamer and anchor form a stable dsDNA complex on the nanocarriers surface. Upon the addition of the target molecule, a conformational change takes place where the aptamer preferentially binds to the target over the anchor; causing the aptamer to be released into solution. The RPS measures the change in velocity of the nanocarrier as its surface changes from dsDNA to ssDNA, and its velocity is used as a proxy for the concentration of the target. The length of the aptamer and the ability to extract and preconcentrate the nanocarriers using a magnet, is shown to affect the sensitivity. We illustrate the versatility of the assay using the same anchor sequence and Aptamers to the antibiotic Moxifloxacin, and chemotherapeutics Imatinib and Irinotecan. In addition, the proposed assay can be easily extended to detect multiple analytes simultaneously, by utilizing nanocarriers with different diameters. Each sized particle is functionalised with a the same anchor but a unique aptamer. We illustrate this with the simultaneous detection of Imatinib and Moxifloxacin. The strategy could be easily adapted to a range of targets and unlike previous strategies that use aptamer modified nanocarriers, the signal is not dependent upon the tertiary structure of the aptamer-target interaction.
Collapse
Affiliation(s)
- Rushabh Maugi
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Bernadette Gamble
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - David Bunka
- Aptamer Group Limited, Bio Centre, Innovation Way, Heslington, York, YO10 5NY, UK.
| | - Mark Platt
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
12
|
Heaton I, Platt M. DNAzyme Sensor for the Detection of Ca 2+ Using Resistive Pulse Sensing. SENSORS 2020; 20:s20205877. [PMID: 33080851 PMCID: PMC7589696 DOI: 10.3390/s20205877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022]
Abstract
DNAzymes are DNA oligonucleotides that can undergo a specific chemical reaction in the presence of a cofactor. Ribonucleases are a specific form of DNAzymes where a tertiary structure undergoes cleavage at a single ribonuclease site. The cleavage is highly specificity to co-factors, which makes them excellent sensor recognition elements. Monitoring the change in structure upon cleavage has given rise to many sensing strategies; here we present a simple and rapid method of following the reaction using resistive pulse sensors, RPS. To demonstrate this methodology, we present a sensor for Ca2+ ions in solution. A nanoparticle was functionalised with a Ca2+ DNAzyme, and it was possible to follow the cleavage and rearrangement of the DNA as the particles translocate the RPS. The binding of Ca2+ caused a conformation change in the DNAzyme, which was monitored as a change in translocation speed. A 30 min assay produced a linear response for Ca2+ between 1–9 μm, and extending the incubation time to 60 min allowed for a concentration as low as 0.3 μm. We demonstrate that the signal is specific to Ca2+ in the presence of other metal ions, and we can quantify Ca2+ in tap and pond water samples.
Collapse
|
13
|
Reynaud L, Bouchet-Spinelli A, Raillon C, Buhot A. Sensing with Nanopores and Aptamers: A Way Forward. SENSORS 2020; 20:s20164495. [PMID: 32796729 PMCID: PMC7472324 DOI: 10.3390/s20164495] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
In the 90s, the development of a novel single molecule technique based on nanopore sensing emerged. Preliminary improvements were based on the molecular or biological engineering of protein nanopores along with the use of nanotechnologies developed in the context of microelectronics. Since the last decade, the convergence between those two worlds has allowed for biomimetic approaches. In this respect, the combination of nanopores with aptamers, single-stranded oligonucleotides specifically selected towards molecular or cellular targets from an in vitro method, gained a lot of interest with potential applications for the single molecule detection and recognition in various domains like health, environment or security. The recent developments performed by combining nanopores and aptamers are highlighted in this review and some perspectives are drawn.
Collapse
|
14
|
Healey MJ, Sivakumaran M, Platt M. Rapid quantification of prion proteins using resistive pulse sensing. Analyst 2020; 145:2595-2601. [PMID: 32065196 DOI: 10.1039/d0an00063a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prion diseases are a group of fatal transmissible neurological conditions caused by the change in conformation of intrinsic cellular prion protein (PrPC). We present a rapid assay using aptamers and resistive pulse sensing, RPS, to extract and quantify PrPC from complex sample matrices. We functionalise the surface of superparamagnetic beads, SPBs, with a DNA aptamer. First SPB's termed P-beads, are used to pre-concentrate the analyte from a large sample volume. The PrPC protein is then eluted from the P-beads before aptamer modified sensing beads, S-beads, are added. The velocity of the S-beads through the nanopore reveals the concentration of the PrPC protein. The process is done in under an hour and allows the detection of picomol's of protein.
Collapse
Affiliation(s)
- Matthew J Healey
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| | | | | |
Collapse
|
15
|
Tang H, Wang H, Yang C, Zhao D, Qian Y, Li Y. Nanopore-based Strategy for Selective Detection of Single Carcinoembryonic Antigen (CEA) Molecules. Anal Chem 2020; 92:3042-3049. [DOI: 10.1021/acs.analchem.9b04185] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Hao Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Cheng Yang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Dandan Zhao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Yuanyuan Qian
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| |
Collapse
|
16
|
Maugi R, Hauer P, Bowen J, Ashman E, Hunsicker E, Platt M. A methodology for characterising nanoparticle size and shape using nanopores. NANOSCALE 2020; 12:262-270. [PMID: 31815999 DOI: 10.1039/c9nr09100a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The discovery and characterisation of nanomaterials represents a multidisciplinary problem. Their properties and applications within biological, physical and medicinal sciences depend on their size, shape, concentration and surface charge. No single technology can currently measure all characteristics. Here we combine resistive pulse sensing with predictive logistic regression models, termed RPS-LRM, to rapidly characterise a nanomaterial's size, aspect ratio, shape and concentration when mixtures of nanorods and nanospheres are present in the same solution. We demonstrate that RPS-LRM can be applied to the characterisation of nanoparticles over a wide size range, and varying aspect ratios, and can distinguish between nanorods over nanospheres when they possess an aspect ratio grater then two. The RPS-LRM can rapidly measure the ratios of nanospheres to nanorods in solution within mixtures, regardless of their relative sizes and ratios i.e. many large nanospherical particles do not interfere with the characterisation of smaller nanorods. This was done with a 91% correct classification of nanospherical particles and 72% correct classification of nanorods even when the fraction of nanorods in solution is as low as 20%. The methodology here will enable the classification of nanomedicines, new nanomaterials and biological analytes in solution.
Collapse
Affiliation(s)
- R Maugi
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| | - P Hauer
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - J Bowen
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | | | - E Hunsicker
- Department of Mathematical Sciences, Centre for Imaging Science, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| | - M Platt
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| |
Collapse
|
17
|
Lv L, Cui C, Xie W, Sun W, Ji S, Tian J, Guo Z. A label-free aptasensor for turn-on fluorescent detection of ochratoxin A based on aggregation-induced emission probe. Methods Appl Fluoresc 2019; 8:015003. [PMID: 31622960 DOI: 10.1088/2050-6120/ab4edf] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel label-free fluorescence aptasensor used for the detection of ochratoxin A (OTA) is presented in this study. When aggregated on the surface of DNA aptamer, aggregation-induced emission (AIE) fluorescence probe presents turn-on fluorescence property. The method proposed in this article was based on an AIE probe, 4, 4-(1E,1E)-2, 2-(anthracene-9, 10-diyl) bis (ethene-2, 1-diyl) bis (N, N, N-trimethylbenzenaminium iodide) (DSAI). With OTA present, the aptamer will combine with OTA and the conformation of the aptamer will switch to an antiparallel G-quadruplex from the initial random coil, which obstructs its digestion by Exo I. After the solution is added with DSAI, DSAI will aggregate on the surface of the aptamer/OTA complex and produces a strong emission. In the range of 5 to 500 ng · ml-1 OTA concentrations, the fluorescence increases with a linear logarithm relationship. The detection limit is 1.9 ng · ml-1. This method was used to detect OTA in spiked real samples, with recoveries and RSDs in the range of 92.2% to 106.3%, and 2.7% to 5.2%, respectively.
Collapse
Affiliation(s)
- Lei Lv
- College of Agriculture, Yanbian University, Yanji, 133002, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Heaton I, Platt M. Peptide Nanocarriers for Detection of Heavy Metal Ions Using Resistive Pulse Sensing. Anal Chem 2019; 91:11291-11296. [PMID: 31370397 DOI: 10.1021/acs.analchem.9b02353] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The use of nanocarriers within resistive pulse sensing facilitates the detection and quantification of analytes. To date the field has been dominated by polyionic carriers or nanomaterials. Together they combine the recognition elements of a ligand with a stable support, facilitating the sample handling, analysis times, and multiplex detection. Here we develop the use of peptide-functionalized superparamagnetic nanocarriers to extract and quantify metal ions in solution. The interaction between nickel and the peptide ligand is measured as a change in translocation velocity of the carrier. The magnitude of change is proportional to the concentration of the metal ions in solution. Unlike DNA aptamers where a change in the tertiary structure and the folding of the polyanionic backbone influences the carrier velocity, the peptides here had a lower net charge under the assay conditions. To try and enhance the signal we engineered charged groups within the peptide to explore the effects on the signal. In all cases the metal ion binding dominated the velocity of the carrier. The assay was shown to work across 3 orders of magnitude and can detect Ni2+ in the presence of some other heavy metal ions. We demonstrate this by quantifying Ni2+ in both tap and pond water. The work allows for future multiplexed sensing strategies using both peptides and DNA aptamers in resistive pulse sensors.
Collapse
Affiliation(s)
- Imogen Heaton
- Department of Chemistry , Loughborough University , Loughborough , Leicestershire LE11 3TU , United Kingdom
| | - Mark Platt
- Department of Chemistry , Loughborough University , Loughborough , Leicestershire LE11 3TU , United Kingdom
| |
Collapse
|
19
|
Beuzelin D, Pitard B, Kaeffer B. Oral Delivery of miRNA With Lipidic Aminoglycoside Derivatives in the Breastfed Rat. Front Physiol 2019; 10:1037. [PMID: 31456698 PMCID: PMC6700720 DOI: 10.3389/fphys.2019.01037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
CONTEXT Specific targeting of endogenous miRNAs which are involved in epigenetics, may help understanding homeostasis with therapeutic benefits. We use new biologically inspired vehicles consisting of lipoaminoglycosides to deliver in vivo mir-320-3p, a known human breast milk exosomal miRNA, or its antagomiR. MATERIALS AND METHODS Four lipoaminoglycosides were screened for cytotoxicity and their biophysical properties. 1-h breast-restricted rats received single-oral treatment of either the lipoaminoglycoside Dioleyl-Succinyl Paromomycin (DOSP) complexed with miRNA or antagomiR, or of control medium at the light on (ZeitGeber Time: ZT-0H) or off (ZT-12H). Glycemia, triglycerides, cholesterol, free-fatty acid were assayed at 0, 4, 8, and 12 h post-treatment. In the stomach, small intestine, liver, plasma, adipose tissue, plexus choroid, and cortex, relevant miRNA with precursors and mRNA (polr3d, hspb6, c-myc, stat1, clock, bmal1, per1, npas2, sirt1-6, and cyclinD1) were quantified by q-PCR. Expression of POLR3D and HSPB6 proteins were analyzed in stomach and liver by Western blot. Immunoprecipitations with anti-AGO1 and 2 were performed on nuclear and cytoplasmic fractions of gastric cells along with detection of miRNA-320-3p in nucleoli. Chromatin ImmunoPrecipitation with anti-Trimethyl-histone-3-Lys-4 and Lys-27 detecting the polr3d promoter and miR-320-3p, were performed for all groups. RESULTS Selected DOSP (diameter: 80-200 nm) did not alter gastric extracellular vesicle secretion a few hours after intake. The miR-320-3p was mainly found in gastric or small intestinal cells, reaching the blood and liver in low amount. We have found significant up-regulation of polr3d mRNA (ANOVA, p < 0.0001) at ZT-20H for the miR-320-3p-supplemented group and a higher expression of POLR3D for antagomiR group (ANOVA, p < 0.05). We had a low accumulation of miR-320-3p at ZT-20H in nucleoli, without stat1 evolution. Delivering a high amount of miRNA or antagomiR disrupts RNA-Induced Silencing Complexes in cytoplasm triggering some transfer of extracellular molecules into nuclei with alteration of immune complexes on the polr3d promoter (with a higher amount found in the K4 histone-3-me3 immune complexes at ZT-20H). CONCLUSION Extracellular miRNAs embedded in DOSP have a rapid impact on RNAi and on nuclear chromatin complexes depending on the daily rhythm. An integrative view of the impact of extracellular miRNA on physiology will improve assaying epigenetic manipulations following nutritional stress.
Collapse
Affiliation(s)
- Diane Beuzelin
- UMR 1280, NUN, Institut National de la Recherche Agronomique, Nantes, France
| | - Bruno Pitard
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM), Université d’Angers, Université de Nantes, Nantes, France
| | - Bertrand Kaeffer
- UMR 1280, NUN, Institut National de la Recherche Agronomique, Nantes, France
| |
Collapse
|
20
|
Ghayyem S, Faridbod F. A fluorescent aptamer/carbon dots based assay for Cytochrome c protein detection as a biomarker of cell apoptosis. Methods Appl Fluoresc 2018; 7:015005. [PMID: 30524015 DOI: 10.1088/2050-6120/aaf0ca] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytochrome c (Cyt c), a heme protein, can be a potential biomarker for cell-apoptosis or even cancer diagnosis. In this work, a simple, rapid, sensitive and selective label-free assay for Cytochrome c (Cyt c) detection is introduced based on an interaction between nucleic acid aptamer biomolecules and surfaces of Carbon Dots (CDs). CDs are used as a fluorescent probes and Cyt c-aptamers as a sensing materials. Interactions of aptamers with CDs quench the fluorescent intensity of CDs. By addition of Cyt c biomolecule as an analyte to the solution and binding to the aptamers, CDs fluorescence turns on. Stronger binding affinity of the aptamers toward Cyt c than CDs, causes they leave the CDs surfaces and the fluorescence is recovered. The amount of recoveries corresponds linearly to the concentration of Cyt c and be used as the basis of detection. The method exhibited high sensitivity to Cyt c with a detection limit of 25.90 nM and a linear range from 40 nM to 240 nM.
Collapse
Affiliation(s)
- Sena Ghayyem
- Analytical Chemistry Department, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | |
Collapse
|
21
|
Nizamudeen Z, Markus R, Lodge R, Parmenter C, Platt M, Chakrabarti L, Sottile V. Rapid and accurate analysis of stem cell-derived extracellular vesicles with super resolution microscopy and live imaging. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1891-1900. [PMID: 30290236 PMCID: PMC6203808 DOI: 10.1016/j.bbamcr.2018.09.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) have prevalent roles in cancer biology and regenerative medicine. Conventional techniques for characterising EVs including electron microscopy (EM), nanoparticle tracking analysis (NTA) and tuneable resistive pulse sensing (TRPS), have been reported to produce high variability in particle count (EM) and poor sensitivity in detecting EVs below 50 nm in size (NTA and TRPS), making accurate and unbiased EV analysis technically challenging. This study introduces direct stochastic optical reconstruction microscopy (d-STORM) as an efficient and reliable characterisation approach for stem cell-derived EVs. Using a photo-switchable lipid dye, d-STORM imaging enabled rapid detection of EVs down to 20-30 nm in size with higher sensitivity and lower variability compared to EM, NTA and TRPS techniques. Imaging of EV uptake by live stem cells in culture further confirmed the potential of this approach for downstream cell biology applications and for the analysis of vesicle-based cell-cell communication.
Collapse
Affiliation(s)
- Zubair Nizamudeen
- Wolfson STEM Centre, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - Robert Markus
- School of Life Sciences, University of Nottingham, UK
| | - Rhys Lodge
- School of Chemistry, University of Nottingham, UK
| | | | - Mark Platt
- Department of Chemistry, Loughborough University, UK
| | | | - Virginie Sottile
- Wolfson STEM Centre, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK.
| |
Collapse
|
22
|
Shi J, Zhou M. Probing the conformational switch of I-motif DNA using tunable resistive pulse sensing. Biochim Biophys Acta Gen Subj 2018; 1862:2564-2569. [PMID: 30048743 DOI: 10.1016/j.bbagen.2018.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 02/04/2023]
Abstract
I-motif DNA, which can fold and unfold reversibly in various environments, plays a significant role in DNA nanotechnology and biological functions. Thus, it is of fundamental importance to identify the different conformations of i-motif DNA. Here, we demonstrate that distinct structures of i-motif DNA conjugated to polystyrene spheres can be distinguished through tunable resistive pulse sensing technique. When dispersed in acidic buffer, i-motif DNA coating on polystyrene spheres would fold into quadruplex structure and subsequently induce an apparent increase in the translocation duration time upon passing through a nanopore due to the shielding effect of the surface charge of the nanospheres. However, if the DNA strands don't have conformational changes in acidic buffer, little shift can be observed in the translocation duration time of the DNA functionalized polystyrene spheres. A before-and-after assay was also performed to illustrate the fast speed of i-motif DNA folding using this technique. The successful implementation of tunable resistive pulse sensing to monitor the conformational transition of i-motif DNA provides a potential tool to detect the structural changes of DNA and an alternative approach to study the function of DNA structures.
Collapse
Affiliation(s)
- Jing Shi
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ming Zhou
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China.
| |
Collapse
|
23
|
Mayne L, Lin CY, Christie SDR, Siwy ZS, Platt M. The Design and Characterization of Multifunctional Aptamer Nanopore Sensors. ACS NANO 2018; 12:4844-4852. [PMID: 29718658 DOI: 10.1021/acsnano.8b01583] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aptamer-modified nanomaterials provide a simple, yet powerful sensing platform when combined with resistive pulse sensing technologies. Aptamers adopt a more stable tertiary structure in the presence of a target analyte, which results in a change in charge density and velocity of the carrier particle. In practice the tertiary structure is specific for each aptamer and target, and the strength of the signal varies with different applications and experimental conditions. Resistive pulse sensors (RPS) have single particle resolution, allowing for the detailed characterization of the sample. Measuring the velocity of aptamer-modified nanomaterials as they traverse the RPS provides information on their charge state and densities. To help understand how the aptamer structure and charge density effects the sensitivity of aptamer-RPS assays, here we study two metal binding aptamers. This creates a sensor for mercury and lead ions that is capable of being run in a range of electrolyte concentrations, equivalent to river to seawater conditions. The observed results are in excellent agreement with our proposed model. Building on this we combine two aptamers together in an attempt to form a dual sensing strand of DNA for the simultaneous detection of two metal ions. We show experimental and theoretical responses for the aptamer which creates layers of differing charge densities around the nanomaterial. The density and diameter of these zones effects both the viability and sensitivity of the assay. While this approach allows the interrogation of the DNA structure, the data also highlight the limitations and considerations for future assays.
Collapse
Affiliation(s)
- Laura Mayne
- Department of Chemistry , Loughborough University , Loughborough LE11 3TU , United Kingdom
| | | | - Steven D R Christie
- Department of Chemistry , Loughborough University , Loughborough LE11 3TU , United Kingdom
| | | | - Mark Platt
- Department of Chemistry , Loughborough University , Loughborough LE11 3TU , United Kingdom
| |
Collapse
|
24
|
Healey MJ, Rowe W, Siati S, Sivakumaran M, Platt M. Rapid Assessment of Site Specific DNA Methylation through Resistive Pulse Sensing. ACS Sens 2018; 3:655-660. [PMID: 29512379 DOI: 10.1021/acssensors.7b00935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many diseases are defined by patterns of DNA methylation which result in aberrant gene expression. We present a rapid assay based upon resistive pulse sensing, RPS, to characterize sequence specific DNA methylation sites in genomic DNA. We modify the surface of superparamagnetic beads, SPBs, with DNA (capture probe). The particles are added to solution where they bind to and extract sequence specific DNA (target DNA). The target loaded SPBs are then incubated with antibodies which bind to the methylation sites, and the velocity of the SPBs through the nanopore reveals the number and location of the epigenetic markers within the target. The approach is capable of distinguishing between different methylation sites within a DNA promoter region. Crucially the approach is not dependent on accurate sequencing of assayed DNA, with genomic regions targeted through complementary probes. As such the number of stages and reagents costs are low and the assay is complete in under 60 min which includes the incubation and run times. The format also allows simultaneous quantification of number of copies of methylated DNA, and we illustrate this with a dose response curve.
Collapse
Affiliation(s)
- Matthew J. Healey
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - William Rowe
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Sofia Siati
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Muttuswamy Sivakumaran
- Peterborough City Hospital, Edith Cavell Campus, Bretton Gate, Peterborough PE3 9GZ, United Kingdom
| | - Mark Platt
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
25
|
André-Grégoire G, Bidère N, Gavard J. Temozolomide affects Extracellular Vesicles Released by Glioblastoma Cells. Biochimie 2018; 155:11-15. [PMID: 29454008 DOI: 10.1016/j.biochi.2018.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary tumour within the brain as well as the most common and lethal cerebral cancer, mainly because of treatment failure. Indeed, tumour recurrence is inevitable and fatal in a short period of time. Glioblastoma stem-like cells (GSCs) are thought to participate in tumour initiation, expansion, resistance to treatments, including to the alkylating chemotherapeutic agent temozolomide, and relapse. Here, we assessed whether extracellular vesicles (EVs) released by GSCs could disseminate factors involved in resistance mechanisms. We first characterized EVs either circulating in peripheral blood from newly diagnosed patients or released by patient-derived temozolomide-resistant GSCs. We found that EVs from both sources were mainly composed of particles homogeneous in size (50-100 nm), while they were more abundant in liquid biopsies from GBM patients, as compared to healthy donors. Further, mass spectrometry analysis from GSC-derived EVs unveiled that particles from control and temozolomide-treated cells share core components of EVs, as well as ribosome- and proteasome-associated networks. More strikingly, temozolomide treatment led to the enrichment of EVs with cargoes dedicated to cell adhesion processes. Thus, while relatively inefficient in killing GSCs in vitro, temozolomide could instead increase the release of pro-tumoral information.
Collapse
Affiliation(s)
| | - Nicolas Bidère
- CRCINA, Team SOAP, Inserm, CNRS, Université de Nantes, Université d'Angers, France
| | - Julie Gavard
- CRCINA, Team SOAP, Inserm, CNRS, Université de Nantes, Université d'Angers, France; Institut de Cancerologie de l'Ouest, Rene Gauducheau, Saint-Herblain, France.
| |
Collapse
|
26
|
Shao C, Liu Y, Qi J, Su Y, Chen Y, Xu H, Lin Z, Guan H. Real-time detection of the interaction between alpha-fetoprotein and its ssDNA aptamer by dual polarization interferometry. NEW J CHEM 2018. [DOI: 10.1039/c8nj04200d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A real-time and label-free strategy to understand the interaction between biomarkers and ssDNA aptamers.
Collapse
Affiliation(s)
- Chenggang Shao
- The Department of Gastroenterology and Hepatology
- The First Affiliated Hospital of Wenzhou Medical University
- Wenzhou
- P. R. China
- Center of Scientific Research
| | - Yuxin Liu
- Center of Scientific Research
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Jinxia Qi
- Center of Scientific Research
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Yu Su
- Center of Scientific Research
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Yonghui Chen
- Center of Scientific Research
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Huaguo Xu
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Zhenkun Lin
- Center of Scientific Research
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Huaqin Guan
- The Department of Gastroenterology and Hepatology
- The First Affiliated Hospital of Wenzhou Medical University
- Wenzhou
- P. R. China
| |
Collapse
|
27
|
Vogel R, Pal AK, Jambhrunkar S, Patel P, Thakur SS, Reátegui E, Parekh HS, Saá P, Stassinopoulos A, Broom MF. High-Resolution Single Particle Zeta Potential Characterisation of Biological Nanoparticles using Tunable Resistive Pulse Sensing. Sci Rep 2017; 7:17479. [PMID: 29234015 PMCID: PMC5727177 DOI: 10.1038/s41598-017-14981-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/17/2017] [Indexed: 12/25/2022] Open
Abstract
Physicochemical properties of nanoparticles, such as size, shape, surface charge, density, and porosity play a central role in biological interactions and hence accurate determination of these characteristics is of utmost importance. Here we propose tunable resistive pulse sensing for simultaneous size and surface charge measurements on a particle-by-particle basis, enabling the analysis of a wide spectrum of nanoparticles and their mixtures. Existing methodologies for measuring zeta potential of nanoparticles using resistive pulse sensing are significantly improved by including convection into the theoretical model. The efficacy of this methodology is demonstrated for a range of biological case studies, including measurements of mixed anionic, cationic liposomes, extracellular vesicles in plasma, and in situ time study of DNA immobilisation on the surface of magnetic nanoparticles. The high-resolution single particle size and zeta potential characterisation will provide a better understanding of nano-bio interactions, positively impacting nanomedicine development and their regulatory approval.
Collapse
Affiliation(s)
- Robert Vogel
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Anoop K Pal
- Izon Science US Limited, 85 Bolton Street, STE 108, Cambridge, MA, 02140, USA
| | - Siddharth Jambhrunkar
- Mucosal Diseases Group, Translational Research Institute, The University of Queensland, 37 Kent St., Woolloongabba, QLD 4102, Australia
| | - Pragnesh Patel
- Izon Science US Limited, 85 Bolton Street, STE 108, Cambridge, MA, 02140, USA
| | - Sachin S Thakur
- School of Pharmacy, The University of Queensland, 20 Cornwall St., Woolloongabba, QLD 4102, Australia
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Harendra S Parekh
- School of Pharmacy, The University of Queensland, 20 Cornwall St., Woolloongabba, QLD 4102, Australia
| | - Paula Saá
- Scientific Affairs, American Red Cross, Rockville, MD, 20877, USA
| | | | - Murray F Broom
- Izon Science Limited, 8C Homersham Place, PO Box 39168, Burnside, Christchurch 8053, New Zealand
| |
Collapse
|
28
|
Song Y, Zhang J, Li D. Microfluidic and Nanofluidic Resistive Pulse Sensing: A Review. MICROMACHINES 2017; 8:E204. [PMID: 30400393 PMCID: PMC6190343 DOI: 10.3390/mi8070204] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/11/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022]
Abstract
The resistive pulse sensing (RPS) method based on the Coulter principle is a powerful method for particle counting and sizing in electrolyte solutions. With the advancement of micro- and nano-fabrication technologies, microfluidic and nanofluidic resistive pulse sensing technologies and devices have been developed. Due to the unique advantages of microfluidics and nanofluidics, RPS sensors are enabled with more functions with greatly improved sensitivity and throughput and thus have wide applications in fields of biomedical research, clinical diagnosis, and so on. Firstly, this paper reviews some basic theories of particle sizing and counting. Emphasis is then given to the latest development of microfuidic and nanofluidic RPS technologies within the last 6 years, ranging from some new phenomena, methods of improving the sensitivity and throughput, and their applications, to some popular nanopore or nanochannel fabrication techniques. The future research directions and challenges on microfluidic and nanofluidic RPS are also outlined.
Collapse
Affiliation(s)
- Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Junyan Zhang
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
29
|
Mayne LJ, Christie SDR, Platt M. A tunable nanopore sensor for the detection of metal ions using translocation velocity and biphasic pulses. NANOSCALE 2016; 8:19139-19147. [PMID: 27827506 DOI: 10.1039/c6nr07224k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A tunable resistive pulse sensor, utilising a polyurethane nanopore, has been used to characterise nanoparticles as they traverse the pore opening. Herein we demonstrate that the translocation speed, conductive and resistive pulse magnitude, can be used to infer the surface charge of a nanoparticle, and act as a specific transduction signal for the binding of metal ions to ligands on the particle surface. Surfaces of silica nanoparticles were modified with a ligand to demonstrate the concept, and used to extract copper(ii) ions (Cu2+) from solution. By tuning the pH and ionic strength of the solution, a biphasic pulse, a conductive followed by a resistive pulse is recorded. Biphasic pulses are becoming a powerful means to characterise materials, and provide insight into the translocation mechanism, and herein we present their first use to detect the presence of metal ions in solution. We demonstrate how combinations of translocation speed and/or biphasic pulse behaviour are used to detect Cu2+ with quantitative responses across a range of pH and ionic strengths. Using a generic ligand this assay allows a clear signal for Cu2+ as low as 1 ppm with a short 5-minute incubation time, and is capable of measuring 10 ppm Cu2+ in the presence of 5 other ions. The method has potential for monitoring heavy metals in biological and environmental samples.
Collapse
Affiliation(s)
- L J Mayne
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK.
| | | | | |
Collapse
|
30
|
Miao H, Wang L, Zhuo Y, Zhou Z, Yang X. Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice. Biosens Bioelectron 2016; 86:83-89. [DOI: 10.1016/j.bios.2016.06.043] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022]
|
31
|
Blundell ELCJ, Vogel R, Platt M. Determination of Zeta Potential via Nanoparticle Translocation Velocities through a Tunable Nanopore: Using DNA-modified Particles as an Example. J Vis Exp 2016. [PMID: 27805605 DOI: 10.3791/54577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nanopore technologies, known collectively as Resistive Pulse Sensors (RPS), are being used to detect, quantify and characterize proteins, molecules and nanoparticles. Tunable resistive pulse sensing (TRPS) is a relatively recent adaptation to RPS that incorporates a tunable pore that can be altered in real time. Here, we use TRPS to monitor the translocation times of DNA-modified nanoparticles as they traverse the tunable pore membrane as a function of DNA concentration and structure (i.e., single-stranded to double-stranded DNA). TRPS is based on two Ag/AgCl electrodes, separated by an elastomeric pore membrane that establishes a stable ionic current upon an applied electric field. Unlike various optical-based particle characterization technologies, TRPS can characterize individual particles amongst a sample population, allowing for multimodal samples to be analyzed with ease. Here, we demonstrate zeta potential measurements via particle translocation velocities of known standards and apply these to sample analyte translocation times, thus resulting in measuring the zeta potential of those analytes. As well as acquiring mean zeta potential values, the samples are all measured using a particle-by-particle perspective exhibiting more information on a given sample through sample population distributions, for example. Of such, this method demonstrates potential within sensing applications for both medical and environmental fields.
Collapse
Affiliation(s)
| | - Robert Vogel
- Izon Science Limited; School of Mathematics and Physics, The University of Queensland
| | - Mark Platt
- Department of Chemistry, School of Science, Loughborough University;
| |
Collapse
|
32
|
Novel tri-layer self-enhanced Ru(II) complex-based nanoparicles for signal-on electrochemiluminescent aptasensor construction. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Blundell ELCJ, Healey MJ, Holton E, Sivakumaran M, Manstana S, Platt M. Characterisation of the protein corona using tunable resistive pulse sensing: determining the change and distribution of a particle's surface charge. Anal Bioanal Chem 2016; 408:5757-5768. [PMID: 27287012 PMCID: PMC4958399 DOI: 10.1007/s00216-016-9678-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/27/2016] [Accepted: 05/31/2016] [Indexed: 11/30/2022]
Abstract
The zeta potential of the protein corona around carboxyl particles has been measured using tunable resistive pulse sensing (TRPS). A simple and rapid assay for characterising zeta potentials within buffer, serum and plasma is presented monitoring the change, magnitude and distribution of proteins on the particle surface. First, we measure the change in zeta potential of carboxyl-functionalised nanoparticles in solutions that contain biologically relevant concentrations of individual proteins, typically constituted in plasma and serum, and observe a significant difference in distributions and zeta values between room temperature and 37 °C assays. The effect is protein dependent, and the largest difference between the two temperatures is recorded for the γ-globulin protein where the mean zeta potential changes from -16.7 to -9.0 mV for 25 and 37 °C, respectively. This method is further applied to monitor particles placed into serum and/or plasma. A temperature-dependent change is again observed with serum showing a 4.9 mV difference in zeta potential between samples incubated at 25 and 37 °C; this shift was larger than that observed for samples in plasma (0.4 mV). Finally, we monitor the kinetics of the corona reorientation for particles initially placed into serum and then adding 5 % (V/V) plasma. The technology presented offers an interesting insight into protein corona structure and kinetics of formation measured in biologically relevant solutions, i.e. high protein, high salt levels, and its particle-by-particle analysis gives a measure of the distribution of particle zeta potential that may offer a better understanding of the behaviour of nanoparticles in solution. Graphical Abstract The relative velocity of a nanoparticle as it traverses a nanopore can be used to determine its zeta potential. Monitoring the changes in translocation speeds can therefore be used to follow changes to the surface chemistry/composition of 210 nm particles that were placed into protein rich solutions, serum and plasma. The particle-by-particle measurements allow the zeta potential and distribution of the particles to be characterised, illustrating the effects of protein concentration and temperature on the protein corona. When placed into a solution containing a mixture of proteins, the affinity of the protein to the particle's surface determines the corona structure, and is not dependent on the protein concentration.
Collapse
Affiliation(s)
- Emma L C J Blundell
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Matthew J Healey
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Elizabeth Holton
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Muttuswamy Sivakumaran
- Peterborough City Hospital, Edith Cavell Campus, Bretton Gate, Peterborough, PE3 9GZ, UK
| | - Sarabjit Manstana
- Human Genomics Lab, Centre for Global Health and Human Development, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mark Platt
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
34
|
Blundell ELCJ, Vogel R, Platt M. Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1082-1090. [PMID: 26757237 DOI: 10.1021/acs.langmuir.5b03024] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Resistive pulse sensors, RPS, are allowing the transport mechanism of molecules, proteins and even nanoparticles to be characterized as they traverse pores. Previous work using RPS has shown that the size, concentration and zeta potential of the analyte can be measured. Here we use tunable resistive pulse sensing (TRPS) which utilizes a tunable pore to monitor the translocation times of nanoparticles with DNA modified surfaces. We start by demonstrating that the translocation times of particles can be used to infer the zeta potential of known standards and then apply the method to measure the change in zeta potential of DNA modified particles. By measuring the translocation times of DNA modified nanoparticles as a function of packing density, length, structure, and hybridization time, we observe a clear difference in zeta potential using both mean values and population distributions as a function of the DNA structure. We demonstrate the ability to resolve the signals for ssDNA, dsDNA, small changes in base length for nucleotides between 15 and 40 bases long, and even the discrimination between partial and fully complementary target sequences. Such a method has potential and applications in sensors for the monitoring of nanoparticles in both medical and environmental samples.
Collapse
Affiliation(s)
- Emma L C J Blundell
- Department of Chemistry, School of Science, Loughborough University , Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Robert Vogel
- Izon Science Limited , 8C Homersham Place, PO Box 39168, Burnside, Christchurch 8053, New Zealand
- School of Mathematics and Physics, The University of Queensland , Brisbane 4072, Australia
| | - Mark Platt
- Department of Chemistry, School of Science, Loughborough University , Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
35
|
Manta S, Delalande A, Bessodes M, Bureau MF, Scherman D, Pichon C, Mignet N. Characterization of Positively Charged Lipid Shell Microbubbles with Tunable Resistive Pulse Sensing (TRPS) Method: A Technical Note. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:624-630. [PMID: 26653937 DOI: 10.1016/j.ultrasmedbio.2015.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
Microbubbles are polydisperse microparticles. Their size distribution cannot be accurately measured from the current methods used, such as optical microscopy, electrical sensing or light scattering. Indeed, these techniques present some limitations when applied to microbubbles, which prompted us to investigate the use of an alternative technique: tunable resistive pulse sensing (TRPS). This technique is based on the principle of the Coulter counter with the advantage of being more flexible compared to other methods using this principle, since the flow rate, the potential difference and the pore size can be modulated. The main limitation of TRPS is that more than one size of nanopore membrane is required to obtain the full size distribution of polydisperse microparticles. To evaluate this technique, the concentration and the size distribution of positively charged microbubbles were studied using TRPS and compared to data obtained using optical microscopy. We describe herein the parameters required for the accurate measurement of microbubble concentration and size distribution by TRPS and present a statistical comparison of the data obtained by TRPS and optical microscopy.
Collapse
Affiliation(s)
- Simona Manta
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France
| | - Anthony Delalande
- Center for Molecular Biophysics (CBM), CNRS UPR4301, Orléans, France
| | - Michel Bessodes
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France
| | - Michel Francis Bureau
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France
| | - Daniel Scherman
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France
| | - Chantal Pichon
- Center for Molecular Biophysics (CBM), CNRS UPR4301, Orléans, France
| | - Nathalie Mignet
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France.
| |
Collapse
|
36
|
Blundell ELCJ, Mayne LJ, Lickorish M, Christie SDR, Platt M. Protein detection using tunable pores: resistive pulses and current rectification. Faraday Discuss 2016; 193:487-505. [DOI: 10.1039/c6fd00072j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present the first comparison between assays that use resistive pulses or rectification ratios on a tunable pore platform. We compare their ability to quantify the cancer biomarker Vascular Endothelial Growth Factor (VEGF). The first assay measures the electrophoretic mobility of aptamer modified nanoparticles as they traverse the pore. By controlling the aptamer loading on the particle surface, and measuring the speed of each translocation event we are able to observe a change in velocity as low as 18 pM. A second non-particle assay exploits the current rectification properties of conical pores. We report the first use of Layer-by-Layer (LbL) assembly of polyelectrolytes onto the surface of the polyurethane pore. The current rectification ratios demonstrate the presence of the polymers, producing pH and ionic strength-dependent currents. The LbL assembly allows the facile immobilisation of DNA aptamers onto the pore allowing a specific dose response to VEGF. Monitoring changes to the current rectification allows for a rapid detection of 5 pM VEGF. Each assay format offers advantages in their setup and ease of preparation but comparable sensitivities.
Collapse
Affiliation(s)
| | - Laura J. Mayne
- Department of Chemistry
- Loughborough University
- Loughborough
- United Kingdom
| | - Michael Lickorish
- Department of Chemistry
- Loughborough University
- Loughborough
- United Kingdom
| | | | - Mark Platt
- Department of Chemistry
- Loughborough University
- Loughborough
- United Kingdom
| |
Collapse
|
37
|
Liu YM, Cao JT, Liu YY, Zhang JJ, Zhou M, Huang KJ, Chen YH, Ren SW. Aptamer-based detection and quantitative analysis of human immunoglobulin E in capillary electrophoresis with chemiluminescence detection. Electrophoresis 2015; 36:2413-8. [PMID: 26095306 DOI: 10.1002/elps.201500158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/27/2015] [Accepted: 05/18/2015] [Indexed: 11/08/2022]
Abstract
A novel aptamer-based CE with chemiluminescence (CL) assay was developed for highly sensitive detection of human immunoglobulin E (IgE). The IgE aptamer was conjugated with gold nanoparticles (AuNPs) to form AuNPs-aptamer that could specifically recognize the IgE to produce an AuNPs-aptamer-IgE complex. The mixture of the AuNPs-aptamer-IgE complex and the unbounded AuNPs-aptamer could be effectively separated by CE and sensitively detected with luminol-H2 O2 CL system. By taking the advantage of the excellent catalytic behavior of AuNPs on luminol-H2 O2 CL system, the ultrasensitive detection of IgE was achieved. The detection limit of IgE is 7.6 fM (S/N = 3) with a linear range from 0.025 to 250 pM. Successful detection of IgE in human serum samples was demonstrated and the recoveries of 94.9-103.2% were obtained. The excellent assay features of the developed approach are its specificity, sensitivity, adaptability, and very small sample consumption. Our design provides a methodology model for determination of rare proteins in biological samples.
Collapse
Affiliation(s)
- Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, P. R. China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, P. R. China
| | - Ying-Ying Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, P. R. China
| | - Jing-Jing Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, P. R. China
| | - Min Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, P. R. China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, P. R. China
| | | | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang, P. R. China
| |
Collapse
|
38
|
Harms ZD, Haywood DG, Kneller AR, Jacobson SC. Conductivity-based detection techniques in nanofluidic devices. Analyst 2015; 140:4779-91. [PMID: 25988434 PMCID: PMC4756766 DOI: 10.1039/c5an00075k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers conductivity detection in fabricated nanochannels and nanopores. Improvements in nanoscale sensing are a direct result of advances in fabrication techniques, which produce devices with channels and pores with reproducible dimensions and in a variety of materials. Analytes of interest are detected by measuring changes in conductance as the analyte accumulates in the channel or passes transiently through the pore. These detection methods take advantage of phenomena enhanced at the nanoscale, such as ion current rectification, surface conductance, and dimensions comparable to the analytes of interest. The end result is the development of sensing technologies for a broad range of analytes, e.g., ions, small molecules, proteins, nucleic acids, and particles.
Collapse
Affiliation(s)
- Zachary D Harms
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
39
|
Billinge ER, Platt M. Multiplexed, label-free detection of biomarkers using aptamers and Tunable Resistive Pulse Sensing (AptaTRPS). Biosens Bioelectron 2015; 68:741-748. [PMID: 25682502 DOI: 10.1016/j.bios.2015.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/06/2015] [Indexed: 12/26/2022]
Abstract
Diagnostics that are capable of detecting multiple biomarkers are improving the accuracy and efficiency of bioassays. In previous work we have demonstrated the potential of an aptamer-based sensor (aptasensor) utilising Tunable Resistive Pulse Sensing (TRPS). Here, we have advanced the technique identifying key experimental designs for potential POC assays. The assay utilised superparamagnetic beads, and using TRPS monitored their translocations through a pore. If the surfaces of the beads are modified with an aptamer, the frequency of beads (translocations/min) through the pore can be related to the concentration of specific proteins in the solution. Herein, we have demonstrated the successful use of TRPS to observe the binding of two proteins, to their specific aptamers simultaneously. We describe a series of experiments illustrating key factors which we believe are integral to bead-based assays and demonstrate a general method for a multiplexed assay. In summary, we have explored the effects of beads size, concentration, potential bias, pH and aptamer affinity to enhance the sensitivity and practically of a TRPS aptasensor. The method utilises the fact the binding of the aptamer to the protein results in a change in charge density on the bead surface, the isoelectric point of the protein then dominates the mobility of the beads, creating a multiplexed assay termed AptaTRPS. By alteration of the applied potential to the instrument it is possible to produce a positive signal in a simple multiplexed assay.
Collapse
Affiliation(s)
- Emily R Billinge
- Centre of Analytical Sciences, Department of Chemistry, School of Science, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Mark Platt
- Centre of Analytical Sciences, Department of Chemistry, School of Science, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom.
| |
Collapse
|
40
|
Abstract
This Review focusses on the recent surge in applied research using tunable resistive pulse sensing, a technique used to analyse submicron colloids in aqueous solutions on a particle-by-particle basis.
Collapse
Affiliation(s)
- Eva Weatherall
- The MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- New Zealand
- Callaghan Innovation
| | - Geoff R. Willmott
- The MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- New Zealand
- The Departments of Physics and Chemistry
| |
Collapse
|
41
|
Haywood DG, Saha-Shah A, Baker LA, Jacobson SC. Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets. Anal Chem 2014; 87:172-87. [PMID: 25405581 PMCID: PMC4287834 DOI: 10.1021/ac504180h] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Daniel G Haywood
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405-7102, United States
| | | | | | | |
Collapse
|