1
|
Lorandel B, Rocha H, Cazimajou O, Mishra R, Bernard A, Bowyer P, Nilsson M, Dumez JN. Speedy Component Resolution Using Spatially Encoded Diffusion NMR Data. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024. [PMID: 39415466 DOI: 10.1002/mrc.5488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Diffusion-ordered NMR spectroscopy (DOSY) is a powerful tool to analyse mixtures. Spatially encoded (SPEN) DOSY enables recording a full DOSY dataset in just one scan by performing spatial parallelisation of the gradient dimension. The simplest and most widely used approach to processing DOSY data is to fit each peak in the spectrum with a single or multiple exponential decay. However, when there is peak overlap, and/or when the diffusion decays of the contributing components are too similar, this method has limitations. Multivariate analysis of DOSY data, which is an attractive alternative, consists of decomposing the experimental data, into compound-specific diffusion decays and 1D NMR spectra. Multivariate analysis has been very successfully used for conventional DOSY data, but its use for SPEN DOSY data has only recently been reported. Here, we present a comparison, for SPEN DOSY data, of two widely used algorithms, SCORE and OUTSCORE, that aim at unmixing the spectra of overlapped species through a least square fit or a cross-talk minimisation, respectively. Data processing was performed with the General NMR Analysis Toolbox (GNAT), with custom-written code elements that now expands the capabilities, and makes it possible to import and process SPEN DOSY data. This comparison is demonstrated on three different two-component mixtures, each with different characteristics in terms of signal overlap, diffusion coefficient similarity, and component concentration.
Collapse
Affiliation(s)
| | - Hugo Rocha
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | | | | | | | - Mathias Nilsson
- Department of Chemistry, University of Manchester, Manchester, UK
| | | |
Collapse
|
2
|
Dumez JN. NMR methods for the analysis of mixtures. Chem Commun (Camb) 2022; 58:13855-13872. [PMID: 36458684 PMCID: PMC9753098 DOI: 10.1039/d2cc05053f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 07/31/2023]
Abstract
NMR spectroscopy is a powerful approach for the analysis of mixtures. Its usefulness arises in large part from the vast landscape of methods, and corresponding pulse sequences, that have been and are being designed to tackle the specific properties of mixtures of small molecules. This feature article describes a selection of methods that aim to address the complexity, the low concentrations, and the changing nature that mixtures can display. These notably include pure-shift and diffusion NMR methods, hyperpolarisation methods, and fast 2D NMR methods such as ultrafast 2D NMR and non-uniform sampling. Examples or applications are also described, in fields such as reaction monitoring and metabolomics, to illustrate the relevance and limitations of different methods.
Collapse
|
3
|
Leroy R, Pedinielli F, Bourbon G, Nuzillard JM, Lameiras P. Use of Diethanolamine as a Viscous Solvent for Mixture Analysis by Multidimensional Heteronuclear ViscY NMR Experiments. Anal Chem 2022; 94:9278-9286. [PMID: 35737881 DOI: 10.1021/acs.analchem.2c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diethanolamine/DMSO-d6 as a viscous binary solvent is first reported for the individualization of low-polarity mixture components by multidimensional heteronuclear ViscY NMR experiments under spin diffusion conditions. Solvent viscosity induces the slowing down of molecular tumbling, hence promoting magnetization transfer by dipolar longitudinal cross-relaxation. As a result, all 1H nuclei resonances within the same molecule may correlate in a 2D nuclear Overhauser effect spectroscopy (NOESY) spectrum, giving access to mixture analysis. We offer a new way to analyze mixtures by considering 3D heteronuclear heteronuclear single-quantum coherence-NOESY (HSQC-NOESY) experiments under viscous conditions. We state the individualization of four low-polarity chemical compounds dissolved in the diethanolamine/DMSO-d6 solvent blend using homonuclear selective 1D, 2D 1H-1H NOESY experiments and heteronuclear 1D, 2D 1H-19F heteronuclear Overhauser effect spectroscopy, 2D 1H-19F, 1H-31P HSQC-NOESY, and 3D 1H-19F-1H, 1H-31P-1H HSQC-NOESY experiments by taking profit from spin diffusion.
Collapse
Affiliation(s)
- Ritchy Leroy
- Université de Reims Champagne-Ardenne, CNRS ICMR UMR 7312, 51097 Reims, France
| | - Francois Pedinielli
- Université de Reims Champagne-Ardenne, CNRS ICMR UMR 7312, 51097 Reims, France
| | - Gautier Bourbon
- Université de Reims Champagne-Ardenne, CNRS ICMR UMR 7312, 51097 Reims, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne-Ardenne, CNRS ICMR UMR 7312, 51097 Reims, France
| | - Pedro Lameiras
- Université de Reims Champagne-Ardenne, CNRS ICMR UMR 7312, 51097 Reims, France
| |
Collapse
|
4
|
Rahbek S, Madsen KH, Lundell H, Mahmood F, Hanson LG. Data-driven separation of MRI signal components for tissue characterization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107103. [PMID: 34801822 DOI: 10.1016/j.jmr.2021.107103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE MRI can be utilized for quantitative characterization of tissue. To assess e.g. water fractions or diffusion coefficients for compartments in the brain, a decomposition of the signal is necessary. Imposing standard models carries the risk of estimating biased parameters if model assumptions are violated. This work introduces a data-driven multicomponent analysis, the monotonous slope non-negative matrix factorization (msNMF), tailored to extract data features expected in MR signals. METHODS The msNMF was implemented by extending the standard NMF with monotonicity constraints on the signal profiles and their first derivatives. The method was validated using simulated data, and subsequently applied to both ex vivo DWI data and in vivo relaxometry data. Reproducibility of the method was tested using the latter. RESULTS The msNMF recovered the multi-exponential signals in the simulated data and showed superiority to standard NMF (based on the explained variance, area under the ROC curve, and coefficient of variation). Diffusion components extracted from the DWI data reflected the cell density of the underlying tissue. The relaxometry analysis resulted in estimates of edema water fractions (EWF) highly correlated with published results, and demonstrated acceptable reproducibility. CONCLUSION The msNMF can robustly separate MR signals into components with relation to the underlying tissue composition, and may potentially be useful for e.g. tumor tissue characterization.
Collapse
Affiliation(s)
- Sofie Rahbek
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650, Denmark
| | - Faisal Mahmood
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense C 5000, Denmark; Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
| | - Lars G Hanson
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650, Denmark.
| |
Collapse
|
5
|
Mishra R, Marchand A, Jacquemmoz C, Dumez JN. Ultrafast diffusion-based unmixing of 1H NMR spectra. Chem Commun (Camb) 2021; 57:2384-2387. [PMID: 33538725 DOI: 10.1039/d0cc07757g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We show that the NMR spectra of components in a mixture can be separated using 2D data acquired in less than one second, and an algorithm that is executed in just a few seconds. This NMR unmixing method is based on spatial encoding of the translational diffusion coefficients of the mixture's components, with multivariate processing of the data. This requires a new frequency swept pulse, which is designed and implemented to obtain quadratic spacing of the spatially parallelised gradient dimension. Ultrafast NMR unmixing may help in the analysis of mixtures that evolve in time.
Collapse
Affiliation(s)
- Rituraj Mishra
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| | | | | | | |
Collapse
|
6
|
Yuan B, Zhang X, Kamal GM, Jiang B, Liu M. Accurate estimation of diffusion coefficient for molecular identification in a complex background. Anal Bioanal Chem 2020; 412:4519-4525. [PMID: 32405677 DOI: 10.1007/s00216-020-02693-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 11/25/2022]
Abstract
To eliminate the effects of complex background signals and to enhance the accuracy of the diffusion coefficient measurement, derivative NMR spectroscopy with negligible loss of the spectral quality is introduced based on the customized Savitzky-Golay method and used to construct diffusion-ordered NMR spectroscopy (DOSY). The criterion of the method was established by simulations. The application of this method on mouse urine and serum showed that the accuracy and precision of diffusion coefficient measurements in a complex background were improved to enhance the identification of molecules. Graphical abstract Diffusion-ordered NMR spectroscopy is a powerful tool for analyzing complex mixtures. To improve the accuracy of diffusion coefficient measurement, the magnitude of complex derivative spectra is introduced as a post-processing method to eliminate the effects of background signals, broad signals, or distorted baseline. And thus, accurate estimate of the diffusion coefficient is ensured to enhance the molecule identification.
Collapse
Affiliation(s)
- Bin Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Ghulam Mustafa Kamal
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
7
|
Evans R. The interpretation of small molecule diffusion coefficients: Quantitative use of diffusion-ordered NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:33-69. [PMID: 32471534 DOI: 10.1016/j.pnmrs.2019.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 06/11/2023]
Abstract
Measuring accurate molecular self-diffusion coefficients, D, by nuclear magnetic resonance (NMR) techniques has become routine as hardware, software and experimental methodologies have all improved. However, the quantitative interpretation of such data remains difficult, particularly for small molecules. This review article first provides a description of, and explanation for, the failure of the Stokes-Einstein equation to accurately predict small molecule diffusion coefficients, before moving on to three broadly complementary methods for their quantitative interpretation. Two are based on power laws, but differ in the nature of the reference molecules used. The third addresses the uncertainties in the Stokes-Einstein equation directly. For all three methods, a wide range of examples are used to show the range of chemistry to which diffusion NMR can be applied, and how best to implement the different methods to obtain quantitative information from the chemical systems studied.
Collapse
Affiliation(s)
- Robert Evans
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, United Kingdom.
| |
Collapse
|
8
|
Bruno F, Francischello R, Bellomo G, Gigli L, Flori A, Menichetti L, Tenori L, Luchinat C, Ravera E. Multivariate Curve Resolution for 2D Solid-State NMR spectra. Anal Chem 2020; 92:4451-4458. [PMID: 32069028 PMCID: PMC7997113 DOI: 10.1021/acs.analchem.9b05420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present a processing method, based on the multivariate curve resolution approach (MCR), to denoise 2D solid-state NMR spectra, yielding a substantial S/N ratio increase while preserving the lineshapes and relative signal intensities. These spectral features are particularly important in the quantification of silicon species, where sensitivity is limited by the low natural abundance of the 29Si nuclei and by the dilution of the intrinsic protons of silica, but can be of interest also when dealing with other intermediate-to-low receptivity nuclei. This method also offers the possibility of coprocessing multiple 2D spectra that have the signals at the same frequencies but with different intensities (e.g.: as a result of a variation in the mixing time). The processing can be carried out on the time-domain data, thus preserving the possibility of applying further processing to the data. As a demonstration, we have applied Cadzow denoising on the MCR-processed FIDs, achieving a further increase in the S/N ratio and more effective denoising also on the transients at longer indirect evolution times. We have applied the combined denoising on a set of experimental data from a lysozyme-silica composite.
Collapse
Affiliation(s)
- Francesco Bruno
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Roberto Francischello
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi, 1 56124 Pisa, Italy.,Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Giovanni Bellomo
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Lucia Gigli
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Alessandra Flori
- Fondazione Regione Toscana G. Monasterio, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi, 1 56124 Pisa, Italy.,Fondazione Regione Toscana G. Monasterio, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Cherni A, Piersanti E, Anthoine S, Chaux C, Shintu L, Yemloul M, Torrésani B. Challenges in the decomposition of 2D NMR spectra of mixtures of small molecules. Faraday Discuss 2019; 218:459-480. [PMID: 31173013 DOI: 10.1039/c9fd00014c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Analytical methods for mixtures of small molecules require specificity (is a certain molecule present in the mix?) and speciation capabilities. NMR spectroscopy has been a tool of choice for both of these issues since its early days, due to its quantitative (linear) response, sufficiently high resolving power and capabilities of inferring molecular structures from spectral features (even in the absence of a reference database). However, the analytical performances of NMR spectroscopy are being stretched by the increased complexity of the samples, the dynamic range of the components, and the need for a reasonable turnover time. One approach that has been actively pursued for disentangling the composition complexity is the use of 2D NMR spectroscopy. While any of the many experiments from this family will increase the spectral resolution, some are more apt for mixtures, as they are capable of unveiling signals belonging to whole molecules or fragments of it. Among the most popular ones, one can enumerate HSQC-TOCSY, DOSY and Maximum-Quantum (MaxQ) NMR spectroscopy. For multicomponent samples, the development of robust mathematical methods of signal decomposition would provide a clear edge towards identification. We have been pursuing, along these lines, Blind Source Separation (BSS). Here, the un-mixing of the spectra is achieved relying on correlations detected on a series of datasets. The series could be associated with samples of different relative composition or in a classically acquired 2D experiment by the mathematical laws underlying the construction of the indirect dimension, the one not recorded by the spectrometer. Many algorithms have been proposed for BSS in NMR spectroscopy since the seminal work of Nuzillard. In this paper, we use rather standard algorithms in BSS in order to disentangle NMR spectra. We show on simulated data (both 1D and 2D HSQC) that these approaches enable us to accurately disentangle multiple components, and provide good estimates for the concentrations of compounds. Furthermore, we show that after proper realignment of the signals, the same algorithms are able to disentangle real 1D NMR spectra. We obtain similar results on 2D HSQC spectra, where the BSS algorithms are able to successfully disentangle components, and provide even better estimates for concentrations.
Collapse
Affiliation(s)
- Afef Cherni
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Dal Poggetto G, Castañar L, Adams RW, Morris GA, Nilsson M. Dissect and Divide: Putting NMR Spectra of Mixtures under the Knife. J Am Chem Soc 2019; 141:5766-5771. [DOI: 10.1021/jacs.8b13290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Guilherme Dal Poggetto
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Laura Castañar
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Ralph W. Adams
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gareth A. Morris
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Mathias Nilsson
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
11
|
Yamada S, Ito K, Kurotani A, Yamada Y, Chikayama E, Kikuchi J. InterSpin: Integrated Supportive Webtools for Low- and High-Field NMR Analyses Toward Molecular Complexity. ACS OMEGA 2019; 4:3361-3369. [PMID: 31459550 PMCID: PMC6648201 DOI: 10.1021/acsomega.8b02714] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/24/2018] [Indexed: 05/06/2023]
Abstract
InterSpin (http://dmar.riken.jp/interspin/) comprises integrated, supportive, and freely accessible preprocessing webtools and a database to advance signal assignment in low- and high-field NMR analyses of molecular complexities ranging from small molecules to macromolecules for food, material, and environmental applications. To support handling of the broad spectra obtained from solid-state NMR or low-field benchtop NMR, we have developed and evaluated two preprocessing tools: sensitivity improvement with spectral integration, which enhances the signal-to-noise ratio by spectral integration, and peaks separation, which separates overlapping peaks by several algorithms, such as non-negative sparse coding. In addition, the InterSpin Laboratory Information Management System (SpinLIMS) database stores numerous standard spectra ranging from small molecules to macromolecules in solid and solution states (dissolved in polar/nonpolar solvents), and can be searched under various conditions using the following molecular assignment tools. SpinMacro supports easy assignment of macromolecules in natural mixtures via solid-state 13C peaks and dimethyl sulfoxide-dissolved 1H-13C correlation peaks. InterAnalysis improves the accuracy of molecular assignment by integrated analysis of 1H-13C correlation peaks and 1H-J correlation peaks of small molecules dissolved in D2O or deuterated methanol, which supports easy narrowing down of metabolite candidates. Finally, by enabling database interoperability, SpinLIMS's client software will ultimately support scientific discovery by facilitating sharing and reusing of NMR data.
Collapse
Affiliation(s)
- Shunji Yamada
- Graduate
School of Bioagricultural Sciences, Nagoya
University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kengo Ito
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Kurotani
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yutaka Yamada
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Eisuke Chikayama
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department
of Information Systems, Niigata University
of International and Information Studies, 3-1-1 Mizukino, Nishi-ku, Niigata-shi, Niigata 950-2292, Japan
| | - Jun Kikuchi
- Graduate
School of Bioagricultural Sciences, Nagoya
University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- E-mail: . Phone/Fax: +81-544039439
| |
Collapse
|
12
|
Dal Poggetto G, Castañar L, Foroozandeh M, Kiraly P, Adams RW, Morris GA, Nilsson M. Unexploited Dimension: New Software for Mixture Analysis by 3D Diffusion-Ordered NMR Spectroscopy. Anal Chem 2018; 90:13695-13701. [DOI: 10.1021/acs.analchem.8b04093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guilherme Dal Poggetto
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Laura Castañar
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Mohammadali Foroozandeh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Peter Kiraly
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Ralph W. Adams
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gareth A. Morris
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Mathias Nilsson
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
13
|
Semiblind Spectral Factorization Approach for Magnetic Resonance Spectroscopy Quantification. IEEE Trans Biomed Eng 2018; 65:1717-1724. [DOI: 10.1109/tbme.2017.2770088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Castañar L, Poggetto GD, Colbourne AA, Morris GA, Nilsson M. The GNAT: A new tool for processing NMR data. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:546-558. [PMID: 29396867 PMCID: PMC6001793 DOI: 10.1002/mrc.4717] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 05/31/2023]
Abstract
The GNAT (General NMR Analysis Toolbox) is a free and open-source software package for processing, visualising, and analysing NMR data. It supersedes the popular DOSY Toolbox, which has a narrower focus on diffusion NMR. Data import of most common formats from the major NMR platforms is supported, as well as a GNAT generic format. Key basic processing of NMR data (e.g., Fourier transformation, baseline correction, and phasing) is catered for within the program, as well as more advanced techniques (e.g., reference deconvolution and pure shift FID reconstruction). Analysis tools include DOSY and SCORE for diffusion data, ROSY T1 /T2 estimation for relaxation data, and PARAFAC for multilinear analysis. The GNAT is written for the MATLAB® language and comes with a user-friendly graphical user interface. The standard version is intended to run with a MATLAB installation, but completely free-standing compiled versions for Windows, Mac, and Linux are also freely available.
Collapse
Affiliation(s)
- Laura Castañar
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | | - Adam A. Colbourne
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Gareth A. Morris
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Mathias Nilsson
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
15
|
Ning C, Ge W, Lyu Z, Luo D, Shi K, Pedersen CM, Nielsen MM, Qiao Y, Wang Y. Ca2+
-Assisted DOSY NMR: An Unexpected Tool for Anomeric Identification for d
-Glucopyranose. ChemistrySelect 2018. [DOI: 10.1002/slct.201800316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caifang Ning
- Institute of Coal Chemistry; Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001, People's Republic of China
- Graduate University of Chinese Academy of Sciences; Beijing, People's Republic of China
| | - Wenzhi Ge
- Institute of Coal Chemistry; Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001, People's Republic of China
- Bruker (Beijing) Scientific Technology Co. Ltd. 8F, Tower C, Building B-6; No 66 Xi Xiao Kou Road, Haidian District Beijing China 100192
| | - Zexiang Lyu
- Institute of Coal Chemistry; Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001, People's Republic of China
| | - Dan Luo
- Institute of Coal Chemistry; Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001, People's Republic of China
- Graduate University of Chinese Academy of Sciences; Beijing, People's Republic of China
| | - Kemeng Shi
- Institute of Coal Chemistry; Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001, People's Republic of China
- Graduate University of Chinese Academy of Sciences; Beijing, People's Republic of China
| | | | - Michael Martin Nielsen
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 DK-2100 Copenhagen Denmark
| | - Yan Qiao
- Institute of Coal Chemistry; Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001, People's Republic of China
| | - Yingxiong Wang
- Institute of Coal Chemistry; Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001, People's Republic of China
| |
Collapse
|
16
|
Guduff L, Kurzbach D, van Heijenoort C, Abergel D, Dumez JN. Single-Scan 13
C Diffusion-Ordered NMR Spectroscopy of DNP-Hyperpolarised Substrates. Chemistry 2017; 23:16722-16727. [DOI: 10.1002/chem.201703300] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Ludmilla Guduff
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris Sud; Université Paris-Saclay; 91190 Gif-sur-Yvette France
| | - Dennis Kurzbach
- Laboratoire des Biomolécules; Département de chimie; Ecole normale supérieure; UPMC Univ. Paris 06; CNRS; PSL Research University; 75005 Paris France
- Laboratoire des Biomolécules; Sorbonne Universités; UPMC Univ. Paris 06; Ecole normale supérieure; CNRS; 75005 Paris France
| | - Carine van Heijenoort
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris Sud; Université Paris-Saclay; 91190 Gif-sur-Yvette France
| | - Daniel Abergel
- Laboratoire des Biomolécules; Département de chimie; Ecole normale supérieure; UPMC Univ. Paris 06; CNRS; PSL Research University; 75005 Paris France
- Laboratoire des Biomolécules; Sorbonne Universités; UPMC Univ. Paris 06; Ecole normale supérieure; CNRS; 75005 Paris France
| | - Jean-Nicolas Dumez
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris Sud; Université Paris-Saclay; 91190 Gif-sur-Yvette France
| |
Collapse
|
17
|
Reile I, Aspers RLEG, Tyburn JM, Kempf JG, Feiters MC, Rutjes FPJT, Tessari M. DOSY Analysis of Micromolar Analytes: Resolving Dilute Mixtures by SABRE Hyperpolarization. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703577] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Indrek Reile
- Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Ruud L. E. G. Aspers
- Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | | | | | - Martin C. Feiters
- Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Floris P. J. T. Rutjes
- Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Marco Tessari
- Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| |
Collapse
|
18
|
Reile I, Aspers RLEG, Tyburn JM, Kempf JG, Feiters MC, Rutjes FPJT, Tessari M. DOSY Analysis of Micromolar Analytes: Resolving Dilute Mixtures by SABRE Hyperpolarization. Angew Chem Int Ed Engl 2017; 56:9174-9177. [DOI: 10.1002/anie.201703577] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/25/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Indrek Reile
- Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Ruud L. E. G. Aspers
- Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | | | | | - Martin C. Feiters
- Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Floris P. J. T. Rutjes
- Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Marco Tessari
- Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| |
Collapse
|
19
|
Yuan B, Ding Y, Kamal GM, Shao L, Zhou Z, Jiang B, Sun P, Zhang X, Liu M. Reconstructing diffusion ordered NMR spectroscopy by simultaneous inversion of Laplace transform. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 278:1-7. [PMID: 28301804 DOI: 10.1016/j.jmr.2017.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
2D diffusion-ordered NMR spectroscopy (DOSY) has been widely recognized as a powerful tool for analyzing mixtures and probing inter-molecular interactions in situ. But it is difficult to differentiate molecules with similar diffusion coefficients in presence of overlapped spectra. Its performance is susceptible to the number of chemical components, and usually gets worse when the number of components increases. Here, to alleviate the problem, numerical simultaneous inversion of Laplace transform (SILT) of many related variables is proposed for reconstructing DOSY spectrum (SILT-DOSY). The advantage of the proposed method in comparison to other methods is that it is capable of estimating the number of analytes more accurately and deriving corresponding component spectra, which in turn leads to the more reliable identification of the components.
Collapse
Affiliation(s)
- Bin Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yiming Ding
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Ghulam M Kamal
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Limin Shao
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhiming Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Peng Sun
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
20
|
Dal Poggetto G, Antunes VU, Nilsson M, Morris GA, Tormena CF. 19 F NMR matrix-assisted DOSY: a versatile tool for differentiating fluorinated species in mixtures. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:323-328. [PMID: 27682133 DOI: 10.1002/mrc.4534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/09/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
NMR is the most versatile tool for the analysis of organic compounds and, in combination with Diffusion-Ordered Spectroscopy ('DOSY'), can give information on compounds in complex mixtures without the need for physical separation. In mixtures where the components' diffusion coefficients are nearly identical, for example because of similar sizes, Matrix-Assisted DOSY ('MAD') can help separate the signals of different constituents, resolving their spectra. Unfortunately, DOSY (including MAD) typically fails where signals overlap, as is common in 1 H NMR. Using 19 F NMR avoids such problems, because the great sensitivity of the 19 F chemical shift to local environment leads to very well-dispersed spectra. Another advantage is the absence of any 19 F background signals from the matrices typically used, avoiding interference with the analyte signals. In this study, differentiation among fluorophenol and fluoroaniline isomers was evaluated using normal and reverse micelles-of sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB) and dioctyl sodium sulfosuccinate (AOT)-as matrices. These surfactants provide useful diffusion separation in these difficult mixtures, with all the solutes interacting with the matrices to different extents, in some cases leading to differences in diffusion coefficient of more than 30%. The best matrices for separating the signals of both acid and basic species were shown to be AOT and CTAB, which are useful over a wide range of surfactant concentration. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Guilherme Dal Poggetto
- Institute of Chemistry, University of Campinas, São Paulo, Brazil
- School of Chemistry, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Victor U Antunes
- Institute of Chemistry, University of Campinas, São Paulo, Brazil
| | - Mathias Nilsson
- School of Chemistry, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Gareth A Morris
- School of Chemistry, University of Manchester, Manchester, M13 9PL, United Kingdom
| | | |
Collapse
|
21
|
Guduff L, Kuprov I, van Heijenoort C, Dumez JN. Spatially encoded 2D and 3D diffusion-ordered NMR spectroscopy. Chem Commun (Camb) 2017; 53:701-704. [DOI: 10.1039/c6cc09028a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The separation of 2D spectra of components in mixtures is accelerated with spatial encoding.
Collapse
Affiliation(s)
- Ludmilla Guduff
- Institut de Chimie des Substances Naturelles
- CNRS UPR2301
- Univ. Paris Sud
- Université Paris-Saclay
- 91190 Gif-sur-Yvette
| | - Ilya Kuprov
- School of Chemistry
- University of Southampton
- Southampton SO17 1BJ
- UK
| | - Carine van Heijenoort
- Institut de Chimie des Substances Naturelles
- CNRS UPR2301
- Univ. Paris Sud
- Université Paris-Saclay
- 91190 Gif-sur-Yvette
| | - Jean-Nicolas Dumez
- Institut de Chimie des Substances Naturelles
- CNRS UPR2301
- Univ. Paris Sud
- Université Paris-Saclay
- 91190 Gif-sur-Yvette
| |
Collapse
|
22
|
Pagès G, Gilard V, Martino R, Malet-Martino M. Pulsed-field gradient nuclear magnetic resonance measurements (PFG NMR) for diffusion ordered spectroscopy (DOSY) mapping. Analyst 2017; 142:3771-3796. [DOI: 10.1039/c7an01031a] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The advent of Diffusion Ordered SpectroscopY (DOSY) NMR has enabled diffusion coefficients to be routinely measured and used to characterize chemical systems in solution. Indeed, DOSY NMR allows the separation of the chemical entities present in multicomponent systems and provides information on their intermolecular interactions as well as on their size and shape.
Collapse
Affiliation(s)
- G. Pagès
- INRA
- AgroResonance – UR370 Qualité des Produits Animaux
- Saint Genès Champanelle
- France
| | - V. Gilard
- Groupe de RMN Biomédicale
- Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique
- UMR CNRS 5068
- Université de Toulouse
- 31062 Toulouse cedex 9
| | - R. Martino
- Groupe de RMN Biomédicale
- Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique
- UMR CNRS 5068
- Université de Toulouse
- 31062 Toulouse cedex 9
| | - M. Malet-Martino
- Groupe de RMN Biomédicale
- Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique
- UMR CNRS 5068
- Université de Toulouse
- 31062 Toulouse cedex 9
| |
Collapse
|
23
|
Cherni A, Chouzenoux E, Delsuc MA. PALMA, an improved algorithm for DOSY signal processing. Analyst 2017; 142:772-779. [DOI: 10.1039/c6an01902a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR is a tool of choice for the measurement of diffusion coefficients of species in solution.
Collapse
Affiliation(s)
- Afef Cherni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)
- INSERM U596
- CNRS UMR 7104
- Université de Strasbourg
- 67404 Illkirch-Graffenstaden
| | | | - Marc-André Delsuc
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)
- INSERM U596
- CNRS UMR 7104
- Université de Strasbourg
- 67404 Illkirch-Graffenstaden
| |
Collapse
|
24
|
Tron A, Pianet I, Martinez-Cuezva A, Tucker JHR, Pisciottani L, Alajarin M, Berna J, McClenaghan ND. Remote Photoregulated Ring Gliding in a [2]Rotaxane via a Molecular Effector. Org Lett 2016; 19:154-157. [DOI: 10.1021/acs.orglett.6b03457] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arnaud Tron
- Institut
des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 33405 Talence, France
| | - Isabelle Pianet
- Institut
des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 33405 Talence, France
| | - Alberto Martinez-Cuezva
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain
| | - James H. R. Tucker
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Luca Pisciottani
- Institut
des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 33405 Talence, France
| | - Mateo Alajarin
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jose Berna
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain
| | - Nathan D. McClenaghan
- Institut
des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 33405 Talence, France
| |
Collapse
|
25
|
Yang Y, Wu R, Huang S, Bai Z. Silica sol assisted chromatographic NMR spectroscopy for resolution of trans- and cis-isomers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 265:210-214. [PMID: 26942864 DOI: 10.1016/j.jmr.2016.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/19/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Chromatographic NMR spectroscopy can separate the mixtures of species with significantly different molecular size, but generally fails for isomeric species. Herein, we reported the resolution of trans- and cis-isomers and their structural analogue, which are different in molecular shapes, but similar in mass, were greatly enhanced in the presence of silica sol. The mixtures of maleic acid, fumaric acid and succinic acid, and the mixtures of trans- and cis-1,2-cyclohexanedicarboxylic acids, were distinguished by virtue of their different degrees of interaction with silica sol. Moreover, we found mixed solvents could improve the spectral resolution of DOSY spectra of mixtures.
Collapse
Affiliation(s)
- Ying Yang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101 Qingdao, China
| | - Rui Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, 693 Xiongchu Avenue, 430073 Wuhan, China
| | - Shaohua Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101 Qingdao, China.
| | - Zhengwu Bai
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, 693 Xiongchu Avenue, 430073 Wuhan, China
| |
Collapse
|
26
|
Pagès G, Bonny A, Gilard V, Malet-Martino M. Pulsed Field Gradient NMR with Sigmoid Shape Gradient Sampling To Produce More Detailed Diffusion Ordered Spectroscopy Maps of Real Complex Mixtures: Examples with Medicine Analysis. Anal Chem 2016; 88:3304-9. [DOI: 10.1021/acs.analchem.5b04781] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guilhem Pagès
- Groupe de RMN Biomédicale,
Laboratoire de Synthèse et Physicochimie de Molécules
d’Intérêt Biologique UMR CNRS 5068, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Alice Bonny
- Groupe de RMN Biomédicale,
Laboratoire de Synthèse et Physicochimie de Molécules
d’Intérêt Biologique UMR CNRS 5068, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Véronique Gilard
- Groupe de RMN Biomédicale,
Laboratoire de Synthèse et Physicochimie de Molécules
d’Intérêt Biologique UMR CNRS 5068, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Myriam Malet-Martino
- Groupe de RMN Biomédicale,
Laboratoire de Synthèse et Physicochimie de Molécules
d’Intérêt Biologique UMR CNRS 5068, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| |
Collapse
|
27
|
Vora A, Wojtecki RJ, Schmidt K, Chunder A, Cheng JY, Nelson A, Sanders DP. Development of polycarbonate-containing block copolymers for thin film self-assembly applications. Polym Chem 2016. [DOI: 10.1039/c5py01846c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
High quality block copolymers are needed for thin film self-assembly and directed self-assembly applications.
Collapse
|
28
|
Urbańczyk M, Bernin D, Czuroń A, Kazimierczuk K. Monitoring polydispersity by NMR diffusometry with tailored norm regularisation and moving-frame processing. Analyst 2016; 141:1745-52. [DOI: 10.1039/c5an02304a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new way of processing diffusion NMR data is proposed that exploits p-norm regularization of the inverse Laplace transform tailored to polydisperse macromolecular samples.
Collapse
Affiliation(s)
- Mateusz Urbańczyk
- Faculty of Chemistry
- Biological and Chemical Research Centre
- University of Warsaw
- 02-089 Warszawa
- Poland
| | - Diana Bernin
- Swedish NMR Centre
- University of Gothenburg
- 40530 Göteborg
- Sweden
| | - Alan Czuroń
- Institute of Mathematics
- Polish Academy of Sciences
- 00-656 Warszawa
- Poland
| | | |
Collapse
|
29
|
Analysing DHPC/DMPC bicelles by diffusion NMR and multivariate decomposition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2910-7. [DOI: 10.1016/j.bbamem.2015.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/06/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022]
|
30
|
Toumi I, Caldarelli S, Torrésani B. A review of blind source separation in NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 81:37-64. [PMID: 25142734 DOI: 10.1016/j.pnmrs.2014.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/12/2014] [Indexed: 05/22/2023]
Abstract
Fourier transform is the data processing naturally associated to most NMR experiments. Notable exceptions are Pulse Field Gradient and relaxation analysis, the structure of which is only partially suitable for FT. With the revamp of NMR of complex mixtures, fueled by analytical challenges such as metabolomics, alternative and more apt mathematical methods for data processing have been sought, with the aim of decomposing the NMR signal into simpler bits. Blind source separation is a very broad definition regrouping several classes of mathematical methods for complex signal decomposition that use no hypothesis on the form of the data. Developed outside NMR, these algorithms have been increasingly tested on spectra of mixtures. In this review, we shall provide an historical overview of the application of blind source separation methodologies to NMR, including methods specifically designed for the specificity of this spectroscopy.
Collapse
Affiliation(s)
- Ichrak Toumi
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Stefano Caldarelli
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France.
| | - Bruno Torrésani
- Aix-Marseille Université, CNRS, Centrale Marseille I2M, UMR 7373, 13453 Marseille, France
| |
Collapse
|
31
|
Abet V, Evans R, Guibbal F, Caldarelli S, Rodriguez R. Modular Construction of Dynamic Nucleodendrimers. Angew Chem Int Ed Engl 2014; 53:4862-6. [DOI: 10.1002/anie.201402400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Indexed: 11/11/2022]
|
32
|
Abet V, Evans R, Guibbal F, Caldarelli S, Rodriguez R. Modular Construction of Dynamic Nucleodendrimers. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Sakurai S. DOSY NMR as a Useful Method for Analysis of Mixture. J SYN ORG CHEM JPN 2014. [DOI: 10.5059/yukigoseikyokaishi.72.604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|