1
|
Chou H, Godbeer L, Allsworth M, Boyle B, Ball ML. Progress and challenges of developing volatile metabolites from exhaled breath as a biomarker platform. Metabolomics 2024; 20:72. [PMID: 38977623 PMCID: PMC11230972 DOI: 10.1007/s11306-024-02142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The multitude of metabolites generated by physiological processes in the body can serve as valuable biomarkers for many clinical purposes. They can provide a window into relevant metabolic pathways for health and disease, as well as be candidate therapeutic targets. A subset of these metabolites generated in the human body are volatile, known as volatile organic compounds (VOCs), which can be detected in exhaled breath. These can diffuse from their point of origin throughout the body into the bloodstream and exchange into the air in the lungs. For this reason, breath VOC analysis has become a focus of biomedical research hoping to translate new useful biomarkers by taking advantage of the non-invasive nature of breath sampling, as well as the rapid rate of collection over short periods of time that can occur. Despite the promise of breath analysis as an additional platform for metabolomic analysis, no VOC breath biomarkers have successfully been implemented into a clinical setting as of the time of this review. AIM OF REVIEW This review aims to summarize the progress made to address the major methodological challenges, including standardization, that have historically limited the translation of breath VOC biomarkers into the clinic. We highlight what steps can be taken to improve these issues within new and ongoing breath research to promote the successful development of the VOCs in breath as a robust source of candidate biomarkers. We also highlight key recent papers across select fields, critically reviewing the progress made in the past few years to advance breath research. KEY SCIENTIFIC CONCEPTS OF REVIEW VOCs are a set of metabolites that can be sampled in exhaled breath to act as advantageous biomarkers in a variety of clinical contexts.
Collapse
|
2
|
El Fouikar S, Van Acker N, Héliès V, Frenois FX, Giton F, Gayrard V, Dauwe Y, Mselli-Lakhal L, Rousseau-Ralliard D, Fournier N, Léandri R, Gatimel N. Folliculogenesis and steroidogenesis alterations after chronic exposure to a human-relevant mixture of environmental toxicants spare the ovarian reserve in the rabbit model. J Ovarian Res 2024; 17:134. [PMID: 38943138 PMCID: PMC11214233 DOI: 10.1186/s13048-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/16/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Industrial progress has led to the omnipresence of chemicals in the environment of the general population, including reproductive-aged and pregnant women. The reproductive function of females is a well-known target of endocrine-disrupting chemicals. This function holds biological processes that are decisive for the fertility of women themselves and for the health of future generations. However, insufficient research has evaluated the risk of combined mixtures on this function. This study aimed to assess the direct impacts of a realistic exposure to eight combined environmental toxicants on the critical process of folliculogenesis. METHODS Female rabbits were exposed daily and orally to either a mixture of eight environmental toxicants (F group) or the solvent mixture (NE group, control) from 2 to 19 weeks of age. The doses were computed from previous toxicokinetic data to reproduce steady-state serum concentrations in rabbits in the range of those encountered in pregnant women. Ovarian function was evaluated through macroscopic and histological analysis of the ovaries, serum hormonal assays and analysis of the expression of steroidogenic enzymes. Cellular dynamics in the ovary were further investigated with Ki67 staining and TUNEL assays. RESULTS F rabbits grew similarly as NE rabbits but exhibited higher total and high-density lipoprotein (HDL) cholesterol levels in adulthood. They also presented a significantly elevated serum testosterone concentrations, while estradiol, progesterone, AMH and DHEA levels remained unaffected. The measurement of gonadotropins, androstenedione, pregnenolone and estrone levels yielded values below the limit of quantification. Among the 7 steroidogenic enzymes tested, an isolated higher expression of Cyp19a1 was measured in F rabbits ovaries. Those ovaries presented a significantly greater density/number of antral and atretic follicles and larger antral follicles without any changes in cellular proliferation or DNA fragmentation. No difference was found regarding the count of other follicle stages notably the primordial stage, the corpora lutea or AMH serum levels. CONCLUSION Folliculogenesis and steroidogenesis seem to be subtly altered by exposure to a human-like mixture of environmental toxicants. The antral follicle growth appears promoted by the mixture of chemicals both in their number and size, potentially explaining the increase in atretic antral follicles. Reassuringly, the ovarian reserve estimated through primordial follicles number/density and AMH is spared from any alteration. The consequences of these changes on fertility and progeny health have yet to be investigated.
Collapse
Affiliation(s)
- Sara El Fouikar
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nathalie Van Acker
- Plateforme Imag'IN, Service d'anatomopathologie, CHU Toulouse, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Virginie Héliès
- GenPhySE (Génétique Physiologie et Système d'Elevage), INRAE, Université de Toulouse, INPT, ENVT, Castanet-Tolosan, France
| | - François-Xavier Frenois
- Plateforme Imag'IN, Service d'anatomopathologie, CHU Toulouse, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Frank Giton
- Pôle Biologie-Pathologie Henri Mondor, AP-HP, Inserm IMRB U955, Créteil, France
| | - Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Yannick Dauwe
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laila Mselli-Lakhal
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, Jouy-en-Josas, 78350, BREED, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, 94700, France
| | - Natalie Fournier
- Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur l'efflux du cholestérol, Lip(Sys) Université Paris Saclay, UFR de Pharmacie, Orsay, EA, 7357, 91400, France
- Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Paris, 75015, France
| | - Roger Léandri
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
- Médecine de la Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| | - Nicolas Gatimel
- Médecine de la Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- DEFE (Développement Embryonnaire, Fertilité et Environnement) UMR1203 Inserm, Universités Toulouse et Montpellier, CHU Toulouse, Toulouse, France
| |
Collapse
|
3
|
Simultaneous determination of exhaled breath vapor and exhaled breath aerosol using filter-incorporated needle-trap devices: A comparison of gas-phase and droplet-bound components. Anal Chim Acta 2022; 1203:339671. [DOI: 10.1016/j.aca.2022.339671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/25/2023]
|
4
|
Pleil JD, Lowe CN, Wallace MAG, Williams AJ. Using the US EPA CompTox Chemicals Dashboard to interpret targeted and non-targeted GC-MS analyses from human breath and other biological media. J Breath Res 2021; 15:025001. [PMID: 33734097 DOI: 10.1088/1752-7163/abdb03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The U.S. EPA CompTox Chemicals Dashboard is a freely available web-based application providing access to chemistry, toxicity, and exposure data for ∼900 000 chemicals. Data, search functionality, and prediction models within the Dashboard can help identify chemicals found in environmental analyses and human biomonitoring. It was designed to deliver data generated to support computational toxicology to reduce chemical testing on animals and provide access to new approach methodologies including prediction models. The inclusion of mass and formula-based searches, together with relevant ranking approaches, allows for the identification and prioritization of exogenous (environmental) chemicals from high resolution mass spectrometry in need of further evaluation. The Dashboard includes chemicals that can be detected by liquid chromatography, gas chromatography-mass spectrometry (GC-MS) and direct-MS analyses, and chemical lists have been added that highlight breath-borne volatile and semi-volatile organic compounds. The Dashboard can be searched using various chemical identifiers (e.g. chemical synonyms, CASRN and InChIKeys), chemical formula, MS-ready formulae monoisotopic mass, consumer product categories and assays/genes associated with high-throughput screening data. An integrated search at a chemical level performs searches against PubMed to identify relevant published literature. This article describes specific procedures using the Dashboard as a first-stop tool for exploring both targeted and non-targeted results from GC-MS analyses of chemicals found in breath, exhaled breath condensate, and associated aerosols.
Collapse
Affiliation(s)
- Joachim D Pleil
- Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, United States of America
| | | | | | | |
Collapse
|
5
|
Schmidt AJ, Borras E, Nguyen AP, Yeap D, Kenyon NJ, Davis CE. Portable exhaled breath condensate metabolomics for daily monitoring of adolescent asthma. J Breath Res 2020; 14:026001. [PMID: 31344695 DOI: 10.1088/1752-7163/ab35b5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alexander J Schmidt
- Department of Mechanical and Aerospace Engineering, One Shields Avenue, University of California Davis, Davis, CA 95616, United States of America
| | | | | | | | | | | |
Collapse
|
6
|
Pleil JD, Wallace MAG, McCord J, Madden MC, Sobus J, Ferguson G. How do cancer-sniffing dogs sort biological samples? Exploring case-control samples with non-targeted LC-Orbitrap, GC-MS, and immunochemistry methods. J Breath Res 2019; 14:016006. [PMID: 31505485 PMCID: PMC8649743 DOI: 10.1088/1752-7163/ab433a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early identification of disease onset is regarded as an important factor for successful medical intervention. However, cancer and other long-term latency diseases are rare and may take years to manifest clinically. As such, there are no gold standards with which to immediately validate proposed preclinical screening methodologies. There is evidence that dogs can sort samples reproducibly into yes/no categories based on case-control training, but the basis of their decisions is unknown. Because dogs are sniffing air, the distinguishing chemicals must be either in the gas-phase or attached to aerosols and/or airborne particles. Recent biomonitoring research has shown how to extract and analyze semi- and non-volatile compounds from human breath in exhaled condensates and aerosols. Further research has shown that exhaled aerosols can be directly collected on standard hospital-style olefin polypropylene masks and that these masks can be used as a simple sampling scheme for canine screening. In this article, detailed liquid chromatography-high resolution mass spectrometry (LC-HR-MS) with Orbitrap instrumentation and gas chromatography-mass spectrometry (GC-MS) analyses were performed on two sets of masks sorted by consensus of a four-dog cohort as either cancer or control. Specifically, after sorting by the dogs, sample masks were cut into multiple sections and extracted for LC-MS and GC-MS non-targeted analyses. Extracts were also analyzed for human cytokines, confirming the presence of human aerosol content above levels in blank masks. In preliminary evaluations, 345 and 44 high quality chemical features were detected by LC-MS and GC-MS analyses, respectively. These features were used to develop provisional orthogonal projection to latent structures-discriminant analysis (OPLS-DA) models to determine if the samples classified as cancer (case) or non-cancer (control) by the dogs could be separated into the same groups using analytical instrumentation. While the OPLS-DA model for the LC-HR-MS data was able to separate the two groups with statistical significance, although weak explanatory power, the GC-MS model was not found to be significant. These results suggest that the dogs may rely on the less volatile compounds from breath aerosol that were analyzed by LC-HR-MS than the more volatile compounds observed by GC-MS to sort mask samples into groups. These results provide justification for more expansive studies in the future that aim to characterize specific chemical features, and the role(s) of these features in maintaining homeostatic biological processes.
Collapse
Affiliation(s)
- Joachim D Pleil
- US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109T. W. Alexander Drive, Research Triangle Park, NC, 27709, United States of America
| | | | | | | | | | | |
Collapse
|
7
|
Xue J, Lai Y, Liu CW, Ru H. Towards Mass Spectrometry-Based Chemical Exposome: Current Approaches, Challenges, and Future Directions. TOXICS 2019; 7:toxics7030041. [PMID: 31426576 PMCID: PMC6789759 DOI: 10.3390/toxics7030041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
The proposal of the “exposome” concept represents a shift of the research paradigm in studying exposure-disease relationships from an isolated and partial way to a systematic and agnostic approach. Nevertheless, exposome implementation is facing a variety of challenges including measurement techniques and data analysis. Here we focus on the chemical exposome, which refers to the mixtures of chemical pollutants people are exposed to from embryo onwards. We review the current chemical exposome measurement approaches with a focus on those based on the mass spectrometry. We further explore the strategies in implementing the concept of chemical exposome and discuss the available chemical exposome studies. Early progresses in the chemical exposome research are outlined, and major challenges are highlighted. In conclusion, efforts towards chemical exposome have only uncovered the tip of the iceberg, and further advancement in measurement techniques, computational tools, high-throughput data analysis, and standardization may allow more exciting discoveries concerning the role of exposome in human health and disease.
Collapse
Affiliation(s)
- Jingchuan Xue
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yunjia Lai
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chih-Wei Liu
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
8
|
O’Lenick CR, Pleil JD, Stiegel MA, Sobus JR, Wallace MAG. Detection and analysis of endogenous polar volatile organic compounds (PVOCs) in urine for human exposome research. Biomarkers 2019; 24:240-248. [PMID: 30475075 PMCID: PMC10614422 DOI: 10.1080/1354750x.2018.1548031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/24/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022]
Abstract
Background: The human exposome, defined as '…everything that is not the genome', comprises all chemicals in the body interacting with life processes. The exposome drives genes x environment (GxE) interactions that can cause long-term latency and chronic diseases. The exposome constantly changes in response to external exposures and internal metabolism. Different types of compounds are found in different biological media. Objective: Measure polar volatile organic compounds (PVOCs) excreted in urine to document endogenous metabolites and exogenous compounds from environmental exposures. Methods: Use headspace collection and sorbent tube thermal desorption coupled with bench-top gas chromatography-mass spectrometry (GC-MS) for targeted and non-targeted approaches. Identify and categorize PVOCs that may distinguish among healthy and affected individuals. Results: Method is successfully demonstrated to tabulate a series of 28 PVOCs detected in human urine across 120 samples from 28 human subjects. Median concentrations range from below detect to 165 ng/mL. Certain PVOCs have potential health implications. Conclusions: Headspace collection with sorbent tubes is an effective method for documenting PVOCs in urine that are otherwise difficult to measure. This methodology can provide probative information regarding biochemical processes and adverse outcome pathways (AOPs) for toxicity testing.
Collapse
Affiliation(s)
| | - Joachim D. Pleil
- U.S. Environmental Protection Agency, Exposure Methods and Measurements Division, NERL/ORD, Research Triangle Park, NC, USA
| | | | - Jon R. Sobus
- U.S. Environmental Protection Agency, Exposure Methods and Measurements Division, NERL/ORD, Research Triangle Park, NC, USA
| | - M. Ariel Geer Wallace
- U.S. Environmental Protection Agency, Exposure Methods and Measurements Division, NERL/ORD, Research Triangle Park, NC, USA
| |
Collapse
|
9
|
Geer Wallace MA, Pleil JD, Oliver KD, Whitaker DA, Mentese S, Fent KW, Horn GP. Non-targeted GC/MS analysis of exhaled breath samples: Exploring human biomarkers of exogenous exposure and endogenous response from professional firefighting activity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:244-260. [PMID: 30907277 PMCID: PMC8668041 DOI: 10.1080/15287394.2019.1587901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A non-targeted analysis workflow was applied to analyze exhaled breath samples collected from firefighters pre- and post-structural fire suppression. Breath samples from firefighters functioning in attack and search positions were examined for target and non-target compounds in automated thermal desorption-GC/MS (ATD-GC/MS) selected ion monitoring (SIM)/scan mode and reviewed for prominent chemicals. Targeted chemicals included products of combustion such as benzene, toluene, xylenes, and polycyclic aromatic hydrocarbons (PAH) that serve as a standard assessment of exposure. Sixty unique chemical features representative of exogenous chemicals and endogenous compounds, including single-ring aromatics, polynuclear aromatic hydrocarbons, volatile sulfur-containing compounds, aldehydes, alkanes, and alkenes were identified using the non-targeted analysis workflow. Fifty-seven out of 60 non-targeted features changed by at least 50% from pre- to post-fire suppression activity in at least one subject, and 7 non-targeted features were found to exhibit significantly increased or decreased concentrations for all subjects as a group. This study is important for (1) alerting the firefighter community to potential new exposures, (2) expanding the current targeted list of toxicants, and (3) finding biomarkers of response to firefighting activity as reflected by changes in endogenous compounds. Data demonstrate that there are non-targeted compounds in firefighters' breath that are indicative of environmental exposure despite the use of protective gear, and this information may be further utilized to improve the effectiveness of personal protective equipment.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- a Office of Research and Development, National Exposure Research Laboratory , U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Joachim D Pleil
- a Office of Research and Development, National Exposure Research Laboratory , U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Karen D Oliver
- a Office of Research and Development, National Exposure Research Laboratory , U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Donald A Whitaker
- a Office of Research and Development, National Exposure Research Laboratory , U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Sibel Mentese
- b Department of Environmental Engineering , Çanakkale Onsekiz Mart University , Merkez/Çanakkale , Turkey
| | - Kenneth W Fent
- c Division of Surveillance, Hazard Evaluations and Field Studies , National Institute for Occupational Safety and Health (NIOSH) , Cincinnati , OH , USA
| | - Gavin P Horn
- d Illinois Fire Service Institute , University of Illinois at Urbana-Champaign , Champaign , IL , USA
| |
Collapse
|
10
|
Chappuis TH, Pham Ho BA, Ceillier M, Ricoul F, Alessio M, Beche JF, Corne C, Besson G, Vial J, Thiébaut D, Bourlon B. Miniaturization of breath sampling with silicon chip: application to volatile tobacco markers tracking. J Breath Res 2018; 12:046011. [PMID: 30008462 DOI: 10.1088/1752-7163/aad384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work presents the performances of silicon micro-preconcentrators chips for breath sampling. The silicon chips were coupled to a handheld battery powered system for breath sampling and direct injection in a laboratory gas chromatography mass spectrometry system through thermal desorption (TD). Performances of micro-preconcentrators were first compared to commercial TD for benzene trapping. Similar chromatographic peaks after gas chromatographic separation were observed while the volume of sample needed was reduced by a factor of 5. Repeatability and day to day variability of the micro-preconcentrators were then studied for a 500 ppb synthetic model mixture injected three times a day four days in a row: 8% and 12% were measured respectively. Micro-preconcentrator to micro-preconcentrator variability was not significant compared to day to day variability. In addition, micro-preconcentrators were tested for breath samples collected in Tedlar® bags. Three analyses of the same breath sample displayed relative standard deviations values below 16% for eight of the ten most intense peaks. Finally, the performances of micro-preconcentrators for breath sampling on a single expiration were illustrated with the example of volatile tobacco markers tracking. The signals of three smoking markers in breath, benzene, 2,5-dimethylfuran, and toluene were studied. Concentrations of benzene and toluene were found to be 10 to 100 higher in the breath of smokers. 2,5-dimethylfuran was only found in the breath of smokers. The elimination kinetics of the markers were followed as well during 4 h: a fast decrease of the signal of the three markers in breath was observed 20 min after smoking in good agreement with what is described in the literature. Those results demonstrate the efficiency of silicon chips for breath sampling, compared to the state of the art techniques. Thanks to miniaturization and lower sample volumes needed, micro-preconcentrators could be in the future a key technology towards portable breath sampling and analysis.
Collapse
Affiliation(s)
- Thomas Hector Chappuis
- Univ. Grenoble Alpes, CEA, LETI, MINATEC Campus, F-38000 Grenoble, France. UMR 8231 CBI, LSABM, ESPCI Paris-CNRS, PSL Institute, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li X, Huang D, Zeng J, Chan CK, Zhou Z. Positive matrix factorization: A data preprocessing strategy for direct mass spectrometry-based breath analysis. Talanta 2018; 192:32-39. [PMID: 30348397 DOI: 10.1016/j.talanta.2018.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/20/2018] [Accepted: 09/08/2018] [Indexed: 12/27/2022]
Abstract
Interest in exhaled breath has grown considerably in recent years, as breath biosampling has shown promise for non-invasive disease diagnosis, therapeutic drug monitoring, and environmental exposure. Real time breath analysis can be accomplished via direct online mass spectrometry (MS)-based methods, which can provide more accurate and detailed data and an enhanced understanding of the temporal evolution of exhaled VOCs in the breath; however, the complicated chemical composition and large raw datasets involved in breath analysis have hindered the discovery of sources contributing to the exhaled VOCs. The positive matrix factorization (PMF) receptor model has been widely used for source apportionment in atmospheric studies. Since the exhaled VOCs contain compounds from various sources, such as alveolar air, mouth air and respiratory dead-space air, PMF may be also helpful for source apportionment of exhaled VOCs in the breath. Thus, this study explores the application of PMF in the pretreatment of direct breath measurement data. The results indicate that (i) endogenous compounds and background contaminants sources can be readily distinguished by PMF in data obtained from replicate measurements of human exhaled breath at single time points (~30 s/measurement), which may benefit both exhalome investigations and the identification of exposure biomarkers; (ii) sources resolved from online measurement data collected over longer periods (1.5 h) can be used to isolate the evolution of exhaled VOCs and investigate processes such as the pharmacokinetics of ketamine and its major metabolites. Therefore, PMF has shown promise for both data processing and subsequent data mining for the ambient MS-based breath analysis.
Collapse
Affiliation(s)
- Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China; Atmospheric Pollution Online Source Analysis Engineering Research Center of Guangdong Province, Jinan University, Guangzhou 510632, China.
| | - Dandan Huang
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China; State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai 200233, China
| | - Jiafa Zeng
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China; Atmospheric Pollution Online Source Analysis Engineering Research Center of Guangdong Province, Jinan University, Guangzhou 510632, China
| | - Chak Keung Chan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China; Atmospheric Pollution Online Source Analysis Engineering Research Center of Guangdong Province, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Sobus JR, Wambaugh JF, Isaacs KK, Williams AJ, McEachran AD, Richard AM, Grulke CM, Ulrich EM, Rager JE, Strynar MJ, Newton SR. Integrating tools for non-targeted analysis research and chemical safety evaluations at the US EPA. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:411-426. [PMID: 29288256 PMCID: PMC6661898 DOI: 10.1038/s41370-017-0012-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/04/2017] [Accepted: 08/25/2017] [Indexed: 05/18/2023]
Abstract
Tens-of-thousands of chemicals are registered in the U.S. for use in countless processes and products. Recent evidence suggests that many of these chemicals are measureable in environmental and/or biological systems, indicating the potential for widespread exposures. Traditional public health research tools, including in vivo studies and targeted analytical chemistry methods, have been unable to meet the needs of screening programs designed to evaluate chemical safety. As such, new tools have been developed to enable rapid assessment of potentially harmful chemical exposures and their attendant biological responses. One group of tools, known as "non-targeted analysis" (NTA) methods, allows the rapid characterization of thousands of never-before-studied compounds in a wide variety of environmental, residential, and biological media. This article discusses current applications of NTA methods, challenges to their effective use in chemical screening studies, and ways in which shared resources (e.g., chemical standards, databases, model predictions, and media measurements) can advance their use in risk-based chemical prioritization. A brief review is provided of resources and projects within EPA's Office of Research and Development (ORD) that provide benefit to, and receive benefits from, NTA research endeavors. A summary of EPA's Non-Targeted Analysis Collaborative Trial (ENTACT) is also given, which makes direct use of ORD resources to benefit the global NTA research community. Finally, a research framework is described that shows how NTA methods will bridge chemical prioritization efforts within ORD. This framework exists as a guide for institutions seeking to understand the complexity of chemical exposures, and the impact of these exposures on living systems.
Collapse
Affiliation(s)
- Jon R Sobus
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - John F Wambaugh
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Kristin K Isaacs
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Antony J Williams
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Andrew D McEachran
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Ann M Richard
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Christopher M Grulke
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Elin M Ulrich
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Julia E Rager
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
- ToxStrategies, Inc., 9390 Research Blvd., Suite 100, Austin, TX, 78759, USA
| | - Mark J Strynar
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Seth R Newton
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
13
|
Morozov VN, Mikheev AY, Shlyapnikov YM, Nikolaev AA, Lyadova IV. Non-invasive lung disease diagnostics from exhaled microdroplets of lung fluid: perspectives and technical challenges. J Breath Res 2017; 12:017103. [PMID: 28850044 PMCID: PMC7099678 DOI: 10.1088/1752-7163/aa88e4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 01/27/2023]
Abstract
The combination of ultra-sensitive assay techniques and recent improvements in the instrumentation used to collect microdroplets of lung fluid (MLF) from exhaled breath has enabled the development of non-invasive lung disease diagnostics that are based on MLF analysis. In one example of this approach, electrospun nylon filters were used to collect MLFs from patients with pulmonary tuberculosis. The filters were washed to obtain liquid probes, which were then tested for human immunoglobulin A (h-IgA) and fractions of h-IgA specific to ESAT-6 and Psts-1, two antigens secreted by Mycobacterium tuberculosis. Probes collected for 10 min contained 100-1500 fg of h-IgA and, in patients with pulmonary tuberculosis, a portion of these h-IgA molecules showed specificity to the secreted antigens. Separate MLFs and their dry residues were successfully collected using an electrostatic collector and impactor developed especially for this purpose. Visualization of MLF dry residues by atomic force microscopy made it possible to estimate the lipid content in each MLF and revealed mucin molecules in some MLFs. This exciting new approach will likely make it possible to detect biomarkers in individual MLFs. MLFs emerging from an infection site ('hot' microdroplets) are expected to be enriched with infection biomarkers. This paper discusses possible experimental approaches to detecting biomarkers in single MLFs, as well as certain technological problems that need to be resolved in order to develop new non-invasive diagnostics based on analysing biomarkers in separate MLFs.
Collapse
Affiliation(s)
- Victor N Morozov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
- National Center for Biodefense and Infectious Diseases, George Mason University, VA, United States of America
| | - Andrey Y Mikheev
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Yuri M Shlyapnikov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexander A Nikolaev
- Department of Immunology, Central Tuberculosis Research Institute, Russian Academy of Medical Sciences, Moscow, Russia
| | - Irina V Lyadova
- Department of Immunology, Central Tuberculosis Research Institute, Russian Academy of Medical Sciences, Moscow, Russia
| |
Collapse
|
14
|
Winters BR, Pleil JD, Angrish MM, Stiegel MA, Risby TH, Madden MC. Standardization of the collection of exhaled breath condensate and exhaled breath aerosol using a feedback regulated sampling device. J Breath Res 2017; 11:047107. [PMID: 28894051 DOI: 10.1088/1752-7163/aa8bbc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exhaled breath condensate (EBC) and associated exhaled breath aerosols (EBA) are valuable non-invasive biological media used for the quantification of biomarkers. EBC contains exhaled water vapor, soluble gas-phase (polar) organic compounds, ionic species, plus other species including semi- and non-volatile organic compounds, proteins, cell fragments, DNA, dissolved inorganic compounds, ions, and microbiota (bacteria and viruses) dissolved in the co-collected EBA. EBC is collected from subjects who breathe 'normally' through a chilled tube assembly for approximately 10 min and is then harvested into small vials for analysis. Aerosol filters without the chilled tube assembly are also used to separately collect EBA. Unlike typical gas-phase breath samples used for environmental and clinical applications, the constituents of EBC and EBA are not easily characterized by total volume or carbon dioxide (CO2) concentration, because the gas-phase is vented. Furthermore, EBC and associated EBA are greatly affected by breathing protocol, more specifically, depth of inhalation and expelled breath velocity. We have tested a new instrument developed by Loccioni Gruppa Humancare (Ancona, Italy) for implementation of EBC collection from human subjects to assess EBC collection parameters. The instrument is the first EBC collection device that provides instantaneous visual feedback to the subjects to control breathing patterns. In this report we describe the operation of the instrument, and present an overview of performance and analytical applications.
Collapse
Affiliation(s)
- Brett R Winters
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, United States of America
| | | | | | | | | | | |
Collapse
|
15
|
Tian J, Huang X, Mao G, Xu F, Chu W, Sun Z. Synthesis, photophysical, electrochemical and theoretical studies of the novel indolo[3,2-b]indole derivatives. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Pleil J, Beauchamp J, Miekisch W. Cellular respiration, metabolomics and the search for illicit drug biomarkers in breath: report from PittCon 2017. J Breath Res 2017; 11:039001. [PMID: 28776507 PMCID: PMC6146967 DOI: 10.1088/1752-7163/aa7174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Joachim Pleil
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA,
| | - Jonathan Beauchamp
- Department of Sensory Analytics, Fraunhofer IVV, Giggenhauser Str. 35, 85354 Freising, Germany.
| | - Wolfram Miekisch
- Department of Anaesthesia and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany.
| |
Collapse
|
17
|
Geer Wallace MA, Pleil JD, Mentese S, Oliver KD, Whitaker DA, Fent KW. Calibration and performance of synchronous SIM/scan mode for simultaneous targeted and discovery (non-targeted) analysis of exhaled breath samples from firefighters. J Chromatogr A 2017; 1516:114-124. [PMID: 28838652 DOI: 10.1016/j.chroma.2017.07.082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/30/2022]
Abstract
Traditionally, gas chromatography-mass spectrometry (GC/MS) analysis has used a targeted approach called selected ion monitoring (SIM) to quantify specific compounds that may have adverse health effects. Due to method limitations and the constraints of preparing duplicate samples, the information that could be obtained from separately collecting the full scan chromatogram of the sample has often been sacrificed. However, the hybrid technique called synchronous SIM/scan mode alternates between the two acquisition modes, maintaining the accuracy and sensitivity of SIM for targeted analysis while also providing the full scan chromatogram for discovery of non-target compounds. This technology was assessed using calibration data and real-world breath samples from a joint EPA/NIOSH collaboration that investigated the safety of firefighters' protective gear during controlled structure burns. Collecting field samples is costly and must be performed strategically to ensure that time points and replicates are accurate and representative of the intended population. This is difficult to accomplish with firefighters who are working under volatile conditions. The synchronous SIM/scan method decreases the number of field samples that need to be collected by half and reduces error in trying to recreate time points since a breath sample from a single sorbent tube can be used to collect both the SIM and scan data simultaneously. As a practical demonstration of the method, we investigate thirty-six firefighter breath samples, document organic compounds of interest, and identify additional non-target compounds.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| | - Joachim D Pleil
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC, USA.
| | - Sibel Mentese
- Department of Environmental Engineering, Çanakkale Onsekiz Mart University, Merkez, Çanakkale, Turkey(1)
| | - Karen D Oliver
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| | - Donald A Whitaker
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| | - Kenneth W Fent
- Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA
| |
Collapse
|
18
|
Go YM, Jones DP. Redox theory of aging: implications for health and disease. Clin Sci (Lond) 2017; 131:1669-1688. [PMID: 28667066 PMCID: PMC5773128 DOI: 10.1042/cs20160897] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 02/07/2023]
Abstract
Genetics ultimately defines an individual, yet the phenotype of an adult is extensively determined by the sequence of lifelong exposures, termed the exposome. The redox theory of aging recognizes that animals evolved within an oxygen-rich environment, which created a critical redox interface between an organism and its environment. Advances in redox biology show that redox elements are present throughout metabolic and structural systems and operate as functional networks to support the genome in adaptation to environmental resources and challenges during lifespan. These principles emphasize that physical and functional phenotypes of an adult are determined by gene-environment interactions from early life onward. The principles highlight the critical nature of cumulative exposure memories in defining changes in resilience progressively during life. Both plasma glutathione and cysteine systems become oxidized with aging, and the recent finding that cystine to glutathione ratio in human plasma predicts death in coronary artery disease (CAD) patients suggests this could provide a way to measure resilience of redox networks in aging and disease. The emerging concepts of cumulative gene-environment interactions warrant focused efforts to elucidate central mechanisms by which exposure memory governs health and etiology, onset and progression of disease.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, U.S.A
| | - Dean P Jones
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, U.S.A.
| |
Collapse
|
19
|
Aksenov AA, Zamuruyev KO, Pasamontes A, Brown JF, Schivo M, Foutouhi S, Weimer BC, Kenyon NJ, Davis CE. Analytical methodologies for broad metabolite coverage of exhaled breath condensate. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:17-25. [PMID: 28697414 DOI: 10.1016/j.jchromb.2017.06.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 01/12/2023]
Abstract
Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage could be enhanced significantly with the use of organic solvent as a device rinse after breath sampling to collect the non-aqueous fraction as opposed to neat breath condensate sample. Here, we show the detected ranges of compounds in each case and provide a practical guide for methodology selection for optimal detection of specific compounds.
Collapse
Affiliation(s)
- Alexander A Aksenov
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Konstantin O Zamuruyev
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Alberto Pasamontes
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Joshua F Brown
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michael Schivo
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA; Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA 95616, USA
| | - Soraya Foutouhi
- School of Veterinary Medicine,1089 Veterinary Medicine Drive, University of California, Davis, Davis, CA 95616, USA
| | - Bart C Weimer
- School of Veterinary Medicine,1089 Veterinary Medicine Drive, University of California, Davis, Davis, CA 95616, USA
| | - Nicholas J Kenyon
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA; Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA 95616, USA
| | - Cristina E Davis
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
20
|
Horváth I, Barnes PJ, Loukides S, Sterk PJ, Högman M, Olin AC, Amann A, Antus B, Baraldi E, Bikov A, Boots AW, Bos LD, Brinkman P, Bucca C, Carpagnano GE, Corradi M, Cristescu S, de Jongste JC, Dinh-Xuan AT, Dompeling E, Fens N, Fowler S, Hohlfeld JM, Holz O, Jöbsis Q, Van De Kant K, Knobel HH, Kostikas K, Lehtimäki L, Lundberg J, Montuschi P, Van Muylem A, Pennazza G, Reinhold P, Ricciardolo FLM, Rosias P, Santonico M, van der Schee MP, van Schooten FJ, Spanevello A, Tonia T, Vink TJ. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J 2017; 49:49/4/1600965. [PMID: 28446552 DOI: 10.1183/13993003.00965-2016] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Breath tests cover the fraction of nitric oxide in expired gas (FeNO), volatile organic compounds (VOCs), variables in exhaled breath condensate (EBC) and other measurements. For EBC and for FeNO, official recommendations for standardised procedures are more than 10 years old and there is none for exhaled VOCs and particles. The aim of this document is to provide technical standards and recommendations for sample collection and analytic approaches and to highlight future research priorities in the field. For EBC and FeNO, new developments and advances in technology have been evaluated in the current document. This report is not intended to provide clinical guidance on disease diagnosis and management.Clinicians and researchers with expertise in exhaled biomarkers were invited to participate. Published studies regarding methodology of breath tests were selected, discussed and evaluated in a consensus-based manner by the Task Force members.Recommendations for standardisation of sampling, analysing and reporting of data and suggestions for research to cover gaps in the evidence have been created and summarised.Application of breath biomarker measurement in a standardised manner will provide comparable results, thereby facilitating the potential use of these biomarkers in clinical practice.
Collapse
Affiliation(s)
- Ildiko Horváth
- Dept of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK
| | | | - Peter J Sterk
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieann Högman
- Centre for Research & Development, Uppsala University/Gävleborg County Council, Gävle, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, Sahlgrenska Academy and University Hospital, Goteborg, Sweden
| | - Anton Amann
- Innsbruck Medical University, Innsbruck, Austria
| | - Balazs Antus
- Dept of Pathophysiology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | | | - Andras Bikov
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Agnes W Boots
- Dept of Pharmacology and Toxicology, University of Maastricht, Maastricht, The Netherlands
| | - Lieuwe D Bos
- Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Brinkman
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Caterina Bucca
- Biomedical Sciences and Human Oncology, Universita' di Torino, Turin, Italy
| | | | | | - Simona Cristescu
- Dept of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Johan C de Jongste
- Dept of Pediatrics/Respiratory Medicine, Erasmus MC-Sophia Childrens' Hospital, Rotterdam, The Netherlands
| | | | - Edward Dompeling
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Niki Fens
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephen Fowler
- Respiratory Research Group, University of Manchester Wythenshawe Hospital, Manchester, UK
| | - Jens M Hohlfeld
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany.,Medizinische Hochschule Hannover, Hannover, Germany
| | - Olaf Holz
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Quirijn Jöbsis
- Department of Paediatric Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Kim Van De Kant
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hugo H Knobel
- Philips Research, High Tech Campus 11, Eindhoven, The Netherlands
| | | | | | - Jon Lundberg
- Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Montuschi
- Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| | - Alain Van Muylem
- Hopital Erasme Cliniques Universitaires de Bruxelles, Bruxelles, Belgium
| | - Giorgio Pennazza
- Faculty of Engineering, University Campus Bio-Medico, Rome, Italy
| | - Petra Reinhold
- Institute of Molecular Pathogenesis, Friedrich Loeffler Institut, Jena, Germany
| | - Fabio L M Ricciardolo
- Clinic of Respiratory Disease, Dept of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Philippe Rosias
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Pediatrics, Maasland Hospital, Sittard, The Netherlands
| | - Marco Santonico
- Faculty of Engineering, University Campus Bio-Medico, Rome, Italy
| | - Marc P van der Schee
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Thomy Tonia
- European Respiratory Society, Lausanne, Switzerland
| | - Teunis J Vink
- Philips Research, High Tech Campus 11, Eindhoven, The Netherlands
| |
Collapse
|
21
|
Andra SS, Austin C, Patel D, Dolios G, Awawda M, Arora M. Trends in the application of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental chemical space of the human exposome. ENVIRONMENT INTERNATIONAL 2017; 100:32-61. [PMID: 28062070 PMCID: PMC5322482 DOI: 10.1016/j.envint.2016.11.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/05/2023]
Abstract
Global profiling of xenobiotics in human matrices in an untargeted mode is gaining attention for studying the environmental chemical space of the human exposome. Defined as the study of a comprehensive inclusion of environmental influences and associated biological responses, human exposome science is currently evolving out of the metabolomics science. In analogy to the latter, the development and applications of high resolution mass spectrometry (HRMS) has shown potential and promise to greatly expand our ability to capture the broad spectrum of environmental chemicals in exposome studies. HRMS can perform both untargeted and targeted analysis because of its capability of full- and/or tandem-mass spectrum acquisition at high mass accuracy with good sensitivity. The collected data from target, suspect and non-target screening can be used not only for the identification of environmental chemical contaminants in human matrices prospectively but also retrospectively. This review covers recent trends and advances in this field. We focus on advances and applications of HRMS in human biomonitoring studies, and data acquisition and mining. The acquired insights provide stepping stones to improve understanding of the human exposome by applying HRMS, and the challenges and prospects for future research.
Collapse
Affiliation(s)
- Syam S Andra
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Christine Austin
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dhavalkumar Patel
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgia Dolios
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahmoud Awawda
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manish Arora
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
22
|
Li X, Huang L, Zhu H, Zhou Z. Direct human breath analysis by secondary nano-electrospray ionization ultrahigh-resolution mass spectrometry: Importance of high mass resolution and mass accuracy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:301-308. [PMID: 27859758 DOI: 10.1002/rcm.7794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/02/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Direct mass spectrometry (MS)-based methods make it possible to monitor the molecular compositions of hundreds of volatile organic compounds (VOCs) in exhaled human breath in real time. Mass resolution and mass accuracy play important roles for direct MS analysis, especially for the low-concentration isobaric compounds in non-target research. METHODS Direct detection of VOCs in exhaled breath of four healthy subjects (3 males and 1 female aged between 25 to 35 years old) has been performed by using secondary nano-electrospray ionization mass spectrometry (Sec-nanoESI-UHRMS) at resolutions (R) of 15,000, 30,000, 60,000 and 120,000. RESULTS For some low-intensity isobaric ions, they could be distinguished only when R ≥ 60,000, e.g., signals at m/z 96.9591 (sulfate/sulfuric acid), m/z 96.9687 (phosphate/phosphoric acid) and m/z 96.9756 ([C4 H2 O7 S]- ), m/z 234.1161 ([C10 H20 O3 NS]+ ) and m/z 234.1338 ([C10 H20 O5 N]+ ), m/z 119.0686 (isotope of indole) and m/z 119.0705 (an interfering signal), respectively. At R 120,000, the mass errors were obtained from a set of reference ions, and the values were ≤0.6 mDa for ions detected in positive detection mode and in the range of -1.0-1.1 mDa for the negative mode. These mass errors were used to exclusively identify unknown compounds detected in the breath samples. By utilizing the present setup, besides the normal VOCs reported previously, we detected non-volatile species (sulfate/sulfuric acid, silicate/silicic acid, phosphate/phosphoric acid and nitrate/nitric acid), dichlorobenzene and an ammonium adduct ([(C2 H6 SiO)6 + NH4 ]+ ), which were ascribed to exhaled particles, indoor air pollution and an endogenous source, respectively. CONCLUSIONS For direct breath analysis, high mass resolution of ≥60,000 and mass errors of 1.0 mDa (absolute value) covering the mass range of interests (e.g., m/z 50-500) are necessary for the exploration and accurate identification of low-intensity unknown isobaric compounds in non-target research. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
| | - Lei Huang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
| | - Hui Zhu
- Guangzhou Hexin Instrument Co., Ltd, Guangzhou, 510530, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
| |
Collapse
|
23
|
Stiegel MA, Pleil JD, Sobus JR, Stevens T, Madden MC. Linking physiological parameters to perturbations in the human exposome: Environmental exposures modify blood pressure and lung function via inflammatory cytokine pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:485-501. [PMID: 28696913 PMCID: PMC6089069 DOI: 10.1080/15287394.2017.1330578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Human biomonitoring is an indispensable tool for evaluating the systemic effects derived from external stressors including environmental pollutants, chemicals from consumer products, and pharmaceuticals. The aim of this study was to explore consequences of environmental exposures to diesel exhaust (DE) and ozone (O3) and ultimately to interpret these parameters from the perspective of in vitro to in vivo extrapolation. In particular, the objective was to use cytokine expression at the cellular level as a biomarker for physiological systemic responses such as blood pressure and lung function at the systemic level. The values obtained could ultimately link in vivo behavior to simpler in vitro experiments where cytokines are a measured parameter. Human exposures to combinations of DE and O3 and the response correlations between forced exhaled volume in 1 second (FEV1), forced vital capacity (FVC), systolic and diastolic blood pressure (SBP and DBP, respectively), and 10 inflammatory cytokines in blood (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) were determined in 15 healthy human volunteers. Results across all exposures revealed that certain individuals displayed greater inflammatory responses compared to the group and, generally, there was more between-person variation in the responses. Evidence indicates that individuals are more stable within themselves and are more likely to exhibit responses independent of one another. Data suggest that in vitro findings may ultimately be implemented to elucidate underlying adverse outcome pathways (AOP) for linking high-throughput toxicity tests to physiological in vivo responses. Further, this investigation supports assessing subjects based upon individual responses as a complement to standard longitudinal (pre vs. post) intervention grouping strategies. Ultimately, it may become possible to predict a physiological (systemic) response based upon cellular-level (in vitro) observations.
Collapse
Affiliation(s)
- Matthew A Stiegel
- a Duke University Medical Center , Department of Occupational and Environmental Safety , Durham , NC , US
| | - Joachim D Pleil
- b United States Environmental Protection Agency, National Exposure Research Lab , Exposure Methods and Measurement Division , Research Triangle Park , NC , US
| | - Jon R Sobus
- b United States Environmental Protection Agency, National Exposure Research Lab , Exposure Methods and Measurement Division , Research Triangle Park , NC , US
| | - Tina Stevens
- c United States Environmental Protection Agency , National Health and Environmental Effects Research Lab, Environmental Public Health Division , Chapel Hill , NC , US
| | - Michael C Madden
- c United States Environmental Protection Agency , National Health and Environmental Effects Research Lab, Environmental Public Health Division , Chapel Hill , NC , US
| |
Collapse
|
24
|
Wang Y, Jiang J, Hua L, Hou K, Xie Y, Chen P, Liu W, Li Q, Wang S, Li H. High-Pressure Photon Ionization Source for TOFMS and Its Application for Online Breath Analysis. Anal Chem 2016; 88:9047-55. [DOI: 10.1021/acs.analchem.6b01707] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yan Wang
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, People’s Republic of China
| | - Jichun Jiang
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, People’s Republic of China
| | - Lei Hua
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
| | - Keyong Hou
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
| | - Yuanyuan Xie
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
| | - Ping Chen
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
| | - Wei Liu
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, People’s Republic of China
| | - Qingyun Li
- Department
of Instrumentation and Electrical Engineering, Jilin University, Jilin, 130021, People’s Republic of China
| | - Shuang Wang
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, People’s Republic of China
| | - Haiyang Li
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
| |
Collapse
|
25
|
State of the art on public risk assessment of combined human exposure to multiple chemical contaminants. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Williams J, Pleil J. Crowd-based breath analysis: assessing behavior, activity, exposures, and emotional response of people in groups. J Breath Res 2016; 10:032001. [PMID: 27341381 DOI: 10.1088/1752-7155/10/3/032001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new concept for exhaled breath analysis has emerged wherein groups, or even crowds of people are simultaneously sampled in enclosed environments to detect overall trends in their activities and recent exposures. The basic idea is to correlate the temporal profile of known breath markers such as carbon dioxide, isoprene, or acetone with all other volatile organics in the air space. Those that trend similarly in time are designated as breath constituents. The ultimate goal of this work is to develop technology for assessing group based behaviors, chemical exposures or even changes in stress or mood. Applications are myriad ranging from chemical dose/toxicity screening to health and stress status for national security diagnostics. The basic technology employs real-time mass spectrometry capable of simultaneously measuring volatile chemicals and endogenous breath markers.
Collapse
|
27
|
Bikov A, Hull JH, Kunos L. Exhaled breath analysis, a simple tool to study the pathophysiology of obstructive sleep apnoea. Sleep Med Rev 2016; 27:1-8. [PMID: 26426372 DOI: 10.1016/j.smrv.2015.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/30/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
|
28
|
Stiegel MA, Pleil JD, Sobus JR, Madden MC. Inflammatory Cytokines and White Blood Cell Counts Response to Environmental Levels of Diesel Exhaust and Ozone Inhalation Exposures. PLoS One 2016; 11:e0152458. [PMID: 27058360 PMCID: PMC4825980 DOI: 10.1371/journal.pone.0152458] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
Epidemiological observations of urban inhalation exposures to diesel exhaust (DE) and ozone (O3) have shown pre-clinical cardiopulmonary responses in humans. Identifying the key biological mechanisms that initiate these health bioindicators is difficult due to variability in environmental exposure in time and from person to person. Previously, environmentally controlled human exposure chambers have been used to study DE and O3 dose-response patterns separately, but investigation of co-exposures has not been performed under controlled conditions. Because a mixture is a more realistic exposure scenario for the general public, in this study we investigate the relationships of urban levels of urban-level DE exposure (300 μg/m3), O3 (0.3 ppm), DE + O3 co-exposure, and innate immune system responses. Fifteen healthy human volunteers were studied for changes in ten inflammatory cytokines (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) and counts of three white blood cell types (lymphocytes, monocytes, and neutrophils) following controlled exposures to DE, O3, and DE+O3. The results show subtle cytokines responses to the diesel-only and ozone-only exposures, and that a more complex (possibly synergistic) relationship exists in the combination of these two exposures with suppression of IL-5, IL-12p70, IFN-γ, and TNF-α that persists up to 22-hours for IFN-γ and TNF-α. The white blood cell differential counts showed significant monocyte and lymphocyte decreases and neutrophil increases following the DE + O3 exposure; lymphocytes and neutrophils changes also persist for at least 22-hours. Because human studies must be conducted under strict safety protocols at environmental levels, these effects are subtle and are generally only seen with detailed statistical analysis. This study indicates that the observed associations between environmental exposures and cardiopulmonary effects are possibly mediated by inflammatory response mechanisms.
Collapse
Affiliation(s)
- Matthew A. Stiegel
- Duke University Medical Center, Department of Occupational and Environmental Safety, Division of Occupational Hygiene and Safety, Durham, North Carolina, United States of America
| | - Joachim D. Pleil
- United States Environmental Protection Agency, National Exposure Research Lab, Human Exposure and Atmospheric Sciences Division, Research Triangle Park, North Carolina, United States of America
| | - Jon R. Sobus
- United States Environmental Protection Agency, National Exposure Research Lab, Human Exposure and Atmospheric Sciences Division, Research Triangle Park, North Carolina, United States of America
| | - Michael C. Madden
- United States Environmental Protection Agency, National Health and Environmental Effects Research Lab, Environmental Public Health Division, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The exposome concept proposes a comprehensive assessment of environmental exposures from the prenatal period onwards. However, determining exposure timing, especially over the prenatal period, is a major challenge in environmental epidemiologic studies. RECENT FINDINGS For decades, teeth have been used to estimate long-term cumulative exposure to metals. Recently developed high-dimensional analytical methods, which combine sophisticated histological and chemical analysis to precisely sample tooth layers that correspond to specific life stages, have the potential to reconstruct the exposome in the second and third trimesters of prenatal development and during early childhood. SUMMARY A retrospective temporal exposomic approach that precisely measures exposure intensity 'and timing' during prenatal and early childhood development would substantially aid epidemiologic investigations, particularly case-control studies of rare health outcomes.
Collapse
|
30
|
Pleil JD. Cellular respiration: replicating in vivo systems biology for in vitro exploration of human exposome, microbiome, and disease pathogenesis biomarkers. J Breath Res 2016; 10:010201. [PMID: 26954510 DOI: 10.1088/1752-7155/10/1/010201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Joachim D Pleil
- Exposure Methods and Measurements Division, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
31
|
Pleil JD, Isaacs KK. High-resolution mass spectrometry: basic principles for using exact mass and mass defect for discovery analysis of organic molecules in blood, breath, urine and environmental media. J Breath Res 2016; 10:012001. [DOI: 10.1088/1752-7155/10/1/012001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Pleil JD, Angrish MM, Madden MC. Immunochemistry for high-throughput screening of human exhaled breath condensate (EBC) media: implementation of automated quanterix SIMOA instrumentation. J Breath Res 2015; 9:047108. [DOI: 10.1088/1752-7155/9/4/047108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Stiegel MA, Pleil JD, Sobus JR, Angrish MM, Morgan MK. Kidney injury biomarkers and urinary creatinine variability in nominally healthy adults. Biomarkers 2015; 20:436-52. [DOI: 10.3109/1354750x.2015.1094136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- M. A. Stiegel
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA,
- ORISE, US EPA, Research Triangle Park, NC, USA, and
| | - J. D. Pleil
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - J. R. Sobus
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - M. K. Morgan
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
34
|
Beauchamp J. Current sampling and analysis techniques in breath research--results of a task force poll. J Breath Res 2015; 9:047107. [PMID: 26581240 DOI: 10.1088/1752-7155/9/4/047107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jonathan Beauchamp
- Fraunhofer Institute of Process Engineering and Packaging IVV, Department of Sensory Analytics, Giggenhauser Str. 35, 85354 Freising, Germany
| |
Collapse
|
35
|
Sobus JR, DeWoskin RS, Tan YM, Pleil JD, Phillips MB, George BJ, Christensen K, Schreinemachers DM, Williams MA, Hubal EAC, Edwards SW. Uses of NHANES Biomarker Data for Chemical Risk Assessment: Trends, Challenges, and Opportunities. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:919-27. [PMID: 25859901 PMCID: PMC4590763 DOI: 10.1289/ehp.1409177] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 04/01/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Each year, the U.S. NHANES measures hundreds of chemical biomarkers in samples from thousands of study participants. These biomarker measurements are used to establish population reference ranges, track exposure trends, identify population subsets with elevated exposures, and prioritize research needs. There is now interest in further utilizing the NHANES data to inform chemical risk assessments. OBJECTIVES This article highlights a) the extent to which U.S. NHANES chemical biomarker data have been evaluated, b) groups of chemicals that have been studied, c) data analysis approaches and challenges, and d) opportunities for using these data to inform risk assessments. METHODS A literature search (1999-2013) was performed to identify publications in which U.S. NHANES data were reported. Manual curation identified only the subset of publications that clearly utilized chemical biomarker data. This subset was evaluated for chemical groupings, data analysis approaches, and overall trends. RESULTS A small percentage of the sampled NHANES-related publications reported on chemical biomarkers (8% yearly average). Of 11 chemical groups, metals/metalloids were most frequently evaluated (49%), followed by pesticides (9%) and environmental phenols (7%). Studies of multiple chemical groups were also common (8%). Publications linking chemical biomarkers to health metrics have increased dramatically in recent years. New studies are addressing challenges related to NHANES data interpretation in health risk contexts. CONCLUSIONS This article demonstrates growing use of NHANES chemical biomarker data in studies that can impact risk assessments. Best practices for analysis and interpretation must be defined and adopted to allow the full potential of NHANES to be realized.
Collapse
Affiliation(s)
- Jon R Sobus
- National Exposure Research Laboratory, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pleil JD, Beauchamp JD, Miekisch W, Funk WE. Adapting biomarker technologies to adverse outcome pathways (AOPs) research: current thoughts on using
in vivo
discovery for developing
in vitro
target methods. J Breath Res 2015; 9:039001. [DOI: 10.1088/1752-7155/9/3/039001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Harper M, Weis C, Pleil JD, Blount BC, Miller A, Hoover MD, Jahn S. Commentary on the contributions and future role of occupational exposure science in a vision and strategy for the discipline of exposure science. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:381-7. [PMID: 25670022 PMCID: PMC4712444 DOI: 10.1038/jes.2014.91] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 05/04/2023]
Abstract
Exposure science is a holistic concept without prejudice to exposure source. Traditionally, measurements aimed at mitigating environmental exposures have not included exposures in the workplace, instead considering such exposures to be an internal affair between workers and their employers. Similarly, occupational (or industrial) hygiene has not typically accounted for environmental contributions to poor health at work. Many persons spend a significant amount of their lifetime in the workplace, where they maybe exposed to more numerous chemicals at higher levels than elsewhere in their environment. In addition, workplace chemical exposures and other exogenous stressors may increase epigenetic and germline modifications that are passed on to future generations. We provide a brief history of the development of exposure science from its roots in the assessment of workplace exposures, including an appendix where we detail current resources for education and training in exposure science offered through occupational hygiene organizations. We describe existing successful collaborations between occupational and environmental practitioners in the field of exposure science, which may serve as a model for future interactions. Finally, we provide an integrated vision for the field of exposure science, emphasizing interagency collaboration, the need for complete exposure information in epidemiological studies, and the importance of integrating occupational, environmental, and residential assessments. Our goal is to encourage communication and spur additional collaboration between the fields of occupational and environmental exposure assessment. Providing a more comprehensive approach to exposure science is critical to the study of the "exposome", which conceptualizes the totality of exposures throughout a person's life, not only chemical, but also from diet, stress, drugs, infection, and so on, and the individual response.
Collapse
Affiliation(s)
- Martin Harper
- Exposure Assessment Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), 1095 Willowdale Road MS-3030, Morgantown, West Virginia, USA
| | - Christopher Weis
- Office of the Director, National Institute of Environmental Health Sciences (NIEHS), Bethesda, Maryland, USA
| | - Joachim D. Pleil
- Methods Development and Applications Branch, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Benjamin C. Blount
- Division of Laboratory Science, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Aubrey Miller
- Office of the Director, National Institute of Environmental Health Sciences (NIEHS), Bethesda, Maryland, USA
| | - Mark D. Hoover
- Division of Respiratory Disease Studies, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia, USA
| | - Steven Jahn
- Jahn Industrial Hygiene, Aiken, South Carolina, USA
| |
Collapse
|
38
|
Pleil JD. Understanding new “exploratory” biomarker data: a first look at observed concentrations and associated detection limits. Biomarkers 2015; 20:168-9. [DOI: 10.3109/1354750x.2015.1040841] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Joachim D. Pleil
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
39
|
Unterkofler K, King J, Mochalski P, Jandacka M, Koc H, Teschl S, Amann A, Teschl G. Modeling-based determination of physiological parameters of systemic VOCs by breath gas analysis: a pilot study. J Breath Res 2015; 9:036002. [PMID: 25972041 DOI: 10.1088/1752-7155/9/3/036002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this paper we develop a simple two compartment model which extends the Farhi equation to the case when the inhaled concentration of a volatile organic compound (VOC) is not zero. The model connects the exhaled breath concentration of systemic VOCs with physiological parameters such as endogenous production rates and metabolic rates. Its validity is tested with data obtained for isoprene and inhaled deuterated isoprene-D5.
Collapse
Affiliation(s)
- Karl Unterkofler
- Breath Research Institute, University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria. University of Applied Sciences Vorarlberg, Hochschulstr. 1, A-6850 Dornbirn, Austria
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Stiegel MA, Pleil JD, Sobus JR, Morgan MK, Madden MC. Analysis of inflammatory cytokines in human blood, breath condensate, and urine using a multiplex immunoassay platform. Biomarkers 2014; 20:35-46. [PMID: 25495125 DOI: 10.3109/1354750x.2014.988646] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A change in the expression of cytokines in human biological media indicates an inflammatory response to external stressors and reflects an early step along the adverse outcome pathway (AOP) for various health endpoints. To characterize and interpret this inflammatory response, methodology was developed for measuring a suite of 10 different cytokines in human blood, exhaled breath condensate (EBC), and urine using an electrochemiluminescent multiplex Th1/Th2 cytokine immunoassay platform. Measurement distributions and correlations for eight interleukins (IL) (1β, 2, 4, 5, 8, 10, 12p70 and 13), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) were evaluated using 90 blood plasma, 77 EBC, and 400 urine samples collected from nominally healthy adults subjects in North Carolina in 2008-2012. The in vivo results show that there is sufficient sensitivity for characterizing all 10 cytokines at levels of 0.05-0.10 ρg/ml with a dynamic range up to 100 ng/ml across all three of these biological media. The measured in vivo results also show that the duplicate analysis of blood, EBC and urine samples have average estimated fold ranges of 2.21, 3.49, and 2.50, respectively, which are similar to the mean estimated fold range (2.88) for the lowest concentration (0.610 ρg/ml) from a series of spiked control samples; the cytokine method can be used for all three biological media. Nine out of the 10 cytokines measured in EBC were highly correlated within one another with Spearman ρ coefficients ranging from 0.679 to 0.852, while the cytokines measured in blood had a mix of negative and positive correlations, ranging from -0.620 to 0.836. Almost all correlations between EBC and blood were positive. This work also represents the first successful within- and between-person evaluation of ultra trace-level inflammatory markers in blood, EBC, and urine.
Collapse
Affiliation(s)
- Matthew A Stiegel
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | | | | | | | | |
Collapse
|
41
|
Bean HD, Jiménez-Díaz J, Zhu J, Hill JE. Breathprints of model murine bacterial lung infections are linked with immune response. Eur Respir J 2014; 45:181-90. [PMID: 25323243 DOI: 10.1183/09031936.00015814] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this model study, we explored the host's contribution of breath volatiles to diagnostic secondary electrospray ionisation-mass spectrometry (SESI-MS) breathprints for acute bacterial lung infections, their correlation with the host's immune response, and their use in identifying the lung pathogen. Murine airways were exposed to Pseudomonas aeruginosa and Staphylococcus aureus bacterial cell lysates or to PBS (controls), and their breath and bronchoalveolar lavage fluid (BALF) were collected at six time points (from 6 to 120 h) after exposure. Five to six mice per treatment group and four to six mice per control group were sampled at each time. Breath volatiles were analysed using SESI-MS and the BALF total leukocytes, polymorphonuclear neutrophils, lactate dehydrogenase activity, and cytokine concentrations were quantified. Lysate exposure breathprints contain host volatiles that persist for up to 120 h; are pathogen specific; are unique from breathprints of controls, active infections and cleared infections; and are correlated with the host's immune response. Bacterial lung infections induce changes to the host's breath volatiles that are selective and specific predictors of the source of infection. Harnessing the pathogen-specific volatiles in the host's breath may provide useful information for detecting latent bacterial lung infections and managing the spread of respiratory diseases.
Collapse
Affiliation(s)
- Heather D Bean
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA These authors contributed equally to this study
| | - Jaime Jiménez-Díaz
- School of Engineering, University of Vermont, Burlington, VT, USA These authors contributed equally to this study
| | - Jiangjiang Zhu
- School of Engineering, University of Vermont, Burlington, VT, USA
| | - Jane E Hill
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
42
|
Herbig J, Beauchamp J. Towards standardization in the analysis of breath gas volatiles. J Breath Res 2014; 8:037101. [DOI: 10.1088/1752-7155/8/3/037101] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Pleil JD, Stiegel MA, Fent KW. Exploratory breath analyses for assessing toxic dermal exposures of firefighters during suppression of structural burns. J Breath Res 2014; 8:037107. [DOI: 10.1088/1752-7155/8/3/037107] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Mochalski P, Unterkofler K, Španěl P, Smith D, Amann A. Product ion distributions for the reactions of NO(+) with some physiologically significant volatile organosulfur and organoselenium compounds obtained using a selective reagent ionization time-of-flight mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1683-1690. [PMID: 24975248 PMCID: PMC4142009 DOI: 10.1002/rcm.6947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE The reactions of NO(+) with volatile organic compounds (VOCs) in Selective Reagent Ionization Time-of-Flight Mass Spectrometry (SRI-TOF-MS) reactors are relatively poorly known, inhibiting their use for trace gas analysis. The rationale for this product ion distribution study was to identify the major product ions of the reactions of NO(+) ions with 13 organosulfur compounds and 2 organoselenium compounds in an SRI-TOF-MS instrument and thus to prepare the way for their analysis in exhaled breath, in skin emanations and in the headspace of urine, blood and cell and bacterial cultures. METHODS Product ion distributions have been investigated by a SRI-TOF-MS instrument at an E/N in the drift tube reactor of 130 Td for both dry air and humid air (4.9% absolute humidity) used as the matrix gas. The investigated species were five monosulfides (dimethyl sulfide, ethyl methyl sulfide, methyl propyl sulfide, allyl methyl sulfide and methyl 5-methyl-2-furyl sulfide), dimethyl disulfide, dimethyl trisulfide, thiophene, 2-methylthiophene, 3-methylthiophene, methanethiol, allyl isothiocyanate, dimethyl sulfoxide, and two selenium compounds - dimethyl selenide and dimethyl diselenide. RESULTS Charge transfer was seen to be the dominant reaction mechanism in all reactions under study forming the M(+) cations. For methanethiol and allyl isothiocyanate significant fractions were also observed of the stable adduct ions NO(+) M, formed by ion-molecule association, and [M-H](+) ions, formed by hydride ion transfer. Several other minor product channels are seen for most reactions indicating that the nascent excited intermediate (NOM)(+) * adduct ions partially fragment along other channels, most commonly by the elimination of neutral CH3 , CH4 and/or C2 H4 species that are probably bound to an NO molecule. Humidity had little effect on the product ion distributions. CONCLUSIONS The findings of this study are of particular importance for data interpretation in studies of volatile organosulfur and volatile organoselenium compounds employing SRI-TOF-MS in the NO(+) mode.
Collapse
Affiliation(s)
- Paweł Mochalski
- Breath Research Institute of the University of InnsbruckRathausplatz 4, A-6850, Dornbirn, Austria
| | - Karl Unterkofler
- Breath Research Institute of the University of InnsbruckRathausplatz 4, A-6850, Dornbirn, Austria
- Vorarlberg University of Applied SciencesHochschulstr. 1, A-6850, Dornbirn, Austria
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech RepublicDolejškova 3, 18223, Prague 8, Czech Republic
| | - David Smith
- Institute for Science and Technology in Medicine, Medical School, Keele UniversityThornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK
| | - Anton Amann
- Breath Research Institute of the University of InnsbruckRathausplatz 4, A-6850, Dornbirn, Austria
- Univ.-Clinic for Anesthesia and Intensive Care, Innsbruck Medical UniversityAnichstr, 35, A-6020, Innsbruck, Austria
| |
Collapse
|
45
|
Amann A, Costello BDL, Miekisch W, Schubert J, Buszewski B, Pleil J, Ratcliffe N, Risby T. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res 2014; 8:034001. [PMID: 24946087 DOI: 10.1088/1752-7155/8/3/034001] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces. For a large number of compounds, real-time analysis of exhaled breath or skin emanations has been performed, e.g., during exertion of effort on a stationary bicycle or during sleep. Volatile compounds in exhaled breath, which record historical exposure, are called the 'exposome'. Changes in biogenic volatile organic compound concentrations can be used to mirror metabolic or (patho)physiological processes in the whole body or blood concentrations of drugs (e.g. propofol) in clinical settings-even during artificial ventilation or during surgery. Also compounds released by bacterial strains like Pseudomonas aeruginosa or Streptococcus pneumonia could be very interesting. Methyl methacrylate (CAS 80-62-6), for example, was observed in the headspace of Streptococcus pneumonia in concentrations up to 1420 ppb. Fecal volatiles have been implicated in differentiating certain infectious bowel diseases such as Clostridium difficile, Campylobacter, Salmonella and Cholera. They have also been used to differentiate other non-infectious conditions such as irritable bowel syndrome and inflammatory bowel disease. In addition, alterations in urine volatiles have been used to detect urinary tract infections, bladder, prostate and other cancers. Peroxidation of lipids and other biomolecules by reactive oxygen species produce volatile compounds like ethane and 1-pentane. Noninvasive detection and therapeutic monitoring of oxidative stress would be highly desirable in autoimmunological, neurological, inflammatory diseases and cancer, but also during surgery and in intensive care units. The investigation of cell cultures opens up new possibilities for elucidation of the biochemical background of volatile compounds. In future studies, combined investigations of a particular compound with regard to human matrices such as breath, urine, saliva and cell culture investigations will lead to novel scientific progress in the field.
Collapse
Affiliation(s)
- Anton Amann
- Univ-Clinic for Anesthesia and Intensive Care, Innsbruck Medical University, Anichstr, 35, A-6020 Innsbruck, Austria. Breath Research Institute of the University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Pleil JD, Miekisch W, Stiegel MA, Beauchamp J. Extending breath analysis to the cellular level: current thoughts on the human microbiome and the expression of organic compounds in the human exposome. J Breath Res 2014; 8:029001. [DOI: 10.1088/1752-7155/8/2/029001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Mochalski P, Unterkofler K, Španěl P, Smith D, Amann A. Product ion distributions for the reactions of NO + with some physiologically significant aldehydes obtained using a SRI-TOF-MS instrument. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2014; 363:23-31. [PMID: 25844049 PMCID: PMC4375723 DOI: 10.1016/j.ijms.2014.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/23/2014] [Indexed: 05/07/2023]
Abstract
Product ion distributions for the reactions of NO+ with 22 aldehydes involved in human physiology have been determined under the prevailing conditions of a selective reagent ionization time of flight mass spectrometry (SRI-TOF-MS) at an E/N in the flow/drift tube reactor of 130 Td. The chosen aldehydes were fourteen alkanals (the C2-C11 n-alkanals, 2-methyl propanal, 2-methyl butanal, 3-methyl butanal, and 2-ethyl hexanal), six alkenals (2-propenal, 2-methyl 2-propenal, 2-butenal, 3-methyl 2-butenal, 2-methyl 2-butenal, and 2-undecenal), benzaldehyde, and furfural. The product ion fragmentations patterns were determined for both dry air and humid air (3.5% absolute humidity) used as the matrix buffer/carrier gas in the drift tube of the SRI-TOF-MS instrument. Hydride ion transfer was seen to be a common ionization mechanism in all these aldehydes, thus generating (M-H)+ ions. Small fractions of the adduct ion, NO+M, were also seen for some of the unsaturated alkenals, in particular 2-undecenal, and heterocyclic furfural for which the major reactive channel was non-dissociative charge transfer generating the M+ parent ion. Almost all of the reactions resulted in partial fragmentation of the aldehyde molecules generating hydrocarbon ions; specifically, the alkanal reactions resulted in multiple product ions, whereas, the alkenals reactions produced only two or three product ions, dissociation of the nascent excited product ion occurring preferentially at the 2-position. The findings of this study are of particular importance for data interpretation in studies of aldehydes reactions employing SRI-TOF-MS in the NO+ mode.
Collapse
Affiliation(s)
- Paweł Mochalski
- Breath Research Institute of the University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria
- Corresponding author. Tel.: +43 512 503 24636; fax: +43 512 504 6724636.
| | - Karl Unterkofler
- Breath Research Institute of the University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria
- Vorarlberg University of Applied Sciences, Hochschulstr. 1, A-6850 Dornbirn, Austria
| | - Patrik Španěl
- J. Heyrovský Institut of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - David Smith
- Institute for Science and Technology in Medicine, Medical School, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
| | - Anton Amann
- Breath Research Institute of the University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria
- Univ.-Clinic for Anesthesia and Intensive Care, Innsbruck Medical University, Anichstr 35, A-6020 Innsbruck, Austria
- Corresponding author at: Breath Research Institute of the University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria. Tel.: +43 512 503 24636; fax: +43 512 504 6724636.
| |
Collapse
|
48
|
Amann A, Miekisch W, Schubert J, Buszewski B, Ligor T, Jezierski T, Pleil J, Risby T. Analysis of exhaled breath for disease detection. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:455-482. [PMID: 25014347 DOI: 10.1146/annurev-anchem-071213-020043] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.
Collapse
Affiliation(s)
- Anton Amann
- Breath Research Institute of the University of Innsbruck, A-6850 Dornbirn, Austria;
| | | | | | | | | | | | | | | |
Collapse
|