1
|
Jing Q, Pan H, Li X, Fan Y, Shi J, Fang C, Shi F. Covalent protein modification by multiple reactive dialdehyde metabolites of catalpol via intestinal bioactivation. J Pharm Biomed Anal 2025; 261:116841. [PMID: 40156966 DOI: 10.1016/j.jpba.2025.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Catalpol, an iridoid glycoside, exhibits potent and versatile pharmacological effects. It is a promising drug candidate for treating ischemic stroke. However, its drug metabolism and disposition remain poorly understood, which hinders a better understanding of its mode of action. Here, we elucidated the intriguing metabolic characteristics of catalpol in rats. Catalpol underwent sequential metabolism mainly in the intestine, resulting in 31 stable metabolites and 8 unstable dialdehyde metabolites. Twelve glucosyl-containing metabolites were generated through the direct metabolism of catalpol. Eleven deglycosylated metabolites were primarily derived from catalpol aglycone metabolism. Seven N-heterocyclic metabolites originated from aglycone metabolites. Eight unstable and reactive dialdehyde metabolites were formed by the ring-opening of the hemiacetal reaction in aglycone metabolites. Eleven metabolic pathways were involved in catalpol metabolism. All eight dialdehyde metabolites were produced in the intestine through the sequential metabolism of catalpol. Notably, five dialdehyde metabolites could covalently bind to the proteins in the intestine. The dialdehyde metabolites were primarily derived from didehydroxylated and acetylated aglycone. Catalpol could improve the levels of gut bacterial metabolites, short-chain fatty acids. In conclusion, catalpol underwent extensive and sequential metabolism, generating 31 stable metabolites and 8 reactive dialdehyde metabolites. Five dialdehyde metabolites enable covalent protein modification in the intestine, which may be vital to the potent and versatile pharmacological effects of catalpol.
Collapse
Affiliation(s)
- Qiuyi Jing
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry Education, Zunyi Medical University, Zunyi 563003, China
| | - Hong Pan
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry Education, Zunyi Medical University, Zunyi 563003, China; Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoli Li
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry Education, Zunyi Medical University, Zunyi 563003, China
| | - Yaya Fan
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry Education, Zunyi Medical University, Zunyi 563003, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry Education, Zunyi Medical University, Zunyi 563003, China
| | - Chao Fang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fuguo Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry Education, Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
2
|
Fan Y, Chen L, Jing Q, Li X, Pan H, Fang C, Zhang J, Shi F. Covalent Binding of Reactive Anhydride of Cantharidin to Biological Amines. Drug Metab Dispos 2024; 52:775-784. [PMID: 38811155 DOI: 10.1124/dmd.123.001637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024] Open
Abstract
Cantharidin is a terpenoid from coleoptera beetles. Cantharidin has been used to treat molluscum contagiosum and some types of tumors. Cantharidin is highly toxic, and cantharidin poisoning and fatal cases have been reported worldwide. The mechanisms underlying cantharidin-induced toxicity remain unclear. Cantharidin contains anhydride, which may react with biologic amines. This study aimed to examine the chemical reactivity of cantharidin toward nucleophiles and characterize adducts of cantharidin with biologic amines in vitro and in mice. Here two types of conjugates were formed in the incubation of cantharidin under physiologic conditions with free amino acids, a mimic peptide, or amine-containing compounds, respectively. Amide-type conjugates were produced by the binding of cantharidin anhydride with the primary amino group of biologic amines. Imide-type conjugates were generated from the dehydration and cyclization of amide-type conjugates. The structure of the conjugates was characterized by using high-resolution mass spectrometry. We introduced the 14N/15N and 79Br/81Br isotope signatures to confirm the formation of conjugates using L-(ε)15N-lysine, L-lysine-15N2, and bromine-tagged hydrazine, respectively. The structure of imide conjugate was also confirmed by nuclear magnetic resonance experiments. Furthermore, the amide and imide conjugates of cantharidin with amino acids or N-acetyl-lysine were detected in mouse liver and urine. Cantharidin was found to modify lysine residue proteins in mouse liver. Pan-cytochrome P450 inhibitor 1-aminobenzotriazole significantly increased the urine cantharidin-N-acetyl-lysine conjugates, whereas it decreased cantharidin metabolites. In summary, cantharidin anhydride can covalently bind to biologic amines nonenzymatically, which facilitates a better understanding of the role of nonenzymatic reactivity in cantharidin poisoning. SIGNIFICANCE STATEMENT: Anhydride moiety of cantharidin can covalently bind to the primary amino group of biological amines nonenzymatically. Amide and imide conjugates were generated after the covalent binding of cantharidin anhydride with the primary amino groups of amino acids, a mimic peptide, and protein lysine residues. The structure of conjugates was confirmed by 14N/15N and 79Br/81Br isotope signatures using isotope-tagged reagents and nuclear magnetic resonance experiments. This study will facilitate the understanding of the role of nonenzymatic reactivity in cantharidin poisoning.
Collapse
Affiliation(s)
- Yaya Fan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education (Y.F., L.C., Q.J., X.L., H.P., C.F., F.S.), Department of Clinical Pharmacy (H.P.), and Department of Pharmaceutical Analysis (J.Z.), Zunyi Medical University, Zunyi, China; and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (C.F.)
| | - Lin Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education (Y.F., L.C., Q.J., X.L., H.P., C.F., F.S.), Department of Clinical Pharmacy (H.P.), and Department of Pharmaceutical Analysis (J.Z.), Zunyi Medical University, Zunyi, China; and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (C.F.)
| | - Qiuyi Jing
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education (Y.F., L.C., Q.J., X.L., H.P., C.F., F.S.), Department of Clinical Pharmacy (H.P.), and Department of Pharmaceutical Analysis (J.Z.), Zunyi Medical University, Zunyi, China; and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (C.F.)
| | - Xiaoli Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education (Y.F., L.C., Q.J., X.L., H.P., C.F., F.S.), Department of Clinical Pharmacy (H.P.), and Department of Pharmaceutical Analysis (J.Z.), Zunyi Medical University, Zunyi, China; and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (C.F.)
| | - Hong Pan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education (Y.F., L.C., Q.J., X.L., H.P., C.F., F.S.), Department of Clinical Pharmacy (H.P.), and Department of Pharmaceutical Analysis (J.Z.), Zunyi Medical University, Zunyi, China; and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (C.F.)
| | - Chao Fang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education (Y.F., L.C., Q.J., X.L., H.P., C.F., F.S.), Department of Clinical Pharmacy (H.P.), and Department of Pharmaceutical Analysis (J.Z.), Zunyi Medical University, Zunyi, China; and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (C.F.)
| | - Jianyong Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education (Y.F., L.C., Q.J., X.L., H.P., C.F., F.S.), Department of Clinical Pharmacy (H.P.), and Department of Pharmaceutical Analysis (J.Z.), Zunyi Medical University, Zunyi, China; and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (C.F.)
| | - Fuguo Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education (Y.F., L.C., Q.J., X.L., H.P., C.F., F.S.), Department of Clinical Pharmacy (H.P.), and Department of Pharmaceutical Analysis (J.Z.), Zunyi Medical University, Zunyi, China; and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (C.F.)
| |
Collapse
|
3
|
Peng T, Rao J, Zhang T, Wang Y, Li N, Gao Q, Feng X, Song Z, Wang K, Qiu F. Elucidation of the relationship between evodiamine-induced liver injury and CYP3A4-mediated metabolic activation by UPLC-MS/MS analysis. Anal Bioanal Chem 2023; 415:5619-5635. [PMID: 37433953 DOI: 10.1007/s00216-023-04831-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/03/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
Evodiamine (EVD), which has been reported to cause liver damage, is the main constituent of Evodia rutaecarpa (Juss.) Benth and may be bioactivated into reactive metabolites mediated by cytochrome P450. However, the relationships between bioactivation and EVD-induced hepatotoxicity remain unknown. In this study, comprehensive hepatotoxicity evaluation was explored, which demonstrated that EVD caused hepatotoxicity in both time- and dose-dependent manners in mice. By application of UPLC-Q/TOF-MS/MS, two GSH conjugates (GM1 and GM2) derived from reactive metabolites of EVD were identified, in microsomal incubation systems exposed to EVD with glutathione (GSH) as trapping agents. CYP3A4 was proved to be the main metabolic enzyme. Correspondingly, the N-acetyl-L-cysteine conjugate derived from the degradation of GM2 was detected in the urine of mice after exposure to EVD. For the first time, the iminoquinone intermediate was found in EVD-pretreated rat bile by the high-resolution MS platform. Pretreatment with ketoconazole protected the animals from hepatotoxicity, decreased the protein expression of cleaved caspase-1 and -3, but increased the area under the serum-concentration-time curve of EVD in blood determined by UPLC-QQQ-MS/MS. Depletion of GSH by buthionine sulfoximine exacerbated EVD-induced hepatotoxicity. These results implicated that the CYP3A4-mediated metabolic activation was responsible for the observed hepatotoxicity induced by EVD.
Collapse
Affiliation(s)
- Ting Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Tingting Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Zhaohui Song
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co Ltd, Tianjin, 300410, People's Republic of China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
4
|
Pan J, Wu C, Tan R, Liao Y, Zhao G, Li W, Peng Y, Li W, Zheng J. Difference in hepatotoxicity of furan-containing components in cortex dictamni correlates the efficiency of their metabolic activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154778. [PMID: 36996529 DOI: 10.1016/j.phymed.2023.154778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Cortex Dictamni (CD) has been associated with an increased risk of liver injury, which may be attributable to the metabolic activation of its furan-containing components (FCC). However, the hepatotoxic potencies of these FCCs and the mechanisms behind the differences in their toxicity intensity remain unknown. METHODS The constituents of CD extract were determined by LC-MS/MS. Potentially toxic FCCs were screened by a previously published method. Hepatotoxicity of potentially toxic FCCs was evaluated in cultured mouse primary hepatocytes and mice. The ability to deplete hepatic glutathione (GSH), along with the formation of the corresponding GSH conjugates, resulting from the metabolic activation was determined ex vivo in mice. Intrinsic clearance rates (CLint,Vmax/Km) were assessed by a microsome-bases assay. RESULTS A total of 18 FCCs were detected in CD extract. Among them, four FCCs, including rutaevin (RUT), limonin (LIM), obacunone (OBA) and fraxinellone (FRA) were found to be bioactivated in microsomal incubations. Only FRA displayed significant hepatotoxicity in vitro and in vivo. Similarly, FRA caused GSH depletion and GSH conjugation the most in vivo. The order of CLint for the four FCCs was FRA>>OBA>LIM>RUT. CONCLUSION FRA is the major toxic FCC component of hepatotoxic CD extract. The hepatotoxicity of FCCs is closely related to the efficiency of their metabolic activation.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, Guizhou 550004, PR China
| | - Chutian Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Rong Tan
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yufen Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Guode Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, Guizhou 550004, PR China.
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, Guizhou 550004, PR China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
5
|
Pan H, Chen L, Zhai G, Luo Q, Fang C, Shi F. Feature MS fragments-based method for identification of toxic furanoids in biological samples. J Pharm Biomed Anal 2022; 221:115035. [PMID: 36150298 DOI: 10.1016/j.jpba.2022.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Numerous furan-containing compounds have been reported to be toxic. The toxicity may be attributed to the metabolic activation of the furan ring to cis-enediones. Identification of unknown furans that undergo bioactivation is challenging. Here, we present a novel approach that enables non-targeted profiling of bioactivation of unknown furanoids both in vitro and in vivo. Cyclic pyrrole-glutathione conjugate was the predominant product of cis-enediones with glutathione. The shared glutathione substructure of conjugates was capable of generating four constant and signature fragments under collision-induced dissociation (CID) in the mass spectrometer, including neutral loss fragments 103.0269 Da and 146.0691 Da and product ions at m/z 130.0499 and 177.0328. The unique structure and high abundance of conjugates in combination with the consistency and specificity of CID fragmentation brought extraordinarily high selectivity and reliability for the four fragments as a fingerprint of bioactivated furanoids. The bioactivated furanoids can be identified by screening the four fragments in high-resolution MS/MS datasets using the neutral loss filtering and diagnostic fragmentation filtering of data post-acquisition software MZmine. The simultaneous formation of four individual signal points in the filtering channel with the same precursor ion and retention time was assigned to be furanoids. The method has been rigorously validated. In the pooled urine samples from nine model furanoids-treated mice, nine cis-enediones from the parent furanoids and two from furanoid metabolites were accurately detected and identified. The method showed great performance in non-targeted profiling bioactivated furanoids and their metabolites in urine samples of herbal extract-treated mice.
Collapse
Affiliation(s)
- Hong Pan
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China; Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China; Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Guohong Zhai
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Qi Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Chao Fang
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China; Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fuguo Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
6
|
Tian M, Peng Y, Zheng J. Metabolic Activation and Hepatotoxicity of Furan-Containing Compounds. Drug Metab Dispos 2022; 50:655-670. [PMID: 35078805 DOI: 10.1124/dmd.121.000458] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/18/2022] [Indexed: 02/13/2025] Open
Abstract
Furan-containing compounds are abundant in nature, and many, but not all, have been found to be hepatotoxic and carcinogenic. The furan ring present in the chemical structures may be one of the domineering factors to bring about the toxic response resulting from the generation of reactive epoxide or cis-enedial intermediates, which have the potential to react with biomacromolecules. This review sets out to explore the relationship between the metabolic activation and hepatotoxicity of furan-containing compounds on the strength of scientific reports on several typical alkylated furans, synthetic pharmaceuticals, and components extracted from herbal medicines. The pharmacological activities as well as concrete evidence of their liver injuries are described, and the potential toxic mechanisms were discussed partly based on our previous work. Efforts were made to understand the development of liver injury and seek solutions to prevent adverse effects. SIGNIFICANCE STATEMENT: This review mainly elucidates the vital role of metabolic activation in the hepatotoxicity of furan-containing compounds through several typical chemicals studied. The possible mechanisms involved in the toxicities are discussed based on collective literatures as well as our work. Additionally, the structural features responsible for toxicities are elaborated to predict toxicity potentials of furan-containing compounds. This article may assist to seek solutions for the occurring problems and prevent the toxic effects of compounds with furan(s) in clinical practice.
Collapse
Affiliation(s)
- Min Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (M.T., Y.P., J.Z.) and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province (J.Z.) and Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Z.), Guizhou Medical University, Guiyang, China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (M.T., Y.P., J.Z.) and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province (J.Z.) and Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Z.), Guizhou Medical University, Guiyang, China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (M.T., Y.P., J.Z.) and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province (J.Z.) and Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Z.), Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Li W, Hu Z, Sun C, Wang Y, Li W, Peng Y, Zheng J. A Metabolic Activation-Based Chemoproteomic Platform to Profile Adducted Proteins Derived from Furan-Containing Compounds. ACS Chem Biol 2022; 17:873-882. [PMID: 35353477 DOI: 10.1021/acschembio.1c00917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human exposure to widespread furan-containing compounds (FCCs) has drawn much attention due to the high risk of their toxicities. Identifying adducted proteins resulting from the metabolic activation of FCCs is the core to learning the mechanism of FCCs' toxic action. We succeeded in establishing a metabolic activation-based chemoproteomic platform to map FCC-derived protein adducts in cultured primary hepatocytes treated with FCCs and to pinpoint the modification sites, using click chemistry but without alkynylation or azidation of FCCs to be investigated. The proposed platform was systematically verified by biomimetic synthesis, liver microsomal incubation, and primary hepatocyte culture. A mixture of furan, 2-methylfuran, and 2,5-dimethylfuran as model was tested by use of the established platform. A total of hepatic 171 lysine-based adducted proteins and 145 cysteine-based adducted proteins by the reactive metabolites of the three FCCs were enriched and identified (Byonic score ≥ 100). The target proteins were found to mainly participate in ATP synthesis. The technique was also successfully applied to furan-containing natural products. The established platform made it possible to profile covalently adducted proteins, because of potential exposure to a vast inventory of over two million of FCCs documented.
Collapse
Affiliation(s)
- Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Zixia Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Chen Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yuwei Wang
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, P. R. China
| |
Collapse
|
8
|
Wang YK, Li WQ, Xia S, Guo L, Miao Y, Zhang BK. Metabolic Activation of the Toxic Natural Products From Herbal and Dietary Supplements Leading to Toxicities. Front Pharmacol 2021; 12:758468. [PMID: 34744736 PMCID: PMC8564355 DOI: 10.3389/fphar.2021.758468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Currently, herbal and dietary supplements have been widely applied to prevent and treat various diseases. However, the potential toxicities and adverse reactions of herbal and dietary supplements have been increasingly reported, and have gradually attracted widespread attention from clinical pharmacists and physicians. Metabolic activation of specific natural products from herbal and dietary supplements is mediated by hepatic cytochrome P450 or intestinal bacteria, and generates chemical reactive/toxic metabolites that bind to cellular reduced glutathione or macromolecules, and form reactive metabolites-glutathione/protein/DNA adducts, and these protein/DNA adducts can result in toxicities. The present review focuses on the relation between metabolic activation and toxicities of natural products, and provides updated, comprehensive and critical comment on the toxic mechanisms of reactive metabolites. The key inductive role of metabolic activation in toxicity is highlighted, and frequently toxic functional groups of toxic natural products were summarized. The biotransformation of drug cytochrome P450 or intestinal bacteria involved in metabolic activation were clarified, the reactive metabolites-protein adducts were selected as biomarkers for predicting toxicity. And finally, further perspectives between metabolic activation and toxicities of natural products from herbal and dietary supplements are discussed, to provide a reference for the reasonable and safe usage of herbal and dietary supplements.
Collapse
Affiliation(s)
- Yi-Kun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wen Qun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Miao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
9
|
Sun C, Zhao H, Li W, Jia Y, Yang Y, Peng Y, Zheng J. Icotinib Induces Mechanism-Based Inactivation of Recombinant Human CYP3A4/5 Possibly via Heme Destruction by Ketene Intermediate. Drug Metab Dispos 2021; 49:892-901. [PMID: 34312304 DOI: 10.1124/dmd.121.000369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Icotinib (ICT) is an antitumor drug approved by China National Medical Products Administration and is found to be effective against non-small cell lung cancer. The present study aimed at the interaction of ICT with CYP3A. ICT exhibited time-, concentration-, and NADPH-dependent inhibitory effect on recombinant human CYP3A4/5. About 60% of CYP3A activity was suppressed by ICT at 50 μM after 30 minutes. The observed enzyme inhibition could not be recovered by dialysis. Nifedipine protected CYP3A from the inactivation by ICT. The inhibitory effects of ICT on CYP3A were influenced neither by glutathione/N-acetyl lysine nor by superoxide dismutase/catalase. Incubation of ICT with human hepatic microsomes produced a ketene reactive intermediate trapped by 4-bromobenzylamine. CYP3A4 dominated the metabolic activation of ICT to the ketene intermediate. Ethyl and vinyl analogs of ICT did not induce inactivation of recombinant human CYP3A4/5, which indicates that acetylenic bioactivation of ICT contributed to the enzyme inactivation. Moreover, the metabolic activation of ICT resulted in heme destruction. In conclusion, this study demonstrated that ICT was a mechanism-based inactivator of recombinant human CYP3A4/5, and heme destruction by the ketene metabolite may be responsible for the observed CYP3A inactivation. SIGNIFICANCE STATEMENT: Cytochrome P450 enzymes play an important role in drug-drug interactions. The present study demonstrated that icotinib, an inhibitor of epidermal growth factor receptor used to treat non-small cell lung cancer, is a mechanism-based inactivator of recombinant human CYP3A4/5. The study provided solid evidence for the involvement of acetylene moiety in the metabolic activation as well as the inactivation of the enzyme. Furthermore, the resulting ketene intermediate was found to destroy heme, which is possibly responsible for the observed enzyme inactivation.
Collapse
Affiliation(s)
- Chen Sun
- Wuya College of Innovation (C.S., H.Z., W.L., Y.J., Y.Y., Y.P., J.Z.), State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z.), and Key Laboratory of Environmental Pollution Monitoring and Disease Control (J.Z.), Ministry of Education, Guizhou Medical University, Guiyang, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China (J.Z.)
| | - Huimin Zhao
- Wuya College of Innovation (C.S., H.Z., W.L., Y.J., Y.Y., Y.P., J.Z.), State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z.), and Key Laboratory of Environmental Pollution Monitoring and Disease Control (J.Z.), Ministry of Education, Guizhou Medical University, Guiyang, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China (J.Z.)
| | - Wei Li
- Wuya College of Innovation (C.S., H.Z., W.L., Y.J., Y.Y., Y.P., J.Z.), State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z.), and Key Laboratory of Environmental Pollution Monitoring and Disease Control (J.Z.), Ministry of Education, Guizhou Medical University, Guiyang, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China (J.Z.)
| | - Yudi Jia
- Wuya College of Innovation (C.S., H.Z., W.L., Y.J., Y.Y., Y.P., J.Z.), State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z.), and Key Laboratory of Environmental Pollution Monitoring and Disease Control (J.Z.), Ministry of Education, Guizhou Medical University, Guiyang, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China (J.Z.)
| | - Yi Yang
- Wuya College of Innovation (C.S., H.Z., W.L., Y.J., Y.Y., Y.P., J.Z.), State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z.), and Key Laboratory of Environmental Pollution Monitoring and Disease Control (J.Z.), Ministry of Education, Guizhou Medical University, Guiyang, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China (J.Z.)
| | - Ying Peng
- Wuya College of Innovation (C.S., H.Z., W.L., Y.J., Y.Y., Y.P., J.Z.), State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z.), and Key Laboratory of Environmental Pollution Monitoring and Disease Control (J.Z.), Ministry of Education, Guizhou Medical University, Guiyang, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China (J.Z.)
| | - Jiang Zheng
- Wuya College of Innovation (C.S., H.Z., W.L., Y.J., Y.Y., Y.P., J.Z.), State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z.), and Key Laboratory of Environmental Pollution Monitoring and Disease Control (J.Z.), Ministry of Education, Guizhou Medical University, Guiyang, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China (J.Z.)
| |
Collapse
|
10
|
Wei MM, Zhao SJ, Dong XM, Wang YJ, Fang C, Wu P, Song GQ, Gao JN, Huang ZH, Xie T, Zhou JL. A combination index and glycoproteomics-based approach revealed synergistic anticancer effects of curcuminoids of turmeric against prostate cancer PC3 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113467. [PMID: 33058923 DOI: 10.1016/j.jep.2020.113467] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal medicines (HMs) often exert integration effects, including synergistic, additive and antagonistic effects, in such ways that they act on multiple targets and multiple pathways on account of their multiple components. Turmeric, made from the rhizome of Curcuma longa L., is a well-known HM prescribed in the polyherbal formulas for cancer treatment in traditional Chinese medicines (TCMs). However, neither the multiple anticancer compounds of turmeric nor the integration effects of these components are fully known. AIM OF THE STUDY This work aims to develop a systematic approach to reveal the integration effect mechanisms of multiple anticancer compounds in turmeric against prostate cancer PC3 cells. MATERIALS AND METHODS Combination index and omics technologies were applied to profile the integration effect mechanisms of bioactive compounds in proportions naturally found in turmeric. PC3 cell line (a prostate cancer cell line) fishing and high resolution mass spectrometry were employed to screen and identify the anticancer compounds from turmeric. The combinations which contain different cell-bound compounds in natural proportions were prepared for further evaluation of anti-cancer activity by using cell viability assays, and assessment of cell apoptosis and cell cycle analysis. Combination index analysis was applied to study the integration effects of the anticancer compounds in their natural proportions. Finally, quantitative glycoproteomics/proteomics and Western blot were implemented to reveal the potential synergistic effect mechanisms of the anticancer compounds based on their natural proportions in turmeric. RESULTS Three curcuminoids (curcumin, CUR; demethoxycurcumin, DMC; bisdemethoxycurcumin, BDMC) in turmeric were discovered and shown to possess significant synergistic anticancer activities. Combination index analysis revealed an additive effect of CUR combined with DMC or BDMC and a slight synergistic effect of DMC combined with BDMC in natural proportions in turmeric, while a combination of all three curcuminoids (CUR, DMC and BDMC) at a ratio of 1:1:1 yielded superior synergistic effects. Interestingly, the presence of BDMC and DMC are essential for synergistic effect. Glycoproteomics and proteomics demonstrated that different curcuminoids regulate various protein pathways, such as ribosome, glycolysis/gluconeogenesis, biosynthesis of amino acids, and combination of CUR + DMC + BDMC showed the most powerful effects on down-regulation of protein expression. CONCLUSIONS Our analytical approach provides a systematic understanding of the holistic activity and integration effects of the anti-cancer compounds in turmeric and three curcuminoids of turmeric showed a synergistic effect on PC3 cells.
Collapse
Affiliation(s)
- Meng-Meng Wei
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Shu-Juan Zhao
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Xue-Man Dong
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yong-Jie Wang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Can Fang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Pu Wu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Gao-Qian Song
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jun-Na Gao
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Zhi-Hui Huang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jian-Liang Zhou
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
11
|
Zhang T, Rao J, Li W, Wang K, Qiu F. Mechanism-based inactivation of cytochrome P450 enzymes by natural products based on metabolic activation. Drug Metab Rev 2020; 52:501-530. [PMID: 33043714 DOI: 10.1080/03602532.2020.1828910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 enzymes (P450 enzymes) are the most common and important phase I metabolic enzymes and are responsible for the majority of the metabolism of clinical drugs and other xenobiotics. Drug-drug interactions (DDIs) can occur when the activities of P450 enzymes are inhibited. In particular, irreversible inhibition of P450 enzymes may lead to severe adverse interactions, compared to reversible inhibition. Many natural products have been shown to be irreversible inhibitors of P450 enzymes. The risks for intake of naturally occurring irreversible P450 enzyme inhibitors have been rising due to the rapid growth of the global consumption of natural products. Irreversible inhibition is usually called mechanism-based inactivation, which is time-, concentration- and NADPH- dependent. Generally, the formation of electrophilic intermediates is fundamental for the inactivation of P450 enzymes. This review comprehensively classifies natural P450 enzyme inactivators, including terpenoids, phenylpropanoids, flavonoids, alkaloids, and quinones obtained from herbs or foods. Moreover, the structure - activity correlations according to the IC50 (or Ki) values reported in the literature as well as the underlying mechanisms based on metabolic activation are highlighted in depth.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Wei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
12
|
Li H, Peng Y, Zheng J. Dioscorea bulbifera L.-induced hepatotoxicity and involvement of metabolic activation of furanoterpenoids. Drug Metab Rev 2020; 52:568-584. [DOI: 10.1080/03602532.2020.1800724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hui Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University,Guiyang, China
| |
Collapse
|
13
|
Liu X, Lv H, Guo Y, Teka T, Wang X, Huang Y, Han L, Pan G. Structure-Based Reactivity Profiles of Reactive Metabolites with Glutathione. Chem Res Toxicol 2020; 33:1579-1593. [PMID: 32347096 DOI: 10.1021/acs.chemrestox.0c00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Therapeutic agents can be transformed into reactive metabolites under the action of various metabolic enzymes in vivo and then covalently combine with biological macromolecules (such as protein or DNA), resulting in increasing toxicity. The screening of reactive metabolites in drug discovery and development stages and monitoring of biotransformation in post-market drugs has become an important research field. Generally, reactive metabolites are electrophilic and can be captured by small nucleophiles. Glutathione (GSH) is a small peptide composed of three amino acids (i.e., glutamic acid, cysteine, and glycine). It has a thiol group which can react with electrophilic groups of reactive metabolic intermediates (such as benzoquinone, N-acetyl-p-benzoquinoneimine, and Michael acceptor) to form a stable binding conjugate. This paper aims to provide a review on structure-based reactivity profiles of reactive metabolites with GSH. Furthermore, this review also reveals the relationship between drugs' molecular structures and reactive metabolic toxicity from the perspective of metabolism, giving a reference for drug design and development.
Collapse
Affiliation(s)
- Xiaomei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hong Lv
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tekleab Teka
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Lifeng Han
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| |
Collapse
|
14
|
Kettlitz B, Scholz G, Theurillat V, Cselovszky J, Buck NR, O’ Hagan S, Mavromichali E, Ahrens K, Kraehenbuehl K, Scozzi G, Weck M, Vinci C, Sobieraj M, Stadler RH. Furan and Methylfurans in Foods: An Update on Occurrence, Mitigation, and Risk Assessment. Compr Rev Food Sci Food Saf 2019; 18:738-752. [DOI: 10.1111/1541-4337.12433] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Beate Kettlitz
- FoodDrinkEurope (FDE) Ave. des Nerviens 9–31 1040 Brussels Belgium
| | - Gabriele Scholz
- Nestlé ResearchVers‐chez‐les‐Blanc 1000 Lausanne 26 Switzerland
| | - Viviane Theurillat
- Nestlé Research & Development Rte de Chavornay 3 CH‐1350 Orbe Switzerland
| | - Jörg Cselovszky
- Cereal Partners Worldwide S.A. Rte de Chavornay 7 CH‐1350 Orbe Switzerland
| | - Neil R. Buck
- General Mills Inc. Ave. Reverdil 12–14 CH‐1260 Nyon Switzerland
| | - Sue O’ Hagan
- Pepsico Beaumont Park, 4 Leycroft Rd., Leiecster LE4 1ET United Kingdom
| | - Eva Mavromichali
- Specialised Nutrition Europe (SNE) Ave. des Nerviens 9–31 1040 Brussels Belgium
| | - Katja Ahrens
- German Federation for Food Law and Food Science Claire‐Waldoff‐Str. 7 10117 Berlin Germany
| | - Karin Kraehenbuehl
- Société des Produits Nestlé S.A. Entre‐deux‐Villes 10–12 1814 La Tour‐de‐Peilz Switzerland
| | - Gabriella Scozzi
- European Breakfast Cereal Assn. Ave. des Nerviens 9–31 B‐1040 Brussels Belgium
| | - Markus Weck
- CULINARIA Europe Reuterstraße 151 D‐53113 Bonn Germany
| | - Claudia Vinci
- European Assn. of Fruit and Vegetable Processors (Profel) Av. De Tervueren 188A B‐1150 Brussels Belgium
| | - Marta Sobieraj
- European Fruit Juice Assn. (AIJN) Rue de la Loi 221 box 5 B‐1040 Brussels Belgium
| | | |
Collapse
|
15
|
Zhao H, Li S, Yang Z, Peng Y, Chen X, Zheng J. Identification of Ketene-Reactive Intermediate of Erlotinib Possibly Responsible for Inactivation of P450 Enzymes. Drug Metab Dispos 2018; 46:442-450. [PMID: 29352069 DOI: 10.1124/dmd.117.079327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 02/02/2023] Open
Abstract
Erlotinib (ELT), a tyrosine kinase inhibitor, is widely used for the treatment of nonsmall cell lung cancer in clinic. Unfortunately, severe drug-induced liver injury and other adverse effects occurred during the treatment. Meanwhile, ELT has been reported to be a mechanism-based inactivator of cytochrome P450(CYPs) 3A4 and 3A5. The objectives of this study were to identify ketene intermediate of ELT and investigate the association of the acetylenic bioactivation with the enzyme inactivation caused by ELT. A ketene intermediate was detected in human microsomal incubations of ELT, using 4-bromobenzylamine as a trapping agent. CYPs 3A4 and 3A5 mainly contributed to the bioactivation of ELT. Microsomal incubation study showed that the ketene intermediate covalently modified the enzyme protein at lysine residues and destroyed the structure of heme. The vinyl and ethyl analogs of ELT showed minor enzyme inhibitory effect (less than 20%), whereas ELT inactivated more than 60% of the enzyme. The present study provided a novel bioactivation pathway of ELT and facilitated the understanding of the mechanisms of ELT-induced mechanism-based enzyme inactivation and liver injury.
Collapse
Affiliation(s)
- Huimin Zhao
- School of Pharmacy (H.Z., X.C.) and Wuya College of Innovation (S.L., Z.Y., Y.P., J.Z.), Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China; and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China (J.Z.)
| | - Siyuan Li
- School of Pharmacy (H.Z., X.C.) and Wuya College of Innovation (S.L., Z.Y., Y.P., J.Z.), Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China; and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China (J.Z.)
| | - Zixin Yang
- School of Pharmacy (H.Z., X.C.) and Wuya College of Innovation (S.L., Z.Y., Y.P., J.Z.), Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China; and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China (J.Z.)
| | - Ying Peng
- School of Pharmacy (H.Z., X.C.) and Wuya College of Innovation (S.L., Z.Y., Y.P., J.Z.), Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China; and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China (J.Z.)
| | - Xiaohui Chen
- School of Pharmacy (H.Z., X.C.) and Wuya College of Innovation (S.L., Z.Y., Y.P., J.Z.), Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China; and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China (J.Z.)
| | - Jiang Zheng
- School of Pharmacy (H.Z., X.C.) and Wuya College of Innovation (S.L., Z.Y., Y.P., J.Z.), Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China; and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China (J.Z.)
| |
Collapse
|
16
|
Shi W, Zhang C, Zhao D, Wang L, Li P, Li H. Discovery of Hepatotoxic Equivalent Combinatorial Markers from Dioscorea bulbifera tuber by Fingerprint-Toxicity Relationship Modeling. Sci Rep 2018; 8:462. [PMID: 29323207 PMCID: PMC5764974 DOI: 10.1038/s41598-017-18929-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023] Open
Abstract
Due to extremely chemical complexity, identification of potential toxicity-related constituents from an herbal medicine (HM) still remains challenging. Traditional toxicity-guided separation procedure suffers from time- and labor-consumption and neglects the additive effect of multi-components. In this study, we proposed a screening strategy called “hepatotoxic equivalent combinatorial markers (HECMs)” for a hepatotoxic HM, Dioscorea bulbifera tuber (DBT). Firstly, the chemical constituents in DBT extract were globally characterized. Secondly, the fingerprints of DBT extracts were established and their in vivo hepatotoxicities were tested. Thirdly, three chemometric tools including partial least squares regression (PLSR), back propagation-artificial neural network (BP-ANN) and cluster analysis were applied to model the fingerprint-hepatotoxicity relationship and to screen hepatotoxicity-related markers. Finally, the chemical combination of markers was subjected to hepatotoxic equivalence evaluation. A total of 40 compounds were detected or tentatively characterized. Two diterpenoid lactones, 8-epidiosbulbin E acetate (EEA) and diosbulbin B (DIOB), were discovered as the most hepatotoxicity-related markers. The chemical combination of EEA and DIOB, reflecting the whole hepatotoxicity of original DBT extract with considerable confidential interval, was verified as HECMs for DBT. The present study is expected not only to efficiently discover hepatotoxicity-related markers of HMs, but also to rationally evaluate/predict the hepatotoxicity of HMs.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Cai Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Dongsheng Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lingli Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Huijun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
17
|
Wang LL, Zhao DS, Shi W, Li ZQ, Wu ZT, Li P, Li HJ. Describing the holistic toxicokinetics of hepatotoxic Chinese herbal medicines by a novel integrated strategy: Dioscorea bulbifera rhizome as a case study. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1064:40-48. [PMID: 28910661 DOI: 10.1016/j.jchromb.2017.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
It is vital to monitor the holistic toxicokinetics of toxic Chinese herbal medicines (CHMs) for safety. Although an integrated strategy based on the area under the curve (AUC) has been proposed to characterize the pharmacokinetic/toxicokinetic properties of CHMs, improvement is still needed. This study attempted to use 50% inhibitory concentration (IC50) as weighting coefficient to investigate holistic toxicokinetics of the major diosbulbins i.e. diosbulbin A (DA), diosbulbin B (DB), and diosbulbin C (DC) after oral administration of Dioscorea bulbifera rhizome (DBR) extract. Firstly, the cytotoxicities of the three diosbulbins on human hepatic L02 cells were evaluated and the IC50 values were calculated. Then, integrated toxicokinetics of multiple diosbulbins based on AUC and IC50 were determined. Finally, correlations between integrated plasma concentrations and hepatic injury biomarkers including alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bile acid (TBA) were analyzed. As a result, integrated plasma concentrations were correlated well with TBA and the correlation between TBA and IC50-weighting integrated plasma concentrations was better than that of AUC-weighting integrated plasma concentrations. In conclusion, the newly developed IC50-weighting method is expected to generate more reasonable integrated toxicokinetic parameters, which will help to guide the safe usage of DBR in clinical settings.
Collapse
Affiliation(s)
- Ling-Li Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Dong-Sheng Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wei Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhuo-Qing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zi-Tian Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
18
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Chipman K, De Meulenaer B, Dinovi M, Mennes W, Schlatter J, Schrenk D, Baert K, Dujardin B, Wallace H. Risks for public health related to the presence of furan and methylfurans in food. EFSA J 2017; 15:e05005. [PMID: 32625300 PMCID: PMC7009982 DOI: 10.2903/j.efsa.2017.5005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risk to human health of the presence of furan and methylfurans (2-methylfuran, 3-methylfuran and 2,5-dimethylfuran) in food. They are formed in foods during thermal processing and can co-occur. Furans are produced from several precursors such as ascorbic acid, amino acids, carbohydrates, unsaturated fatty acids and carotenoids, and are found in a variety of foods including coffee and canned and jarred foods. Regarding furan occurrence, 17,056 analytical results were used in the evaluation. No occurrence data were received on methylfurans. The highest exposures to furan were estimated for infants, mainly from ready-to-eat meals. Grains and grain-based products contribute most for toddlers, other children and adolescents. In adults, elderly and very elderly, coffee is the main contributor to dietary exposure. Furan is absorbed from the gastrointestinal tract and is found in highest amounts in the liver. It has a short half-life and is metabolised by cytochrome P450 2E1 (CYP2E1) to the reactive metabolite, cis-but-2-ene-1,4-dialdehyde (BDA). BDA can bind covalently to amino acids, proteins and DNA. Furan is hepatotoxic in rats and mice with cholangiofibrosis in rats and hepatocellular adenomas/carcinomas in mice being the most prominent effects. There is limited evidence of chromosomal damage in vivo and a lack of understanding of the underlying mechanism. Clear evidence for indirect mechanisms involved in carcinogenesis include oxidative stress, gene expression alterations, epigenetic changes, inflammation and increased cell proliferation. The CONTAM Panel used a margin of exposure (MOE) approach for the risk characterisation using as a reference point a benchmark dose lower confidence limit for a benchmark response of 10% of 0.064 mg/kg body weight (bw) per day for the incidence of cholangiofibrosis in the rat. The calculated MOEs indicate a health concern. This conclusion was supported by the calculated MOEs for the neoplastic effects.
Collapse
|
19
|
Chemical Identity of Interaction of Protein with Reactive Metabolite of Diosbulbin B In Vitro and In Vivo. Toxins (Basel) 2017; 9:toxins9080249. [PMID: 28805726 PMCID: PMC5577583 DOI: 10.3390/toxins9080249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022] Open
Abstract
Diosbulbin B (DIOB), a hepatotoxic furan-containing compound, is a primary ingredient in Dioscorea bulbifera L., a common herbal medicine. Metabolic activation is required for DIOB-induced liver injury. Protein covalent binding of an electrophilic reactive intermediate of DIOB is considered to be one of the key mechanisms of cytotoxicity. A bromine-based analytical technique was developed to characterize the chemical identity of interaction of protein with reactive intermediate of DIOB. Cysteine (Cys) and lysine (Lys) residues were found to react with the reactive intermediate to form three types of protein modification, including Cys adduction, Schiff's base, and Cys/Lys crosslink. The crosslink showed time- and dose-dependence in animals given DIOB. Ketoconazole pretreatment decreased the formation of the crosslink derived from DIOB, whereas pretreatment with dexamethasone or buthionine sulfoximine increased such protein modification. These data revealed that the levels of hepatic protein adductions were proportional to the severity of hepatotoxicity of DIOB.
Collapse
|
20
|
Zhang Z, Lin D, Li W, Gao H, Peng Y, Zheng J. Sensitive bromine-based screening of potential toxic furanoids in Dioscorea bulbifera L. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1057:1-14. [DOI: 10.1016/j.jchromb.2017.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/07/2017] [Accepted: 04/20/2017] [Indexed: 02/03/2023]
|
21
|
Li H, Lin D, Peng Y, Zheng J. Oxidative bioactivation of nitrofurantoin in rat liver microsomes. Xenobiotica 2016; 47:103-111. [DOI: 10.3109/00498254.2016.1164913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | | | | | - Jiang Zheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, China, and
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Center for Developmental Therapeutics, Seattle Children’s Research Institute, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
22
|
Wang K, Li W, Chen J, Peng Y, Zheng J. Detection of cysteine- and lysine-based protein adductions by reactive metabolites of 2,5-dimethylfuran. Anal Chim Acta 2015; 896:93-101. [DOI: 10.1016/j.aca.2015.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023]
|