1
|
Snow RA, Simone PS, Emmert GL, Brown MA. A low-cost, high-sensitivity 3D printed fluorescence detector. Analyst 2025. [PMID: 39980403 DOI: 10.1039/d4an01378f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Fluorescence methods have distinct advantages over traditional absorbance methods including greater sensitivity, improved detection limits, and selectivity. Unfortunately, the cost of typical, commercially available fluorescence detectors is beyond what some industrial and research laboratories can afford or maintain. Having a relatively low-cost, simple to use, and high-sensitivity fluorescence detector would be very beneficial. The aim of this research is to develop a 3D printed flow through fluorescence detector that does not require complex optics or an expensive excitation source and has comparable performance to a commercial detector. The detector presented here was designed to work with nicotinamide-based methods developed in previous research; however, by simply changing the excitation and emission filters this detector can be adapted to other applications. Several evaluation studies were performed where the relative signal-to-noise ratio, detection limits, accuracy, and precision results for the 3D printed detector were compared to those of a commercial detector using nicotinamide as the analyte. Overall, the detector performed comparably or better than a commercial detector for these metrics.
Collapse
Affiliation(s)
- Robyn A Snow
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA.
| | - Paul S Simone
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA.
- Foundation Instruments Inc., Collierville, Tennessee 38017, USA
| | - Gary L Emmert
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA.
- Foundation Instruments Inc., Collierville, Tennessee 38017, USA
| | - Michael A Brown
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA.
- Foundation Instruments Inc., Collierville, Tennessee 38017, USA
| |
Collapse
|
2
|
Warren CG, Dasgupta PK. Liquid phase detection in the miniature scale. Microfluidic and capillary scale measurement and separation systems. A tutorial review. Anal Chim Acta 2024; 1305:342507. [PMID: 38677834 DOI: 10.1016/j.aca.2024.342507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Microfluidic and capillary devices are increasingly being used in analytical applications while their overall size keeps decreasing. Detection sensitivity for these microdevices gains more importance as device sizes and consequently, sample volumes, decrease. This paper reviews optical, electrochemical, electrical, and mass spectrometric detection methods that are applicable to capillary scale and microfluidic devices, with brief introduction to the principles in each case. Much of this is considered in the context of separations. We do consider theoretical aspects of separations by open tubular liquid chromatography, arguably the most potentially fertile area of separations that has been left fallow largely because of lack of scale-appropriate detection methods. We also examine the theoretical basis of zone electrophoretic separations. Optical detection methods discussed include UV/Vis absorbance, fluorescence, chemiluminescence and refractometry. Amperometry is essentially the only electrochemical detection method used in microsystems. Suppressed conductance and especially contactless conductivity (admittance) detection are in wide use for the detection of ionic analytes. Microfluidic devices, integrated to various mass spectrometers, including ESI-MS, APCI-MS, and MALDI-MS are discussed. We consider the advantages and disadvantages of each detection method and compare the best reported limits of detection in as uniform a format as the available information allows. While this review pays more attention to recent developments, our primary focus has been on the novelty and ingenuity of the approach, regardless of when it was first proposed, as long as it can be potentially relevant to miniature platforms.
Collapse
Affiliation(s)
- Cable G Warren
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States
| | - Purnendu K Dasgupta
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States.
| |
Collapse
|
3
|
Kaljurand M, Růžička M, Gorbatsova J, Mazina-Šinkar J. Evaluation of different operating modes of an autosampler for portable capillary electrophoresis. J Chromatogr A 2023; 1705:464201. [PMID: 37451197 DOI: 10.1016/j.chroma.2023.464201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
A compact, inexpensive sampler instrument for portable capillary electrophoresis (CE) was developed and tested to monitor common inorganic ions in drinking water samples. The sampler uses peristaltic and vacuum pumps and pinch and check valves to control liquid flows. The paper also addresses various aspects of CE associated with portability, open access instrumentation and prospects of CE for citizen science. The extensive use of items provided by the electronic and computer industry contributes to this trend.
Collapse
Affiliation(s)
- Mihkel Kaljurand
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn 12618, Estonia.
| | - Martin Růžička
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Jelena Gorbatsova
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Jekaterina Mazina-Šinkar
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn 12618, Estonia
| |
Collapse
|
4
|
Esene JE, Nasman PR, Akuoko Y, Tahir A, Woolley AT. Past, current, and future roles of 3D printing in the development of capillary electrophoresis systems. Trends Analyt Chem 2023; 162:117032. [PMID: 37008739 PMCID: PMC10062378 DOI: 10.1016/j.trac.2023.117032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
3D printing, an additive manufacturing technology, has made significant inroads into improving systems for bioanalysis in recent years. This approach is particularly powerful due to the ease and flexibility in rapidly creating novel and complex designs for analytical applications. As such, 3D printing offers an emerging technology for creating systems for electrophoretic analysis. Here, we review 3D printing work on improving and miniaturizing capillary electrophoresis (CE), emphasizing publications from 2019‒2022. We describe enabling uses of 3D printing in interfacing upstream sample preparation or downstream detection with CE. Recent developments in miniaturized CE enabled by 3D printing are also elaborated, including key areas where 3D printing could further improve over the current state-of-the-art. Lastly, we highlight promising future trends for using 3D printing in miniaturizing CE and the significant potential for innovative advancements. 3D printing is poised to play a key role in moving forward miniaturized CE in the coming years.
Collapse
Affiliation(s)
- Joule E. Esene
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Parker R. Nasman
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Yesman Akuoko
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Anum Tahir
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
5
|
Wang Y, Zeng Z, Yang L, Zeng H, Li Y, Pu Q, Zhang M. Three-in-One Detector by 3D Printing: Simultaneous Contactless Conductivity, Ultraviolet Absorbance, and Laser-Induced Fluorescence Measurements for Capillary Electrophoresis. Anal Chem 2023; 95:2146-2151. [PMID: 36642960 DOI: 10.1021/acs.analchem.2c04388] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We describe a 3-in-1 detector for simultaneous contactless conductivity (C4D), ultraviolet absorbance (UV-AD), and laser-induced fluorescence (LIF) measurements on a single detection point for capillary electrophoresis (CE). A key component of the detector was a rectangular detector head that was assembled with four 3D-printed parts. Two parts covering the detector head to function as a Faraday cage were fused deposition modeling printed using an electrically conductive material. The other two parts in between the conductive parts were stereolithography (SLA) printed with high-resolution (50 μm) constructions on the surface. After assembling the two SLA printed parts, several cavities were built with the surface constructions. Two electrodes and a Faraday shield for C4D were cast by injecting molten Wood's metal into the cavities. For UV-AD, a slit (100 μm width) was created by putting together two grooves (50 μm depth) on the surface of the SLA printed parts. A 255 nm UV-LED was used as the light source. The effective path length and stray light for a 50 μm id capillary were 39 μm and 13%, which were superior to those of other reported 3D-printed AD detectors. Confocal LIF detection was conducted by using an objective lens to focus the laser on the capillary via a through-hole. The detector was used to detect model analytes, including inorganic and organic ions, and fluorescein isothiocyanate labeled amino acids in a signal-run CE separation. In detecting fluorescein, LODs were 1.3 μM (C4D), 2.0 μM (UV-AD), and 1 nM (LIF). The calibration ranges covered from 0.01 μM to 500 μM.
Collapse
Affiliation(s)
- Yingchun Wang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zihan Zeng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Liye Yang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Hui Zeng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Yan Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Min Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| |
Collapse
|
6
|
Novel developments in capillary electrophoresis miniaturization, sampling, detection and portability: An overview of the last decade. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Kaljurand M, Mazina-Šinkar J. Portable capillary electrophoresis as a green analytical technology. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Ficarro SB, Max Alexander W, Tavares I, Marto JA. Open source fraction collector/MALDI spotter for proteomics. HARDWAREX 2022; 11:e00305. [PMID: 35518277 PMCID: PMC9062586 DOI: 10.1016/j.ohx.2022.e00305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
We describe a complete open-source hardware/software solution for high performance thermostatted peptide fraction collection to support mass spectrometry experiments with complex proteomes. The instrument is easy to assemble using parts readily available through retail channels at a fraction of the cost compared to typical commercial systems. Control software is written in Python allowing for rapid customization. We demonstrate several useful applications, including the automated deposition of LC separated peptides for matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) as well as collection and concatenation of peptide fractions from nanoflow HPLC separations.
Collapse
Affiliation(s)
- Scott B. Ficarro
- Department of Cancer Biology, Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 360 Longwood Avenue, LC 2208, Boston, MA 02215-5450, USA
| | - William Max Alexander
- Department of Cancer Biology, Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 360 Longwood Avenue, LC 2208, Boston, MA 02215-5450, USA
| | - Isidoro Tavares
- Department of Cancer Biology, Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 360 Longwood Avenue, LC 2208, Boston, MA 02215-5450, USA
| | - Jarrod A. Marto
- Department of Cancer Biology, Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 360 Longwood Avenue, LC 2208, Boston, MA 02215-5450, USA
| |
Collapse
|
9
|
Yang S, Li N, Ma Z, Tang T, Li T. [Research advances in nano liquid chromatography instrumentation]. Se Pu 2021; 39:1065-1076. [PMID: 34505428 PMCID: PMC9404240 DOI: 10.3724/sp.j.1123.2021.06017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The miniaturization of liquid chromatography equipment is among the most important focus areas in chromatographic technology. It involves the miniaturization of the physical dimensions of the instrument, size of the separation material, and inner diameter of the column. The advantages of a reduced inner diameter of the column have been investigated for several decades, and can be summarized as follows. First, the sample consumption is lower, which is particularly beneficial when a limited amount of sample is available, as is the case with natural products, and in biochemistry and biomedicine. Second, the consumption of the mobile phase is reduced, making the process environmentally friendly and facilitating green chemistry. This allows the addition of more expensive solvent additives, such as chiral additives or isotopic reagents, while maintaining a low analysis cost. Moreover, the degree of band dilution in the column is lower than that with conventional liquid chromatography under the same sample injection conditions. Thus, enhanced mass sensitivity is achieved. Other benefits of a reduced inner diameter of the column include temperature control due to effective heat transfer through the columns and easier coupling to mass detectors, which is particularly advantageous for analyzing complex samples. Typically, the term “nano liquid chromatography” is associated with liquid chromatography, which employs capillary columns of inner diameters less than 100 μm and flow rates in the range of tens to hundreds of nanoliters per minute. Because of the extremely low flow rates and small column volume, the extra-column effect becomes more prominent. Thus, the requirements for every component of liquid chromatographs are augmented toward improving their performance and optimizing the extra-column band broadening of the entire system. The solvent delivery equipment should be able to pump mobile phases accurately and steadily at nanoliter-level flow rates. A gradient mode is required to achieve this, which implies that the lowest flow rate for a single pump unit should reach a few nanoliters per minute. A certain operating pressure is also necessary to employ columns with different inner diameters and particle sizes. A precise and repeatable sample injection procedure is essential for nano liquid chromatography. The injection volume and mode should be suitable for capillary columns, without inducing a significant extra-column effect. A higher-sensitivity detector should be employed, and sample dispersion should be limited. The improved tubing and connection method in nano liquid chromatography should offer stability, reliability, and ease of operation. The extra-column volume should also be restricted to suit nanoliter-level flow rates. Considering that most nano liquid chromatographic instruments have been coupled with a mass detector, this review mainly focused on nanoliter solvent delivery modules, sample injection modules, and tubing and connection modules. By searching and summarizing research articles, technical patents, and brochures of instrument manufacturers, technical routes and research progress on these modules were described in detail. The pump designs can be classified into four types. Pneumatic amplifying pumps have been used in ultra-high-pressure applications. The flow-splitting delivery system, though easy to realize, may lead to a large amount of solvent wastage. Splitless pumps, which are classified based on two main principles, are widely used. Some pumps based on other physical phenomena have been suggested; however, they lacked stability and robustness. Two types of injection modes have been utilized in nano liquid chromatography. The direct nanoliter injection mode typically takes advantage of the groove on the rotor of a switching valve. The trapping injection mode uses trap columns to enable the introduction of large sample volumes. As for the tubing and connection, a few appropriate designs can be acquired from commercial suppliers. The robustness has been improved using some patented technologies. The optimization principles and research progress on optical absorption detection are briefly introduced. Finally, commercial nano liquid chromatographic systems are compared by considering the pumps and injectors.
Collapse
Affiliation(s)
- Sandong Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Naijie Li
- Dalian Elite Analytical Instruments Co., Ltd., Dalian 116023, China
| | - Zhou Ma
- Dalian Elite Analytical Instruments Co., Ltd., Dalian 116023, China
| | - Tao Tang
- Dalian Elite Analytical Instruments Co., Ltd., Dalian 116023, China
| | - Tong Li
- Dalian Elite Analytical Instruments Co., Ltd., Dalian 116023, China
- Elite Suzhou Analytical Instruments Co., Ltd., Suzhou 215123, China
| |
Collapse
|
10
|
Capillary Electrophoresis as a Monitoring Tool for Flow Composition Determination. Molecules 2021; 26:molecules26164918. [PMID: 34443507 PMCID: PMC8398840 DOI: 10.3390/molecules26164918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/03/2022] Open
Abstract
Flow analysis is the science of performing quantitative analytical chemistry in flowing streams. Because of its efficiency and speed of analysis, capillary electrophoresis (CE) is a prospective method for the monitoring of a flow composition withdrawn from various processes (e.g., occurring in bioreactors, fermentations, enzymatic assays, and microdialysis samples). However, interfacing CE to a various flow of interest requires further study. In this paper, several ingenious approaches on interfacing flow from various chemical or bioprocesses to a capillary electrophoresis instrument are reviewed. Most of these interfaces can be described as computer-controlled autosamplers. Even though most of the described interfaces waste too many samples, many interesting and important applications of the devices are reported. However, the lack of commercially available devices prevents the wide application of CE for flow analysis. On the contrary, this fact opens up a potential avenue for future research in the field of flow sampling by CE.
Collapse
|
11
|
ZHANG P, YANG L, LIU Q, LU S, LIANG Y, ZHANG M. [Multimaterial 3D-printed contactless conductivity/laser-induced fluorescence dual-detection cell for capillary electrophoresis]. Se Pu 2021; 39:921-926. [PMID: 34212593 PMCID: PMC9404044 DOI: 10.3724/sp.j.1123.2021.02021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/28/2022] Open
Abstract
Dual detection, which simultaneously employs two complementary detection methods, is a useful approach to enhance the selectivity and sensitivity of capillary electrophoresis (CE). Through dual detection, multiple classes of analytes with different structural and chemical characteristics can be sensitively detected using a single CE method. In addition, the comigrating peaks can be distinguished by comparing the signal outputs of two detectors with different selectivities. Typically, dual detection is achieved by coupling two detectors in series along a capillary. However, in this approach, it is inconvenient to evaluate the signal outputs of the two detectors. The two detectors present differences in their corresponding effective capillary lengths and dead volumes of the detection cell. Therefore, detectors that combine two or three detection methods in a single detection point are proposed to address this issue. In this work, to fabricate a combined detector in a simple and low-cost manner, multimaterial 3D printing technology is employed. A two-in-one detection cell that combines capacitively coupled contactless conductivity detection (C4D) and confocal laser-induced fluorescence (LIF) detection was fabricated by 3D printing functional materials. In 3D printing, conductive composite polylactic acid (PLA, Proto-pasta) filaments and normal nonconductive PLA filaments were employed. The conductive material was used to build a C4D shielding layer that was electrically grounded. The nonconductive PLA was used as an electrical insulator placed between the shielding layer and C4D electrodes, which were two stainless-steel tubes (0.4 mm i.d. and 5 mm length). To embed the electrodes into the nonconductive material, a "print-pause-print" approach was applied. After building two chambers for housing electrodes using nonconductive PLA, the 3D printing was paused, following which the two electrodes were manually installed. Printing was then resumed, and the remaining part was built. The two electrodes were 2 mm apart, and the gap between them was filled with a conductive material for shielding to eliminate stray capacitance. A through-hole (1 mm i.d.) was placed between the middle conductive shielding layer for LIF detection. The size of the detection cell was 60 mm×29 mm×7.2 mm. The cell was screwed onto an XYZ stage to precisely align the light path of LIF detection, which was realized using a TriSep TM-2100LIF detector equipped with a 473 nm laser. C4D detection was achieved using a TraceDec detector equipped with a ChipCE adaptor. The two-in-one detector was coupled with a lab-made CE system that had a flow-through injection interface. Use of the detection cell allows the simultaneous detection of inorganic cations and fluorescein isothiocyanate (FITC)-labeled amino acids. The C4D excitation frequency and buffer concentration were then optimized. A mixture of 10 mmol/L 3-(N-morpholino)propanesulfonic acid (MOPS) and 10 mmol/L bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methane (Bis-Tris) was selected as the background electrolyte as a compromise of C4D signal-to-noise ratio (S/N) and separation efficiencies of amino acids. The C4D excitation frequency was set to 77 kHz with S/N=233±8 for 200 μmol/L Na +. The baseline separation of Na+, K+, Li+, FITC, fluorescein, histidine (His), lysine (Lys), tryptophan (Trp), phenylalanine (Phe), alanine (Ala), and glycine (Gly) was achieved with a 25 μm i.d.×365 μm o.d.×45 cm (35 cm effective length) capillary and -10 kV separation voltage. The limits of detection (LODs) of C 4D for Na+, K+, and Li+were 2.2, 2.0, and 2.6 μmol/L, respectively. The LODs of LIF for fluorescein and FITC were 7.6 and 1.7 nmol/L, respectively. The relative standard deviations (RSDs) of the two detection methods were within the range of 0.3%-4.5% (n=3). The r 2 of the calibration curves was ≥0.9904. Thus, 3D printing technology is a simple and low-cost approach to implement complex designs, including those that are difficult to fabricate by traditional "workshop" technologies.
Collapse
|
12
|
3D printed extraction devices in the analytical laboratory-a case study of Soxhlet extraction. Anal Bioanal Chem 2021; 413:4373-4378. [PMID: 34046697 PMCID: PMC8245360 DOI: 10.1007/s00216-021-03406-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 10/25/2022]
|
13
|
Yang L, Pan G, Zhang P, Liu Q, Liu X, Li Y, Liang Y, Zhang M. 3D printed two-in-one on-capillary detector: Combining contactless conductometric and photometric detection for capillary electrophoresis. Anal Chim Acta 2021; 1159:338427. [PMID: 33867034 DOI: 10.1016/j.aca.2021.338427] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
In this work, for the first time, a 3D printed two-in-one on-capillary detector, combining contactless conductometric detection (C4D) and photometric detection (PD), is fabricated for capillary electrophoresis (CE). The C4D Faraday shield (FS) is printed using electrically conductive composite polylactic acid (PLA) to minimize the stray capacitance. Non-conductive PLA is also used to print the insulator of FS to prevent the electrical conduction with two stainless steel electrodes. A novel collimator, consisting of two partially aligned pinholes, is printed by conductive material to collimate the light-emitting diode beam. The C4D detection has a signal-to-noise ratio of 1092 ± 2 for 200 μM potassium on a 25 μm id capillary. The PD detection shows excellent linearity with stray light down to 8% and an effective path length at 73% of a 75 μm id capillary. The analytical performance is demonstrated by CE separation and detection of cations. PD shows limits of detection (LODs) of 1.3, 0.9, and 1.7 μM for cobalt, copper and zinc, which are complexed with 4-(2-Pyridylazo) resorcinol, while C4D shows LODs of 1.2, 1.4, 21 and 2.6 μM for potassium, sodium, cobalt and zinc, respectively.
Collapse
Affiliation(s)
- Liye Yang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Guangchao Pan
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Piwang Zhang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Qiang Liu
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Xing Liu
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Yan Li
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Ying Liang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China.
| | - Min Zhang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China.
| |
Collapse
|
14
|
Ahmed W, Siraj S, Al-Marzouqi AH. Embracing Additive Manufacturing Technology through Fused Filament Fabrication for Antimicrobial with Enhanced Formulated Materials. Polymers (Basel) 2021; 13:1523. [PMID: 34065137 PMCID: PMC8125968 DOI: 10.3390/polym13091523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial materials produced by 3D Printing technology are very beneficial, especially for biomedical applications. Antimicrobial surfaces specifically with enhanced antibacterial property have been prepared using several quaternary salt-based agents, such as quaternary ammonium salts and metallic nanoparticles (NPs), such as copper and zinc, which are incorporated into a polymeric matrix mainly through copolymerization grafting and ionic exchange. This review compared different materials for their effectiveness in providing antimicrobial properties on surfaces. This study will help researchers choose the most suitable method of developing antimicrobial surfaces with the highest efficiency, which can be applied to develop products compatible with 3D Printing Technology.
Collapse
Affiliation(s)
- Waleed Ahmed
- Engineering Requirements Unit, College of Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Sidra Siraj
- Chemical Engineering Department, COE, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.S.); (A.H.A.-M.)
| | - Ali H. Al-Marzouqi
- Chemical Engineering Department, COE, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.S.); (A.H.A.-M.)
| |
Collapse
|
15
|
Valotta A, Maier MC, Soritz S, Pauritsch M, Koenig M, Brouczek D, Schwentenwein M, Gruber-Woelfler H. 3D printed ceramics as solid supports for enzyme immobilization: an automated DoE approach for applications in continuous flow. J Flow Chem 2021; 11:675-689. [PMID: 34745652 PMCID: PMC8563604 DOI: 10.1007/s41981-021-00163-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 11/03/2022]
Abstract
In recent years, 3D printing has emerged in the field of chemical engineering as a powerful manufacturing technique to rapidly design and produce tailor-made reaction equipment. In fact, reactors with complex internal geometries can be easily fabricated, optimized and interchanged in order to respond to precise process needs, such as improved mixing and increased surface area. These advantages make them interesting especially for catalytic applications, since customized structured bed reactors can be easily produced. 3D printing applications are not limited to reactor design, it is also possible to realize functional low cost alternatives to analytical equipment that can be used to increase the level of process understanding while keeping the investment costs low. In this work, in-house designed ceramic structured inserts printed via vat photopolymerization (VPP) are presented and characterized. The flow behavior inside these inserts was determined with residence time distribution (RTD) experiments enabled by in-house designed and 3D printed inline photometric flow cells. As a proof of concept, these structured inserts were fitted in an HPLC column to serve as solid inorganic supports for the immobilization of the enzyme Phenolic acid Decarboxylase (bsPAD), which catalyzes the decarboxylation of cinnamic acids. The conversion of coumaric acid to vinylphenol was chosen as a model system to prove the implementation of these engineered inserts in a continuous biocatalytic application with high product yield and process stability. The setup was further automated in order to quickly identify the optimum operating conditions via a Design of Experiments (DoE) approach. The use of a systematic optimization, together with the adaptability of 3D printed equipment to the process requirements, render the presented approach highly promising for a more feasible implementation of biocatalysts in continuous industrial processes. Graphical abstract. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s41981-021-00163-4.
Collapse
Affiliation(s)
- Alessia Valotta
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria
- CATalytic mechanisms and AppLications of OXidoreductases (CATALOX), Graz, Austria
| | - Manuel C. Maier
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | - Sebastian Soritz
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria
| | - Magdalena Pauritsch
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria
| | - Michael Koenig
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | | | | | - Heidrun Gruber-Woelfler
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria
- CATalytic mechanisms and AppLications of OXidoreductases (CATALOX), Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| |
Collapse
|
16
|
Voráčová I, Přikryl J, Novotný J, Datinská V, Yang J, Astier Y, Foret F. 3D printed device for epitachophoresis. Anal Chim Acta 2021; 1154:338246. [PMID: 33736813 DOI: 10.1016/j.aca.2021.338246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Polyacrylamide or agarose gels are the most frequently used sieving and stabilizing media in slab gel electrophoresis. Recently, we have introduced a new electrophoretic technique for concentration/separation of milliliter sample volumes. In this technique, the gel is used primarily as an anticonvection media eliminating liquid flow during the electromigration. While serving well for the liquid stabilization, the gels can undergo deformation when exposed to a discontinuous electrolyte buffer system used in epitachophoresis. In this work, we have explored 3D printing to form rigid stabilizing manifolds to minimize liquid flow during the epitachophoresis run. The whole device was printed using the stereolithography technique from a low water-absorbing resin. The stabilizing manifold, serving as the gel substitute, was printed as a replaceable composite structure preventing electrolyte mixing during the separation. Different geometries of the 3D printed stabilizing manifolds were tested for use in concentrating ionic sample components without spatial separation. The presented device can focus analytes from 3 or 4 mL of the sample to 150 μL or less, depending on the collection cup size. With the 150 μL collection cup, this represents the enrichment factor from 20 to 27. The time of concentration was from 15 to 25 min, depending on stabilization media and power used.
Collapse
Affiliation(s)
- Ivona Voráčová
- Czech Academy of Sciences, Institute of Analytical Chemistry, Brno 602 00, Czech Republic.
| | - Jan Přikryl
- Czech Academy of Sciences, Institute of Analytical Chemistry, Brno 602 00, Czech Republic
| | - Jakub Novotný
- Czech Academy of Sciences, Institute of Analytical Chemistry, Brno 602 00, Czech Republic
| | - Vladimíra Datinská
- Roche Sequencing Solution, Incorporated Pleasanton, California, 94588, United States
| | - Jaeyoung Yang
- Roche Sequencing Solution, Incorporated Pleasanton, California, 94588, United States
| | - Yann Astier
- Roche Sequencing Solution, Incorporated Pleasanton, California, 94588, United States
| | - František Foret
- Czech Academy of Sciences, Institute of Analytical Chemistry, Brno 602 00, Czech Republic; CEITEC, Masaryk University, Brno 601 77, Czech Republic
| |
Collapse
|
17
|
Davis JJ, Foster SW, Grinias JP. Low-cost and open-source strategies for chemical separations. J Chromatogr A 2021; 1638:461820. [PMID: 33453654 PMCID: PMC7870555 DOI: 10.1016/j.chroma.2020.461820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
In recent years, a trend toward utilizing open access resources for laboratory research has begun. Open-source design strategies for scientific hardware rely upon the use of widely available parts, especially those that can be directly printed using additive manufacturing techniques and electronic components that can be connected to low-cost microcontrollers. Open-source software eliminates the need for expensive commercial licenses and provides the opportunity to design programs for specific needs. In this review, the impact of the "open-source movement" within the field of chemical separations is described, primarily through a comprehensive look at research in this area over the past five years. Topics that are covered include general laboratory equipment, sample preparation techniques, separations-based analysis, detection strategies, electronic system control, and software for data processing. Remaining hurdles and possible opportunities for further adoption of open-source approaches in the context of these separations-related topics are also discussed.
Collapse
Affiliation(s)
- Joshua J Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Samuel W Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
18
|
Liénard-Mayor T, Furter JS, Taverna M, Pham HV, Hauser PC, Mai TD. Modular instrumentation for capillary electrophoresis with laser induced fluorescence detection using plug-and-play microfluidic, electrophoretic and optic modules. Anal Chim Acta 2020; 1135:47-54. [PMID: 33070858 DOI: 10.1016/j.aca.2020.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
This study reports on the development of a novel instrument for capillary electrophoresis (CE) coupled with laser induced fluorescence (LIF) detection that is inspired by the Lego-toy concept. The Lego CE-LIF design is an evolution of purpose-made CE instrumentation, allowing the users to construct their own analytical device with a high degree of standardization (i.e. a "standard" setup) without requirement of mechanical and electronic workshop facilities. To allow instrument reproduction outside the original fabrication laboratory, which is not trivial for in-house-built CE systems, the new design is based on unprecedent 'plugging' hyphenation of various off-the-shelf parts available for microfluidics, optics and electrophoresis. To render the operation with Lego CE-LIF optimal, we developed a new background electrolyte (BGE), using for the first time extremely high concentrations of zwitterionic and large weakly charged species for much improvement of detection sensitivity. The Lego CE-LIF was demonstrated for separation and detection of oligosaccharides labelled with 8-aminopyrene-1,3,6-trisulfonic acid (APTS). The new gel-free BGE for oligosaccharide analysis also allowed simplification of the conventional CE-LIF protocol used with commercial instruments while keeping satisfactory separation performances. Furthermore, the new BGE is fully compatible with a non-thermostatted Lego CE instrument thanks to low current and therefore low heat generation under application of a high voltage.
Collapse
Affiliation(s)
- Théo Liénard-Mayor
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Jasmine S Furter
- University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Myriam Taverna
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France; Institut Universitaire de France (IUF), France
| | - Hung Viet Pham
- VNU Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi (VNU), Nguyen Trai Street 334, Hanoi, Viet Nam
| | - Peter C Hauser
- University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056, Basel, Switzerland.
| | - Thanh Duc Mai
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France.
| |
Collapse
|
19
|
Abstract
Abstract
The rapid development of additive technologies in recent years is accompanied by their intensive introduction into various fields of science and related technologies, including analytical chemistry. The use of 3D printing in analytical instrumentation, in particular, for making prototypes of new equipment and manufacturing parts having complex internal spatial configuration, has been proved as exceptionally effective. Additional opportunities for the widespread introduction of 3D printing technologies are associated with the development of new optically transparent, current- and thermo-conductive materials, various composite materials with desired properties, as well as possibilities for printing with the simultaneous combination of several materials in one product. This review will focus on the application of 3D printing for production of new advanced analytical devices, such as compact chromatographic columns for high performance liquid chromatography, flow reactors and flow cells for detectors, devices for passive concentration of toxic compounds and various integrated devices that allow significant improvements in chemical analysis. A special attention is paid to the complexity and functionality of 3D-printed devices.
Collapse
Affiliation(s)
- Pavel N. Nesterenko
- Department of Chemistry , Lomonosov Moscow State University , 1–3 Leninskie Gory , GSP-3 , Moscow , Russian Federation
| |
Collapse
|
20
|
Samokhin AS. Syringe Pump Created using 3D Printing Technology and Arduino Platform. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820030156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Krenkova J, Liskova M, Cmelik R, Vigh G, Foret F. Multi-cationic aminopyrene-based labeling tags for oligosaccharide analysis by capillary electrophoresis-mass spectrometry. Anal Chim Acta 2020; 1095:226-232. [DOI: 10.1016/j.aca.2019.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 11/25/2022]
|
22
|
Cecil F, Guijt RM, Henderson AD, Macka M, Breadmore MC. One step multi-material 3D printing for the fabrication of a photometric detector flow cell. Anal Chim Acta 2019; 1097:127-134. [PMID: 31910952 DOI: 10.1016/j.aca.2019.10.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
Optical detection is the most common detection mode for many analytical assays. Photometric detection systems and their integration with analytical systems usually require several assembly parts and manual alignment of the capillary/tubing which affects sensitivity and repeatability. 3D printing is an innovative technology for the fabrication of integrated complex detection systems. One step multi-material 3D printing has been explored to fabricate a photometric detector flow cell from optically transparent and opaque materials using a dual-head FDM 3D printer. Integration of the microchannel, the detection window and the slit in a single device eliminates the need for manual alignment of fluidic and optical components, and hence improves sensitivity and repeatability. 3D printing allowed for rapid design optimisation by varying the slit dimension and optical pathlength. The optimised design was evaluated by determining stray light, effective path length and the signal to noise ratio using orange G. The optimised flow cell with extended path length of 10 mm and 500 μm slit yielded 0.02% stray light, 89% effective path length and detection limit of 2 nM. The sensitivity was also improved by 80% in the process of optimisation, using a blue 470 nm LED as a light source.
Collapse
Affiliation(s)
- Farhan Cecil
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, 7001, Australia
| | - Rosanne M Guijt
- Centre of Regional and Rural Futures, Deakin University, Private Bag 20000, Geelong, 3220, Australia
| | - Alan D Henderson
- School of Engineering, University of Tasmania, Private Bag 75, Hobart, 7001, Australia
| | - Mirek Macka
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, 7001, Australia; Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Michael C Breadmore
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, 7001, Australia; ARC Centre of Excellence for Electromaterials Science, University of Tasmania, Private Bag 75, Hobart, 7001, Tasmania, Australia.
| |
Collapse
|
23
|
Nawada SH, Aalbers T, Schoenmakers PJ. Freeze-thaw valves as a flow control mechanism in spatially complex 3D-printed fluidic devices. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.07.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Multichannel separation device with parallel electrochemical detection. J Chromatogr A 2019; 1610:460537. [PMID: 31537305 DOI: 10.1016/j.chroma.2019.460537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 11/23/2022]
Abstract
A device with four parallel channels was designed and manufactured by 3D printing in titanium. A simple experimental setup allowed splitting of the mobile phase in four parallel streams, such that a single sample could be analysed four times simultaneously. The four capillary channels were filled with a monolithic stationary phase, prepared using a zwitterionic functional monomer in combination with various dimethacrylate cross-linkers. The resulting stationary phases were applicable in both reversed-phase and hydrophilic-interaction retention mechanisms. The mobile-phase composition was optimized by means of a window diagram so as to obtain the highest possible resolution of dopamine precursors and metabolites on all columns. Miniaturized electrochemical detectors with carbon fibres as working electrodes and silver micro-wires as reference electrodes were integrated in the device at the end of each column. Experimental separations were successfully compared with those predicted by a three-parameter retention model. Finally, dopamine was determined in human urine to further confirm applicability of the developed device.
Collapse
|
25
|
Casto LD, Do KB, Baker CA. A Miniature 3D Printed LED-Induced Fluorescence Detector for Capillary Electrophoresis and Dual-Detector Taylor Dispersion Analysis. Anal Chem 2019; 91:9451-9457. [PMID: 31284711 DOI: 10.1021/acs.analchem.8b05824] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Taylor dispersion analysis (TDA) provides absolute determination of diffusion coefficients for analytes ranging from small molecules to particulate matter. TDA has seen a resurgence in recent years, as modern commercial capillary electrophoresis (CE) instrumentation is well equipped to meet the precision flow requirements of TDA. Discontinuous flow velocities, which occur during sample injection, can lead to substantial inaccuracies in single-point detection TDA. Dual-point detection allows TDA to be carried out under continuous flow in the volume between the detection points, but dual-point fluorescence detection has not previously been feasible within the confines of commercial CE instrumentation. Here, we describe a compact light-emitting diode (LED)-induced fluorescence detector designed for online, dual-point capillary detection within a commercial CE system. The three-dimensional (3D) printed detector houses an inexpensive LED excitation source, a bandpass excitation filter, an integral 3D printed pinhole collimator, and a ball lens, which collects fluorescence emission. Multivariate optimization of operating conditions yielded a detection limit of 613 ± 13 pM for CE of fluorescein disodium salt solution in borate buffer. The miniature size of the device allowed integration of two detectors within a commercial CE system without modification to the instrument, thereby enabling dual-detector assays including TDA and CE-TDA. Monitoring of the bioconjugation reaction between fluorescein isothiocyanate (FITC) and a model protein illustrates the utility of direct, calibration-free size determination, which enabled the resolution of fluorescence originating from free FITC from that of protein-bound FITC. TDA detection coupled to CE enabled the determination of peak identities without the need for standard solutions.
Collapse
Affiliation(s)
- Laura D Casto
- Department of Chemistry , University of Tennessee , 1420 Circle Drive , Knoxville , Tennessee 37996 , United States
| | - Kevin B Do
- Department of Chemistry , University of Tennessee , 1420 Circle Drive , Knoxville , Tennessee 37996 , United States
| | - Christopher A Baker
- Department of Chemistry , University of Tennessee , 1420 Circle Drive , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
26
|
Lačná J, Přikryl J, Teshima N, Murakami H, Esaka Y, Foret F, Kubáň P. Optimization of background electrolyte composition for simultaneous contactless conductivity and fluorescence detection in capillary electrophoresis of biological samples. Electrophoresis 2019; 40:2390-2397. [PMID: 31218732 DOI: 10.1002/elps.201900112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 11/07/2022]
Abstract
In this article, optimization of BGE for simultaneous separation of inorganic ions, organic acids, and glutathione using dual C4 D-LIF detection in capillary electrophoresis is presented. The optimized BGE consisted of 30 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid, 15 mM 2-amino-2-hydroxymethyl-propane-1,3-diol, and 2 mM 18-crown-6 at pH 7.2 and allowed simultaneous separation of ten inorganic anions and cations, three organic acids and glutathione in 20 min. The samples were injected hydrodynamically from both capillary ends using the double-opposite end injection principle. Sensitive detection of anions, cations, and organic acids with micromolar LODs using C4 D and simultaneously glutathione with nanomolar LODs using LIF was achieved in a single run. The developed BGE may be useful in analyses of biological samples containing analytes with differing concentrations of several orders of magnitude that is not possible with single detection mode.
Collapse
Affiliation(s)
- Júlia Lačná
- Department of Bioanalytical Instrumentation, CEITEC Masaryk University, Brno, Czech Republic.,Department of Chemistry, Masaryk University, Brno, Czech Republic
| | - Jan Přikryl
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Norio Teshima
- Department of Applied Chemistry, Aichi Institute of Technology, Toyota, Japan
| | - Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology, Toyota, Japan
| | - Yukihiro Esaka
- Gifu Pharmaceutical University, Daigaku-nishi, Gifu, Japan
| | - František Foret
- Department of Bioanalytical Instrumentation, CEITEC Masaryk University, Brno, Czech Republic.,Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Kubáň
- Department of Bioanalytical Instrumentation, CEITEC Masaryk University, Brno, Czech Republic.,Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
27
|
Rodas Ceballos M, Estela JM, Cerdà V, Ferrer L. Flow-through magnetic-stirring assisted system for uranium(VI) extraction: First 3D printed device application. Talanta 2019; 202:267-273. [PMID: 31171180 DOI: 10.1016/j.talanta.2019.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 01/31/2023]
Abstract
A 3D printed solid-phase extraction (SPE) device for uranium(VI) extraction has been fabricated using stereolithographic 3D printing. The 3D printed device is shaped as a stirred reactor chamber containing a network of small cubes, which were impregnated with TEVA resin for the extraction of U(VI) from water matrices without doing any previous pretreatment. A flow-through system was combined with off-line ICP-MS detection for the accurate and rapid determination of U(VI) at trace levels. The automatic system was satisfactorily optimized using experimental design, obtaining 0.03 and 0.09 ng U(VI) of detection and quantification limits, respectively, and a durability of 11 consecutive extractions. The reliability of the proposed system was confirmed through the analysis of a reference water material (CSN/CIEMAT 2011), and to water samples (tap, mineral and groundwater) by addition/recovery assays obtaining recoveries between 95 and 106%. This study present for the first time the design of a 3D printing SPE device impregnated with TEVA resin for the on-line extraction of U(VI), showing that 3D printing is a powerful tool for simplifying the construction of complex experimental devices and its operation in analytical procedures for pretreatment applications in water matrices.
Collapse
Affiliation(s)
- Melisa Rodas Ceballos
- Environmental Radioactivity Laboratory (LaboRA), University of the Balearic Islands, 07122, Palma de Mallorca, Spain; Sciware Systems, Spin-Off UIB-004, 07193, Bunyola, Spain
| | - José Manuel Estela
- Environmental Analytical Chemistry Laboratory (LQA(2)), University of the Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Víctor Cerdà
- Environmental Analytical Chemistry Laboratory (LQA(2)), University of the Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Laura Ferrer
- Environmental Radioactivity Laboratory (LaboRA), University of the Balearic Islands, 07122, Palma de Mallorca, Spain.
| |
Collapse
|
28
|
Liang Y, Liu Q, Liu S, Li X, Li Y, Zhang M. One-step 3D printed flow cells using single transparent material for flow injection spectrophotometry. Talanta 2019; 201:460-464. [PMID: 31122451 DOI: 10.1016/j.talanta.2019.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Abstract
A very simple approach to fabricate flow-through cells for flow injection spectrophotometry is proposed. Flow cells are completely fused deposition modelling 3D printed by using coloured-transparent polylactic acid filament. Channels with 1.0 mm i.d. circular cross section and optical windows of 0.3-1.0 mm thickness are fabricated. Thin layers of the transparent material allow light transmitting with low attenuation, but coloured cell body can prevent stray light transmitting through. Transparent 3D printing filaments of different colours are compared and Grey-transparent (Grey-T) provides highest sensitivity for the determination of nitrite via Griess reaction. Flow cells of 10-50 mm pathlength have been fabricated by using the Grey-T filament. Effective pathlengths are estimated to be 83.9-96.2% of the physical pathlengths. The printing fabricated cells are used for flow injection analysis of nitrite, and linear correlation (R2 = 0.9991-0.9999) and limits of detection of 0.27, 0.087 and 0.045 μM for 10, 30 and 50 mm cells, are obtained. The 3D printed flow cells have acceptable chemical compatibility and signal stability.
Collapse
Affiliation(s)
- Ying Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, Guangxi, 541004, China
| | - Qiang Liu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Shuai Liu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Xiaoyu Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Yan Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Min Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China.
| |
Collapse
|
29
|
|
30
|
Kubáň P, Foret F, Erny G. Open source capillary electrophoresis. Electrophoresis 2018; 40:65-78. [PMID: 30229967 DOI: 10.1002/elps.201800304] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
Open source paradigm is becoming widely accepted in scientific communities and open source hardware is finding its steady place in chemistry research. In this review article, we provide the reader with the most up-to-date information on open source hardware and software resources enabling the construction and utilization of an "open source capillary electrophoresis instrument". While CE is still underused as a separation technique, it offers unique flexibility, low-cost, and high efficiency and is particularly suitable for open source instrumental development. We overview the major parts of CE instruments, such as high voltage power supplies, detectors, data acquisition systems, and CE software resources with emphasis on availability of the open source information on the web and in the scientific literature. This review is the first of its kind, revealing accessible blueprints of most parts from which a fully functional open source CE system can be built. By collecting the extensive information on open source capillary electrophoresis in this review article, the authors aim at facilitating the dissemination of knowledge on CE within and outside the scientific community, fosters innovation and inspire other researchers to improve the shared CE blueprints.
Collapse
Affiliation(s)
- Petr Kubáň
- Department of Bioanalytical Instrumentation, CEITEC Masaryk University, Brno, Czech Republic.,Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - František Foret
- Department of Bioanalytical Instrumentation, CEITEC Masaryk University, Brno, Czech Republic.,Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Guillaume Erny
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Chemical Engineering Department, Faculty of Engineering - University of Porto, Porto, Portugal
| |
Collapse
|
31
|
Michalec M, Tymecki Ł. 3D printed flow-through cuvette insert for UV-Vis spectrophotometric and fluorescence measurements. Talanta 2018; 190:423-428. [PMID: 30172528 DOI: 10.1016/j.talanta.2018.08.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 11/26/2022]
Abstract
Rapid Prototyping technologies expand the availability of fabrication of plastic objects to non-skilled users that need sophisticated equipment for their research. In this communication, for the very first time, the universal design of photometric-fluorometric, UV-Vis compatible, 3D-printed flow-through cuvette with two optical paths (2 and 10 mm) is introduced. The cuvette insert was made with the use of the most economically viable Fused Material Deposition technology which enables truly one-step manufacturing and easy replicating of the device. A utility of the cuvette was presented in the example of the basic flow injection analysis experiments on the model photometric (bromothymol blue) and fluorometric (fluorescein) dyes and proven by investigation of solubility constant of calcium hydrophosphate dihydrate by determination of phosphate using fluorescence quenching of molybdenum blue-Rhodamine B ion pair formation and calcium reaction with calcein in basic environment.
Collapse
Affiliation(s)
- Michał Michalec
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland; University of Warsaw, MISMaP College, Banacha 2C, 02-097 Warsaw, Poland
| | - Łukasz Tymecki
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
32
|
|
33
|
Szarka M, Guttman A. Smartphone Cortex Controlled Real-Time Image Processing and Reprocessing for Concentration Independent LED Induced Fluorescence Detection in Capillary Electrophoresis. Anal Chem 2017; 89:10673-10678. [PMID: 28949126 DOI: 10.1021/acs.analchem.7b03525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We present the application of a smartphone anatomy based technology in the field of liquid phase bioseparations, particularly in capillary electrophoresis. A simple capillary electrophoresis system was built with LED induced fluorescence detection and a credit card sized minicomputer to prove the concept of real time fluorescent imaging (zone adjustable time-lapse fluorescence image processor) and separation controller. The system was evaluated by analyzing under- and overloaded aminopyrenetrisulfonate (APTS)-labeled oligosaccharide samples. The open source software based image processing tool allowed undistorted signal modulation (reprocessing) if the signal was inappropriate for the actual detection system settings (too low or too high). The novel smart detection tool for fluorescently labeled biomolecules greatly expands dynamic range and enables retrospective correction for injections with unsuitable signal levels without the necessity to repeat the analysis.
Collapse
Affiliation(s)
- Mate Szarka
- Horváth Csaba Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen , H-4032 Debrecen, 98. Nagyerdei krt., Hungary
| | - Andras Guttman
- Horváth Csaba Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen , H-4032 Debrecen, 98. Nagyerdei krt., Hungary.,MTA-PE Translational Glycomics Laboratory, University of Pannonia , Veszprem, Hungary
| |
Collapse
|
34
|
Chan HN, Tan MJA, Wu H. Point-of-care testing: applications of 3D printing. LAB ON A CHIP 2017; 17:2713-2739. [PMID: 28702608 DOI: 10.1039/c7lc00397h] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Point-of-care testing (POCT) devices fulfil a critical need in the modern healthcare ecosystem, enabling the decentralized delivery of imperative clinical strategies in both developed and developing worlds. To achieve diagnostic utility and clinical impact, POCT technologies are immensely dependent on effective translation from academic laboratories out to real-world deployment. However, the current research and development pipeline is highly bottlenecked owing to multiple restraints in material, cost, and complexity of conventionally available fabrication techniques. Recently, 3D printing technology has emerged as a revolutionary, industry-compatible method enabling cost-effective, facile, and rapid manufacturing of objects. This has allowed iterative design-build-test cycles of various things, from microfluidic chips to smartphone interfaces, that are geared towards point-of-care applications. In this review, we focus on highlighting recent works that exploit 3D printing in developing POCT devices, underscoring its utility in all analytical steps. Moreover, we also discuss key advantages of adopting 3D printing in the device development pipeline and identify promising opportunities in 3D printing technology that can benefit global health applications.
Collapse
Affiliation(s)
- Ho Nam Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | | | | |
Collapse
|
35
|
3D printed device including disk-based solid-phase extraction for the automated speciation of iron using the multisyringe flow injection analysis technique. Talanta 2017; 175:463-469. [PMID: 28842018 DOI: 10.1016/j.talanta.2017.07.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/19/2023]
Abstract
The development of advanced manufacturing techniques is crucial for the design of novel analytical tools with unprecedented features. Advanced manufacturing, also known as 3D printing, has been explored for the first time to fabricate modular devices with integrated features for disk-based automated solid-phase extraction (SPE). A modular device integrating analyte oxidation, disk-based SPE and analyte complexation has been fabricated using stereolithographic 3D printing. The 3D printed device is directly connected to flow-based analytical instrumentation, replacing typical flow networks based on discrete elements. As proof of concept, the 3D printed device was implemented in a multisyringe flow injection analysis (MSFIA) system, and applied to the fully automated speciation, SPE and spectrophotometric quantification of Fe in water samples. The obtained limit of detection for total Fe determination was 7ng, with a dynamic linear range from 22ng to 2400ng Fe (3mL sample). An intra-day RSD of 4% (n = 12) and an inter-day RSD of 4.3% (n = 5, 3mL sample, different day with a different disk), were obtained. Incorporation of integrated 3D printed devices with automated flow-based techniques showed improved sensitivity (85% increase on the measured peak height for the determination of total Fe) in comparison with analogous flow manifolds built from conventional tubing and connectors. Our work represents a step forward towards the improved reproducibility in the fabrication of manifolds for flow-based automated methods of analysis, which is especially relevant in the implementation of interlaboratory analysis.
Collapse
|
36
|
3D printed LED based on-capillary detector housing with integrated slit. Anal Chim Acta 2017; 965:131-136. [PMID: 28366210 DOI: 10.1016/j.aca.2017.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 11/23/2022]
Abstract
A 3D printed photometric detector body with integrated slit was fabricated to position a LED and photodiode either side of capillary tubing using a fused deposition modelling (FDM) printer. To make this approach suitable for capillaries down to 50 μm i.d. the dimension of the in-built slit is the critical element of the printed housing. The spatial orientation of the model for printing was found to significantly impact on the resolution of the structures and voids that can be printed. By designing a housing with a slit positioned in the XY plane in parallel with the print direction, the narrowest void (slit) that could be printed was 70 μm. The potential use of the 3D printed slit for photometric detection was characterised using tubing and capillary from 500 down to 50 μm i.d, demonstrating a linear response from 632 to 40 mAU. The effective pathlength and stray light varied from 383 to 22 μm and 3.8% - 50% for 500- 50 μm i.d tubing and capillary. The use of a V-shaped alignment feature allowed for easy and reliable positioning of the tubing inside the detector, as demonstrated by a RSD of 1.9% (n = 10) in peak height when repositioning the tubing between measurements using flow injection analysis (FIA). The performance of the 3D printed housing and 70 μm slit was benchmarked against a commercially available interface using the CE separation of Zn2+ and Cu2+ complexes with PAR. The limit of detection with the 3D printed slit was 6.8 and 4.5 μM and is 2.8 and 1.6 μM with the commercial interface.
Collapse
|
37
|
Fichou D, Morlock GE. Open-Source-Based 3D Printing of Thin Silica Gel Layers in Planar Chromatography. Anal Chem 2017; 89:2116-2122. [PMID: 28208299 DOI: 10.1021/acs.analchem.6b04813] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
On the basis of open-source packages, 3D printing of thin silica gel layers is demonstrated as proof-of-principle for use in planar chromatography. A slurry doser was designed to replace the plastic extruder of an open-source Prusa i3 printer. The optimal parameters for 3D printing of layers were studied, and the planar chromatographic separations on these printed layers were successfully demonstrated with a mixture of dyes. The layer printing process was fast. For printing a 0.2 mm layer on a 10 cm × 10 cm format, it took less than 5 min. It was affordable, i.e., the running costs for producing such a plate were less than 0.25 Euro and the investment costs for the modified hardware were 630 Euro. This approach demonstrated not only the potential of the 3D printing environment in planar chromatography but also opened new avenues and new perspectives for tailor-made plates, not only with regard to layer materials and their combinations (gradient plates) but also with regard to different layer shapes and patterns. As such an example, separations on a printed plane layer were compared with those obtained from a printed channeled layer. For the latter, 40 channels were printed in parallel on a 10 cm × 10 cm format for the separation of 40 samples. For producing such a channeled plate, the running costs were below 0.04 Euro and the printing process took only 2 min. All modifications of the device and software were released open-source to encourage reuse and improvements and to stimulate the users to contribute to this technology. By this proof-of-principle, another asset was demonstrated to be integrated into the Office Chromatography concept, in which all relevant steps for online miniaturized planar chromatography are performed by a single device.
Collapse
Affiliation(s)
- Dimitri Fichou
- Chair of Food Sciences, Institute of Nutritional Science, and Interdisciplinary Research Center (IFZ), Justus Liebig University Giessen , Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gertrud E Morlock
- Chair of Food Sciences, Institute of Nutritional Science, and Interdisciplinary Research Center (IFZ), Justus Liebig University Giessen , Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
38
|
Zhang Y, Ge S, Yu J. Chemical and biochemical analysis on lab-on-a-chip devices fabricated using three-dimensional printing. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Affiliation(s)
- Bethany Gross
- Department of Chemistry, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Sarah Y. Lockwood
- Department of Chemistry, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Dana M. Spence
- Department of Chemistry, Michigan State University, East
Lansing, Michigan 48824, United States
| |
Collapse
|
40
|
Munshi AS, Martin RS. Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device. Analyst 2016; 141:862-9. [PMID: 26649363 PMCID: PMC5011427 DOI: 10.1039/c5an01956g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three dimensional (3-D) printing technology has evolved dramatically in the last few years, offering the capability of printing objects with a variety of materials. Printing microfluidic devices using this technology offers various advantages such as ease and uniformity of fabrication, file sharing between laboratories, and increased device-to-device reproducibility. One unique aspect of this technology, when used with electrochemical detection, is the ability to produce a microfluidic device as one unit while also allowing the reuse of the device and electrode for multiple analyses. Here we present an alternate electrode configuration for microfluidic devices, a wall-jet electrode (WJE) approach, created by 3-D printing. Using microchip-based flow injection analysis, we compared the WJE design with the conventionally used thin-layer electrode (TLE) design. It was found that the optimized WJE system enhances analytical performance (as compared to the TLE design), with improvements in sensitivity and the limit of detection. Experiments were conducted using two working electrodes - 500 μm platinum and 1 mm glassy carbon. Using the 500 μm platinum electrode the calibration sensitivity was 16 times higher for the WJE device (as compared to the TLE design). In addition, use of the 1 mm glassy carbon electrode led to limit of detection of 500 nM for catechol, as compared to 6 μM for the TLE device. Finally, to demonstrate the versatility and applicability of the 3-D printed WJE approach, the device was used as an inexpensive electrochemical detector for HPLC. The number of theoretical plates was comparable to the use of commercially available UV and MS detectors, with the WJE device being inexpensive to utilize. These results show that 3-D-printing can be a powerful tool to fabricate reusable and integrated microfluidic detectors in configurations that are not easily achieved with more traditional lithographic methods.
Collapse
Affiliation(s)
- Akash S Munshi
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO 63103, USA.
| | | |
Collapse
|
41
|
Tycova A, Prikryl J, Foret F. Reproducible preparation of nanospray tips for capillary electrophoresis coupled to mass spectrometry using 3D printed grinding device. Electrophoresis 2015; 37:924-30. [PMID: 26626777 DOI: 10.1002/elps.201500467] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 01/20/2023]
Abstract
The use of high quality fused silica capillary nanospray tips is critical for obtaining reliable and reproducible electrospray/MS data; however, reproducible laboratory preparation of such tips is a challenging task. In this work, we report on the design and construction of low-cost grinding device assembled from 3D printed and commercially easily available components. Detailed description and characterization of the grinding device is complemented by freely accessible files in stl and skp format allowing easy laboratory replication of the device. The process of sharpening is aimed at achieving maximal symmetricity, surface smoothness and repeatability of the conus shape. Moreover, the presented grinding device brings possibility to fabricate the nanospray tips of desired dimensions regardless of the commercial availability. On several samples of biological nature (reserpine, rabbit plasma, and the mixture of three aminoacids), performance of fabricated tips is shown on CE coupled to MS analysis. The special interest is paid to the effect of tip sharpness.
Collapse
Affiliation(s)
- Anna Tycova
- Institute of Analytical Chemistry of the CAS, v. v. i, Brno, Czech Republic.,Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Prikryl
- Institute of Analytical Chemistry of the CAS, v. v. i, Brno, Czech Republic
| | - Frantisek Foret
- Institute of Analytical Chemistry of the CAS, v. v. i, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Brno, Czech Republic
| |
Collapse
|
42
|
Hall GH, Glerum DM, Backhouse CJ. Light emitting diode, photodiode-based fluorescence detection system for DNA analysis with microchip electrophoresis. Electrophoresis 2015; 37:406-13. [PMID: 26412502 DOI: 10.1002/elps.201500355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 11/09/2022]
Abstract
Electrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity. Here, we demonstrate an optimized microchip electrophoresis instrument using polymeric fluidic chips with fluorescence detection of end-labeled DNA with a LOD of 0.15 nM of Alexa Fluor 532. This represents orders of magnitude improvement over previously reported instruments of this type. We demonstrate the system with an electrophoretic separation of two PCR products and their respective primers. We believe that this is the first LED-induced fluorescence microchip electrophoresis system with photodiode-based detection that could be used for standard applications of PCR and electrophoresis.
Collapse
Affiliation(s)
- Gordon H Hall
- Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada
| | - D Moira Glerum
- Department of Biology, University of Waterloo, ON, Canada.,Waterloo Institute of Nanotechnology, University of Waterloo, ON, Canada
| | - Christopher J Backhouse
- Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada.,Waterloo Institute of Nanotechnology, University of Waterloo, ON, Canada
| |
Collapse
|
43
|
Šesták J, Moravcová D, Kahle V. Instrument platforms for nano liquid chromatography. J Chromatogr A 2015; 1421:2-17. [DOI: 10.1016/j.chroma.2015.07.090] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 11/25/2022]
|
44
|
Zhai H, Yuan K, Yu X, Chen Z, Liu Z, Su Z. A simple and compact fluorescence detection system for capillary electrophoresis and its application to food analysis. Electrophoresis 2015; 36:2509-15. [PMID: 26109527 DOI: 10.1002/elps.201500265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/20/2022]
Abstract
A novel fluorescence detection system for CE was described and evaluated. Two miniature laser pointers were used as the excitation source. A Y-style optical fiber was used to transmit the excitation light and a four-branch optical fiber was used to collect the fluorescence. The optical fiber and optical filter were imported into a photomultiplier tube without any extra fixing device. A simplified PDMS detection cell was designed with guide channels through which the optical fibers were easily aligned to the detection window of separation capillary. According to different requirements, laser pointers and different filters were selected by simple switching and replacement. The fluorescence from four different directions was collected at the same detecting point. Thus, the sensitivity was enhanced without peak broadening. The fluorescence detection system was simple, compact, low-cost, and highly sensitive, with its functionality demonstrated by the separation and determination of red dyes and fluorescent whitening agents. The detection limit of rhodamine 6G was 7.7 nM (S/N = 3). The system was further applied to determine illegal food dyes. The CE system is potentially eligible for food safety analysis.
Collapse
Affiliation(s)
- Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Kaisong Yuan
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Xiao Yu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Zuanguang Chen
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhenping Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Zihao Su
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| |
Collapse
|
45
|
Su CK, Peng PJ, Sun YC. Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater. Anal Chem 2015; 87:6945-50. [PMID: 26101898 DOI: 10.1021/acs.analchem.5b01599] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we used a stereolithographic 3D printing technique and polyacrylate polymers to manufacture a solid phase extraction preconcentrator for the selective extraction of trace elements and the removal of unwanted salt matrices, enabling accurate and rapid analyses of trace elements in seawater samples when combined with a quadrupole-based inductively coupled plasma mass spectrometer. To maximize the extraction efficiency, we evaluated the effect of filling the extraction channel with ordered cuboids to improve liquid mixing. Upon automation of the system and optimization of the method, the device allowed highly sensitive and interference-free determination of Mn, Ni, Zn, Cu, Cd, and Pb, with detection limits comparable with those of most conventional methods. The system's analytical reliability was further confirmed through analyses of reference materials and spike analyses of real seawater samples. This study suggests that 3D printing can be a powerful tool for building multilayer fluidic manipulation devices, simplifying the construction of complex experimental components, and facilitating the operation of sophisticated analytical procedures for most sample pretreatment applications.
Collapse
Affiliation(s)
- Cheng-Kuan Su
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Jin Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Yuh-Chang Sun
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
46
|
Hu JB, Chen TR, Chang CH, Cheng JY, Chen YC, Urban PL. A compact 3D-printed interface for coupling open digital microchips with Venturi easy ambient sonic-spray ionization mass spectrometry. Analyst 2015; 140:1495-501. [PMID: 25622965 DOI: 10.1039/c4an02220c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Digital microfluidics (DMF) based on the electrowetting-on-dielectric phenomenon is a convenient way of handling microlitre-volume aliquots of solutions prior to analysis. Although it was shown to be compatible with on-line mass spectrometric detection, due to numerous technical obstacles, the implementation of DMF in conjunction with MS is still beyond the reach of many analytical laboratories. Here we present a facile method for coupling open DMF microchips to mass spectrometers using Venturi easy ambient sonic-spray ionization operated at atmospheric pressure. The proposed interface comprises a 3D-printed body that can easily be "clipped" at the inlet of a standard mass spectrometer. The accessory features all the necessary connections for an open-architecture DMF microchip with T-shaped electrode arrangement, thermostatting of the microchip, purification of air (to prevent accidental contamination of the microchip), a Venturi pump, and two microfluidic pumps to facilitate transfer of samples and reagents onto the microchip. The system also incorporates a touch-screen panel and remote control for user-friendly operation. It is based on the use of popular open-source electronic modules, and can readily be assembled at low expense.
Collapse
Affiliation(s)
- Jie-Bi Hu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan.
| | | | | | | | | | | |
Collapse
|