1
|
Zhang W, Li Y, Muntiza N, Ji W, Fan Z, Li Q, Zhao J, Zhang H, Deng Q, Sun D, Liu T. Preparation of dual-epitopes imprinted particles with γ-cyclodextrin host-guest interaction and reversible addition-fragmentation chain transfer strategy for cytochrome c collaborative recognition. J Chromatogr A 2025; 1746:465782. [PMID: 39970687 DOI: 10.1016/j.chroma.2025.465782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
A dual-epitopes imprinted strategy for cytochrome c selective recognition assisted with γ-cyclodextrin host-guest interaction via N-terminal and C-terminal epitope's simultaneous imprinting and reversible addition-fragmentation chain transfer (RAFT) polymerization was developed. N-terminal and C-terminal nonapeptides of Cyt c (GI-9 and AE-9) were used simultaneously as the epitope to achieve collaborative recognition for cytochrome c. As a supramolecule, γ-cyclodextrin can encapsulate the aromatic functional groups of amino acid residues to capture the peptide and improve the corresponding spatial orientation for epitope or cytochrome c recognition by host-guest interaction. After the γ-cyclodextrin modification and dual-epitopes immobilization, the imprinted polymer was synthesized by RAFT polymerization with 4-cyano-4-(phenyl-carbonothioylthio) pentanoic acid as a chain transfer agent. After the template removal, the obtained dual-epitopes imprinted particles showed well binding ability to AE-9 (26.50 mg·g-1, IF= 4.13), GI-9 (7.36 mg·g-1, IF= 2.18) and cytochrome c (79.56 mg·g-1, IF= 3.27). With the successive addition of RAFT agent, the imprinting factor rising of epitope peptide and cytochrome c further illustrated the regulation of imprinted polymer chains. The imprinted particles had the advantage for cytochrome c recognition compared to other proteins and good reusability with 82.60 % repeated reproduction rate after six cycles of adsorption and desorption. Furthermore, the selective recognition for cytochrome c in bovine serum proved its potentiality to be applied in complex biological samples. It indicated that the combination of dual-templates epitope imprinting, γ-CD host-guest interaction and RAFT polymerization provided an efficient method for collaborative protein recognition with well selectivity, reusability and stability.
Collapse
Affiliation(s)
- Wenbin Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yuzeng Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Nurimangul Muntiza
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; College of Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Wenquan Ji
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Zhen Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Qinran Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; College of Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| | - Jin Zhao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Hongfeng Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Qiliang Deng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; College of Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Donglan Sun
- College of Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
2
|
Chen X, Tian W. Selective extraction and determination of chlorpyrifos residues from aqueous samples using biochar-functionalized molecularly imprinted polymer combined with high-performance liquid chromatography. J Chromatogr A 2025; 1741:465611. [PMID: 39718260 DOI: 10.1016/j.chroma.2024.465611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The concentration of chlorpyrifos (CPF) in aqueous samples was determined using a novel molecularly imprinted dispersive solid-phase extraction (MISPE) approach that was presented in this research. Using a non-covalent molecular imprinting technique, a biochar (BC)-functionalized molecularly imprinted polymers (MIPs) (BC-MIPs) was created. These MIPs were used in dispersive solid-phase extraction (DSPE) in conjunction with high-performance liquid chromatography with photodiode array detection (HPLC-PDA) to detect CPF in aqueous samples with high sensitivity. Using methacrylic acid (MAA) as the monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linker, BC-MIPs were created using CPF as a template. By using the suggested dispersive solid-phase extraction (DSPE) approach, the efficiency of the synthesized BC-MIPs granules was evaluated. Analytical performance of the devised DSPE-HPLC-PDA technique was assessed under optimal settings. The optimized parameters included extraction time, aqueous sample pH, desorption time and desorption reagents. Compared with the traditional method, the established method has better selective adsorption capacity, reusability and sensitivity for CPF. The suggested method presented that limit of detection and limit of quantification were 1.0 ng/mL and 4.0 ng/mL, along with excellent linear range (4.0-1500 ng/mL) with coefficients of determination (R2=0.9982). The established method was successfully used to determination CPF in aqueous samples from the Baisha River in Qingdao, with the advantages of accuracy (recoveries: 81.2 %-103.6 %, RSDs≤9.2 %), speed (CPF-BC-MIPs-DSPE time: 75 min; HPLC-PDA time: 12 min), selectivity (imprinting factor: 4.24), and economy (50 mg of adsorbent synthesized using cheap straw and 1 mL of solvents), which partially conform to the current advanced principle of "3S+2A" in analytical chemistry. The BC-MIPs granules shown potential for CPF preconcentration in complicated samples and were effective carriers for the selective adsorption of CPF.
Collapse
Affiliation(s)
- Xinwei Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; Qingdao Engineering Vocational College, Qingdao 266000, China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; Laoshan Laboratory, Qingdao 266234, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
3
|
Han W, Chai Y, Du Y, Wang L, Fu G, Ou L. Oriented surface imprinting of epitopes anchored on silica nanoparticles containing quantum dots by thiol-disulfide exchange reactions for the enhanced fluorescence detection of proteins. Talanta 2024; 280:126636. [PMID: 39126964 DOI: 10.1016/j.talanta.2024.126636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
As artificial receptors for protein recognition, epitope-imprinted polymers combined with fluorescence sensing based on quantum dots (QDs) can be potentially used for biological analysis and disease diagnosis. However, the usual way for fabrication of QD sensors through unoriented epitope imprinting is confronted with the problems of disordered imprinting sites and low template utilization. In this context, a facile and efficient oriented epitope surface imprinting was put forward based on immobilization of the epitope templates via thiol-disulfide exchange reactions. With N-succinimidyl 3-(2-pyridyldithio)-propionate (SPDP) as a heterobifunctional reagent, cysteine-modified epitopes of cytochrome c were anchored on the surface of pyridyl disulfide functionalized silica nanoparticles sandwiching CdTe QDs. After surface imprinting via a sol-gel process, the epitope templates were removed from the surface-imprinted layers simply by reduction of the thiol-disulfide, affording oriented epitope-imprinted sites. By this method, the amount of epitope templates was only 1/20 of traditionally unoriented epitopes. The resulting sensors demonstrated significantly enhanced imprinting performance and high sensitivity, with the imprinting factor increasing from 2.6 to 3.9, and the limit of detection being 91 nM. Such epitope-oriented surface-imprinted method may offer a new design strategy for the construction of high-affinity protein recognition nanomaterials with fluorescence sensing.
Collapse
Affiliation(s)
- Wenyan Han
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yamin Chai
- General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lichun Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guoqi Fu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Yarman A, Waffo AFT, Katz S, Bernitzky C, Kovács N, Borrero P, Frielingsdorf S, Supala E, Dragelj J, Kurbanoglu S, Neumann B, Lenz O, Mroginski MA, Gyurcsányi RE, Wollenberger U, Scheller FW, Caserta G, Zebger I. A Strep-Tag Imprinted Polymer Platform for Heterogenous Bio(electro)catalysis. Angew Chem Int Ed Engl 2024; 63:e202408979. [PMID: 38979660 DOI: 10.1002/anie.202408979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Molecularly imprinted polymers (MIPs) are artificial receptors equipped with selective recognition sites for target molecules. One of the most promising strategies for protein MIPs relies on the exploitation of short surface-exposed protein fragments, termed epitopes, as templates to imprint binding sites in a polymer scaffold for a desired protein. However, the lack of high-resolution structural data of flexible surface-exposed regions challenges the selection of suitable epitopes. Here, we addressed this drawback by developing a polyscopoletin-based MIP that recognizes recombinant proteins via imprinting of the widely used Strep-tag II affinity peptide (Strep-MIP). Electrochemistry, surface-sensitive IR spectroscopy, and molecular dynamics simulations were employed to ensure an utmost control of the Strep-MIP electrosynthesis. The functionality of this novel platform was verified with two Strep-tagged enzymes: an O2-tolerant [NiFe]-hydrogenase, and an alkaline phosphatase. The enzymes preserved their biocatalytic activities after multiple utilization confirming the efficiency of Strep-MIP as a general biocompatible platform to confine recombinant proteins for exploitation in biotechnology.
Collapse
Affiliation(s)
- Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Sahinkaya Cad. No. 86, Beykoz, Istanbul, 34820, Türkiye
| | - Armel F T Waffo
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Cornelius Bernitzky
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Norbert Kovács
- BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Paloma Borrero
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Stefan Frielingsdorf
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Eszter Supala
- BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Jovan Dragelj
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Yenimahalle, Ankara, 06560, Turkey
| | - Bettina Neumann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Róbert E Gyurcsányi
- BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
- HUN-REN-BME Computation Driven Chemistry Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Ulla Wollenberger
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Frieder W Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
5
|
Wang X, Xue J, Ma J, Wang H, Jia Q. Preparation of dual-functional epitope imprinted polymers for the enrichment of transferrin. J Chromatogr A 2024; 1730:465111. [PMID: 38936164 DOI: 10.1016/j.chroma.2024.465111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Transferrin (TRF), a glycoprotein involved in cellular iron uptake, is a potential target for the diagnosis and treatment of several diseases and cancers. Therefore, the identification and isolation of TRF is clinically important. In this work, we prepared magnetic molecularly imprinted polymers (EMIP) based on metal chelation using norepinephrine and 3-aminophenylboronic acid as functional monomers. The obtained EMIP shows excellent recognition of TRF with the adsorption capacity of 94.2 mg/g and imprinting factor of 3.50. In addition, EMIP was characterized by high specificity, good adsorption performance and stability, and was successfully used for the analysis of TRF in human serum. The present study provides a reliable scheme for targeted epitope imprinting of polymers with metal chelating and dual-functional monomers, showing great potential for biosample analysis.
Collapse
Affiliation(s)
- Xindi Wang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiangshan Xue
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Hai Wang
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Shi H, Tian X, Wu J, Chen Q, Yang S, Shan L, Zhang C, Wan Y, Wu MY, Feng S. Fabricating Ultrathin Imprinting Layer for Fast Capture of Valsartan via a Metal Affinity-Oriented Surface Imprinting Method. Anal Chem 2024; 96:9447-9452. [PMID: 38807557 DOI: 10.1021/acs.analchem.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Rapid separation and enrichment of targets in biological matrixes are of significant interest in multiple life sciences disciplines. Molecularly imprinted polymers (MIPs) have vital applications in extraction and sample cleanup owing to their excellent specificity and selectivity. However, the low mass transfer rate, caused by the heterogeneity of imprinted cavities in polymer networks and strong driving forces, significantly limits its application in high-throughput analysis. Herein, one novel metal affinity-oriented surface imprinting method was proposed to fabricate an MIP with an ultrathin imprinting layer. MIPs were prepared by immobilized template molecules on magnetic nanoparticles (NPs) with metal ions as bridges via coordination, and then polymerization was done. Under the optimized conditions, the thickness of the imprinting layer was merely 1 nm, and the adsorption toward VAL well matched the Langmuir model. Moreover, it took just 5 min to achieve adsorption equilibrium significantly faster than other reported MIPs toward VAL. Adsorption capacity still can reach 25.3 mg/g ascribed to the high imprinting efficiency of the method (the imprinting factor was as high as 5). All evidence proved that recognition sites were all external cavities and were evenly distributed on the surface of the NPs. The obtained MIP NPs exhibited excellent selectivity and specificity toward VAL, with good dispersibility and stability. Coupled with high-performance liquid chromatography, it was successfully used as a dispersed solid phase extraction material to determine VAL in serum. Average recoveries are over 90.0% with relative standard deviations less than 2.14% at three spiked levels (n = 3). All evidence testified that the MIPs fabricated with the proposed method showed a fast trans mass rate and a large rebinding capacity. The method can potentially use high-throughput separation and enrichment of target molecules in batch samples to meet practical applications.
Collapse
Affiliation(s)
- Haizhu Shi
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Xiao Tian
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Jiateng Wu
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Qian Chen
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Shuling Yang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Lianhai Shan
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Chungu Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Yu Wan
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Ming-Yu Wu
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Shun Feng
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| |
Collapse
|
7
|
Zhang X, Yarman A, Kovács N, Bognár Z, Gyurcsányi RE, Bier FF, Scheller FW. Specific features of epitope-MIPs and whole-protein MIPs as illustrated for AFP and RBD of SARS-CoV-2. Mikrochim Acta 2024; 191:242. [PMID: 38573524 DOI: 10.1007/s00604-024-06325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Molecularly imprinted polymer (MIP) nanofilms for alpha-fetoprotein (AFP) and the receptor binding domain (RBD) of the spike protein of SARS-CoV-2 using either a peptide (epitope-MIP) or the whole protein (protein-MIP) as the template were prepared by electropolymerization of scopoletin. Conducting atomic force microscopy revealed after template removal and electrochemical deposition of gold a larger surface density of imprinted cavities for the epitope-imprinted polymers than when using the whole protein as template. However, comparable affinities towards the respective target protein (AFP and RBD) were obtained for both types of MIPs as expressed by the KD values in the lower nanomolar range. On the other hand, while the cross reactivity of both protein-MIPs towards human serum albumin (HSA) amounts to around 50% in the saturation region, the nonspecific binding to the respective epitope-MIPs is as low as that for the non-imprinted polymer (NIP). This effect might be caused by the different sizes of the imprinted cavities. Thus, in addition to the lower costs the reduced nonspecific binding is an advantage of epitope-imprinted polymers for the recognition of proteins.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam, Germany.
| | - Aysu Yarman
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Sahinkaya Cad. Beykoz, Istanbul, 34820, Turkey
| | - Norbert Kovács
- BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Zsófia Bognár
- BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Róbert E Gyurcsányi
- BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- HUN-REN-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Frank F Bier
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam, Germany
| | - Frieder W Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam, Germany
| |
Collapse
|
8
|
Zhu R, Wang X, Ma J, Jia Q. Preparation of poly(caffeic acid)-coated epitope molecularly imprinted polymers and investigation of adsorption performance toward ovalbumin. J Chromatogr A 2024; 1716:464635. [PMID: 38215543 DOI: 10.1016/j.chroma.2024.464635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
Food allergy can lead to severe allergic reactions that are potentially fatal for human, hence the detection of food allergens such as ovalbumin (OVA) is important. In this study, a poly(caffeic acid)-coated epitope molecularly imprinted polymer (EMIP) was prepared by chelation and autoxidation of caffeic acid with hexamethylenediamine. EMIP has not only imprinted cavities highly matched with OVA in size and spatial structure, but also externally abundant hydrophilic groups, resulting in few non-specific binding and good hydrophilicity. With high specificity, significant paramagnetism, and great reusability, EMIP can distinguish OVA from other proteins and selectively enrich OVA in egg white samples, which opens up a promising route to the determination of allergens in food products.
Collapse
Affiliation(s)
- Ran Zhu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Xindi Wang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Zhang X, Yarman A, Bagheri M, El-Sherbiny IM, Hassan RYA, Kurbanoglu S, Waffo AFT, Zebger I, Karabulut TC, Bier FF, Lieberzeit P, Scheller FW. Imprinted Polymers on the Route to Plastibodies for Biomacromolecules (MIPs), Viruses (VIPs), and Cells (CIPs). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:107-148. [PMID: 37884758 DOI: 10.1007/10_2023_234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Aysu Yarman
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul, Turkey
| | - Mahdien Bagheri
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria
| | - Ibrahim M El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Rabeay Y A Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | - Ingo Zebger
- Institut für Chemie, PC 14 Technische Universität Berlin, Berlin, Germany
| | | | - Frank F Bier
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Peter Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria.
| | - Frieder W Scheller
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany.
| |
Collapse
|
10
|
Silva AT, Figueiredo R, Azenha M, Jorge PA, Pereira CM, Ribeiro JA. Imprinted Hydrogel Nanoparticles for Protein Biosensing: A Review. ACS Sens 2023; 8:2898-2920. [PMID: 37556357 PMCID: PMC10463276 DOI: 10.1021/acssensors.3c01010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Over the past decade, molecular imprinting (MI) technology has made tremendous progress, and the advancements in nanotechnology have been the major driving force behind the improvement of MI technology. The preparation of nanoscale imprinted materials, i.e., molecularly imprinted polymer nanoparticles (MIP NPs, also commonly called nanoMIPs), opened new horizons in terms of practical applications, including in the field of sensors. Currently, hydrogels are very promising for applications in bioanalytical assays and sensors due to their high biocompatibility and possibility to tune chemical composition, size (microgels, nanogels, etc.), and format (nanostructures, MIP film, fibers, etc.) to prepare optimized analyte-responsive imprinted materials. This review aims to highlight the recent progress on the use of hydrogel MIP NPs for biosensing purposes over the past decade, mainly focusing on their incorporation on sensing devices for detection of a fundamental class of biomolecules, the peptides and proteins. The review begins by directing its focus on the ability of MIPs to replace biological antibodies in (bio)analytical assays and highlight their great potential to face the current demands of chemical sensing in several fields, such as disease diagnosis, food safety, environmental monitoring, among others. After that, we address the general advantages of nanosized MIPs over macro/micro-MIP materials, such as higher affinity toward target analytes and improved binding kinetics. Then, we provide a general overview on hydrogel properties and their great advantages for applications in the field of Sensors, followed by a brief description on current popular routes for synthesis of imprinted hydrogel nanospheres targeting large biomolecules, namely precipitation polymerization and solid-phase synthesis, along with fruitful combination with epitope imprinting as reliable approaches for developing optimized protein-imprinted materials. In the second part of the review, we have provided the state of the art on the application of MIP nanogels for screening macromolecules with sensors having different transduction modes (optical, electrochemical, thermal, etc.) and design formats for single use, reusable, continuous monitoring, and even multiple analyte detection in specialized laboratories or in situ using mobile technology. Finally, we explore aspects about the development of this technology and its applications and discuss areas of future growth.
Collapse
Affiliation(s)
- Ana T. Silva
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Rui Figueiredo
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Manuel Azenha
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Pedro A.S. Jorge
- INESC
TEC−Institute for Systems and Computer Engineering, Technology
and Science, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal
- Department
of Physics and Astronomy, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Carlos M. Pereira
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - José A. Ribeiro
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| |
Collapse
|
11
|
Rajpal S, Mishra P, Mizaikoff B. Rational In Silico Design of Molecularly Imprinted Polymers: Current Challenges and Future Potential. Int J Mol Sci 2023; 24:ijms24076785. [PMID: 37047758 PMCID: PMC10095314 DOI: 10.3390/ijms24076785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
The rational design of molecularly imprinted polymers has evolved along with state-of-the-art experimental imprinting strategies taking advantage of sophisticated computational tools. In silico methods enable the screening and simulation of innovative polymerization components and conditions superseding conventional formulations. The combined use of quantum mechanics, molecular mechanics, and molecular dynamics strategies allows for macromolecular modelling to study the systematic translation from the pre- to the post-polymerization stage. However, predictive design and high-performance computing to advance MIP development are neither fully explored nor practiced comprehensively on a routine basis to date. In this review, we focus on different steps along the molecular imprinting process and discuss appropriate computational methods that may assist in optimizing the associated experimental strategies. We discuss the potential, challenges, and limitations of computational approaches including ML/AI and present perspectives that may guide next-generation rational MIP design for accelerating the discovery of innovative molecularly templated materials.
Collapse
Affiliation(s)
- Soumya Rajpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Hahn-Schickard, Sedanstraße 14, 89077 Ulm, Germany
| |
Collapse
|
12
|
Preparation of C-Terminal Epitope Imprinted Particles Via Reversible Addition-Fragmentation Chain Transfer Polymerization and Zn2+ Chelating Strategy: Selective Recognition of Cytochrome c. Chromatographia 2022. [DOI: 10.1007/s10337-022-04180-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Sheng L, Jin Y, Hou H, Huang Y, Zhao R. Hydrazone bond-oriented molecularly imprinted nanocomposites for the selective separation of protein via the well-defined recognition sites. Mikrochim Acta 2022; 189:246. [PMID: 35674804 DOI: 10.1007/s00604-022-05308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
The development of hydrazone bond-oriented epitope imprinting strategy is reported to synthesize the polymeric binders for the selective recognition of a protein-β2-microglobulin through either its N- or C-terminal epitope. The dynamic reversibility of hydrazone bond facilitated not only the oriented assembly of the template peptide hydrazides onto the substrate but also the efficient removal of them from the imprinted cavities. The well-defined surface imprinted layer was successfully constructed through the precise control over the polymerization of silicate esters. Binding performance of the C-terminal peptide imprinted nanocomposite was significantly improved after tuning the non-covalent interactions using the sequence-matching aromatic co-monomers. The dissociation constant (Kd) between the optimized nanocomposite and epitope peptide was 0.5 µmol L-1. The nanomaterial was utilized for the selective extraction and determination of β2-microglobulin from human urine by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and HPLC-UV with satisfied recoveries of 93.1-112.3% in a concentration range 1.0-50.0 μg⋅mL-1.
Collapse
Affiliation(s)
- Le Sheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China. .,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huiqing Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China. .,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
He Y, Lin Z. Recent advances in protein-imprinted polymers: synthesis, applications and challenges. J Mater Chem B 2022; 10:6571-6589. [PMID: 35507351 DOI: 10.1039/d2tb00273f] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The molecular imprinting technique (MIT), also described as the "lock to key" method, has been demonstrated as an effective tool for the creation of synthetic polymers with antibody-like sites to specifically recognize target molecules. To date, most successful molecular imprinting researches were limited to small molecules (<1500 Da); biomacromolecule (especially protein) imprinting remains a serious challenge due to their large size, chemical and structural complexity, and environmental instability. Nevertheless, protein imprinting has achieved some significant breakthroughs in imprinting methods and applications over the past decade. Some special protein-imprinted materials with outstanding properties have been developed and exhibited excellent potential in several advanced fields such as separation and purification, proteomics, biomarker detection, bioimaging and therapy. In this review, we critically and comprehensively surveyed the recent advances in protein imprinting, particularly emphasizing the significant progress in imprinting methods and highlighted applications. Finally, we summarize the major challenges remaining in protein imprinting and propose its development direction in the near future.
Collapse
Affiliation(s)
- Yanting He
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui, 233000, China.,Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
15
|
Molecularly imprinted polymer (MIP) based core-shell microspheres for bacteria isolation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
N-terminal epitope surface imprinted particles for high selective cytochrome c recognition prepared by reversible addition- fragmentation chain transfer strategy. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
18
|
Improved detection and recognition of glycoproteins using fluorescent polymers with a molecular imprint based on glycopeptides. Mikrochim Acta 2021; 188:439. [PMID: 34845528 DOI: 10.1007/s00604-021-05099-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022]
Abstract
Highly specific novel glycopeptide-based fluorescent molecularly imprinting polymers (g-FMIPs) were constructed to recognize and determine the target glycoprotein in complex biological samples. The glycopeptide of ovalbumin (OVA), with the unique structural characteristics of glycan and peptide, and potential application in improving the specificity recognition of g-FMIPs, was selected as the template molecule. The nitrogen-doped graphene quantum dots (N-GQDs) were introduced for fluorescence response. The obtained g-FMIPs possessed rapid binding kinetics and high adsorption capacity. Notably, the g-FMIPs exhibited remarkable selectivity and sensitivity with a high imprinting factor of 6.57, good linearity of 0.625 - 5.00 μM, and limit of detection of 0.208 μM. After treatment with g-FMIPs, the concentration of OVA in eluted solution was 1.07 μM. The obtained recoveries at 1.43 μM, 2.86 μM, and 4.29 μM spiked concentrations were 97.2%, 93.5%, and 101%, respectively, and the relative standard deviations were 2.6%, 4.2%, and 1.1%, respectively. In summary, the proposed strategy will expand the MIPs construction method and its application prospects in precision recognition and sensitive detection of trace glycoproteins from complex biosamples.
Collapse
|
19
|
Zhang S, Liu Z, Jin S, Bai Y, Feng X, Fu G. A method for synthesis of oriented epitope-imprinted open-mouthed polymer nanocapsules and their use for fluorescent sensing of target protein. Talanta 2021; 234:122690. [PMID: 34364488 DOI: 10.1016/j.talanta.2021.122690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Epitope imprinting has proved to be an effective way for fabricating artificial receptors for protein recognition. Surface imprinting over sacrificial supports is particularly favorable for generating high-quality epitope-imprinted cavities, but obtaining nanomaterials by this way is still a challenge. Herein, we propose a method for the synthesis of oriented surface epitope-imprinted open-mouthed polymer nanocapsules (OM-MIP NCs) by sacrificing asymmetric template-modified Janus nanocores. Amine/aldehyde functionalized SiO2 Janus nanoparticles were prepared via the molten-wax-in-water Pickering emulsion approach, an easy scale-up technique. Epitope templates and vinyl groups were coupled to the aldehyde-bearing major side, whereas polyethylene glycol (PEG) chains were grafted to the amine-modified side. Incomplete imprinted shells were then generated principally on the non-PEGylated side via aqueous precipitation polymerization, hence affording OM-MIP NCs after etching the SiO2 nanocores. With a C-terminus nonapeptide of bovine serum albumin (BSA) chosen as a model epitope and polymerizable carbon dots added to the pre-polymerization solution, fluorescent OM-MIP NCs were synthesized for sensing of BSA. Such NCs reached maximal fluorescent response within 15 min, greatly faster than the closed imprinted NCs within 130 min, proving good accessibility of their inner-surface imprinted cavities thanks to the open mouths. Furthermore, they showed excellent target protein detection performance, with an imprinting factor of 7.8, a limit of detection of 43.8 nM and a linear range of 0.2-6 μM. The recoveries in bovine serum samples at four spiking levels ranged from 99.2 to 107.2%, with relative standard deviations of 1.2-5.9%.
Collapse
Affiliation(s)
- Shiting Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiqiang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Siyu Jin
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yufei Bai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xingjia Feng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guoqi Fu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
20
|
Epitope-imprinted polymers for biomacromolecules: Recent strategies, future challenges and selected applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Pasquardini L, Bossi AM. Molecularly imprinted polymers by epitope imprinting: a journey from molecular interactions to the available bioinformatics resources to scout for epitope templates. Anal Bioanal Chem 2021; 413:6101-6115. [PMID: 34018035 PMCID: PMC8440283 DOI: 10.1007/s00216-021-03409-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 01/07/2023]
Abstract
The molecular imprinting of proteins is the process of forming biomimetics with entailed protein-recognition by means of a template-assisted synthesis. Protein-imprinted polymers (pMIPs) have been successfully employed in separations, assays, sensors, and imaging. From a technical point of view, imprinting a protein is both costly, for protein expression and purification, and challenging, for the preservation of the protein's structural properties. In fact, the imprinting process needs to guarantee the preservation of the same protein three-dimensional conformation that later would be recognized. So far, the captivating idea to imprint just a portion of the protein, i.e., an epitope, instead of the whole, proved successful, offering reduced costs, compatibility with many synthetic conditions (solvents, pH, temperatures), and fine-tuning of the peptide sequence so to target specific physiological and functional conditions of the protein, such as post-translational modifications. Here, protein-protein interactions and the biochemical features of the epitopes are inspected, deriving lessons to prepare more effective pMIPs. Epitopes are categorized in linear or structured, immunogenic or not, located at the protein's surface or buried in its core and the imprinting strategies are discussed. Moreover, attention is given to freely available online bioinformatics resources that might offer key tools to gain further rationale amid the selection process of suitable epitopes templates.
Collapse
Affiliation(s)
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
22
|
Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L. Molecular Imprinting: Green Perspectives and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100543. [PMID: 34145950 DOI: 10.1002/adma.202100543] [Citation(s) in RCA: 337] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Indexed: 05/04/2023]
Abstract
Advances in revolutionary technologies pose new challenges for human life; in response to them, global responsibility is pushing modern technologies toward greener pathways. Molecular imprinting technology (MIT) is a multidisciplinary mimic technology simulating the specific binding principle of enzymes to substrates or antigens to antibodies; along with its rapid progress and wide applications, MIT faces the challenge of complying with green sustainable development requirements. With the identification of environmental risks associated with unsustainable MIT, a new aspect of MIT, termed green MIT, has emerged and developed. However, so far, no clear definition has been provided to appraise green MIT. Herein, the implementation process of green chemistry in MIT is demonstrated and a mnemonic device in the form of an acronym, GREENIFICATION, is proposed to present the green MIT principles. The entire greenificated imprinting process is surveyed, including element choice, polymerization implementation, energy input, imprinting strategies, waste treatment, and recovery, as well as the impacts of these processes on operator health and the environment. Moreover, assistance of upgraded instrumentation in deploying greener goals is considered. Finally, future perspectives are presented to provide a more complete picture of the greenificated MIT road map and to pave the way for further development.
Collapse
Affiliation(s)
- Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
23
|
Zhang Y, Wang HY, He XW, Li WY, Zhang YK. Homochiral fluorescence responsive molecularly imprinted polymer: Highly chiral enantiomer resolution and quantitative detection of L-penicillamine. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125249. [PMID: 33548789 DOI: 10.1016/j.jhazmat.2021.125249] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
In this work, we innovatively synthesized homochiral fluorescence nano molecularly imprinted polymers (D-MIP) with dual affinity (metal ion affinity and homochiral affinity) for the specific separation and detection of L-penicillamine (L-PA), which is a core-shell structure with a SiO2-covered CDs core and an imprinted layer with L-PA cavities. A switch for fluorescence response was built by chelating grafted Cu2+, what's more, the imprinted L-PA was pre immobilized by Cu2+ to form the directional imprinting with predetermined spatial structure. More importantly, the homochiral affinity of D-galactose in homochiral molecularly imprinted polymers (D-MIP) greatly enhanced the selective adsorption of L-PA, and D-MIP showed a high selectivity factor (α) of 3.45, which is 1.9 times that of the non-homochiral molecularly imprinted polymers (MIP). Meanwhile, D-MIP exhibited a high enantiomeric excess (ee) value of 56% for separation of racemic PA. Additionally, a high sensitive and selective method was established for the detection of L-PA.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Hai-Yan Wang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
24
|
“Out of Pocket” Protein Binding—A Dilemma of Epitope Imprinted Polymers Revealed for Human Hemoglobin. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The epitope imprinting approach applies exposed peptides as templates to synthesize Molecularly Imprinted Polymers (MIPs) for the recognition of the parent protein. While generally the template protein binding to such MIPs is considered to occur via the epitope-shaped cavities, unspecific interactions of the analyte with non-imprinted polymer as well as the detection method used may add to the complexity and interpretation of the target rebinding. To get new insights on the effects governing the rebinding of analytes, we electrosynthesized two epitope-imprinted polymers using the N-terminal pentapeptide VHLTP-amide of human hemoglobin (HbA) as the template. MIPs were prepared either by single-step electrosynthesis of scopoletin/pentapeptide mixtures or electropolymerization was performed after chemisorption of the cysteine extended VHLTP peptide. Rebinding of the target peptide and the parent HbA protein to the MIP nanofilms was quantified by square wave voltammetry using a redox probe gating, surface enhanced infrared absorption spectroscopy, and atomic force microscopy. While binding of the pentapeptide shows large influence of the amino acid sequence, all three methods revealed strong non-specific binding of HbA to both polyscopoletin-based MIPs with even higher affinities than the target peptides.
Collapse
|
25
|
Caserta G, Zhang X, Yarman A, Supala E, Wollenberger U, Gyurcsányi RE, Zebger I, Scheller FW. Insights in electrosynthesis, target binding, and stability of peptide-imprinted polymer nanofilms. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Ultrasensitive molecularly imprinted fluorescence sensor for simultaneous determination of CA125 and CA15-3 in human serum and OVCAR-3 and MCF-7 cells lines using Cd and Ni nanoclusters as new emitters. Anal Bioanal Chem 2021; 413:4049-4061. [PMID: 34057557 DOI: 10.1007/s00216-021-03362-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 02/05/2023]
Abstract
In the clinical diagnosis of tumors, a single-marker immunoassay may lead to false results. Thus there is a need for an effective and valid method for the simultaneous measurement of multiple tumor markers. In this work, an efficient fluorescence immunosensor for the simultaneous measurement of CA125 and CA15-3 tumor markers was fabricated by utilizing the high selectivity of magnetic molecularly imprinted polymers (MMIPs) and the high sensitivity of a fluorescence (FL) method. Ni nanoclusters (Ni NCs) and noble Cd nanoclusters (Cd NCs) were introduced as efficient and economic emitters, and magnetic graphene oxide (GO-Fe3O4) was applied as a support material for surface molecularly imprinted polymers. Under the most favorable experimental conditions, the fluorescence intensity of the Cd NCs and Ni NCs gradually increased with increasing concentration of CA125 and CA15-3 antigens at a range of 0.0005-40 U mL-1, respectively, with a limit of detection (LOD) of 50 μU mL-1. The developed method had excellent properties including a broad linear range, good reproducibility, and simple operation for the clinical diagnosis of CA 125 and CA 15-3 tumor markers. This molecularly imprinted fluorescence sensor has the potential to be an effective clinical tool for the timely screening of breast cancer in human serum samples and OVCAR-3 and MCF-7 cell lines, and can be applied in clinical diagnostics.
Collapse
|
27
|
Hou H, Jin Y, Xu K, Sheng L, Huang Y, Zhao R. Selective recognition of a cyclic peptide hormone in human plasma by hydrazone bond-oriented surface imprinted nanoparticles. Anal Chim Acta 2021; 1154:338301. [PMID: 33736805 DOI: 10.1016/j.aca.2021.338301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 11/30/2022]
Abstract
As a kind of artificial recognition material, molecularly imprinted polymers (MIPs) offer a promising perspective to be developed as synthetic chemical binders capable of selectively recognize biomacromolecules. However, owing to the large size and conformational flexibility of proteins and peptides, imprinting of these biomacromolecules remains a challenge. Novel imprinting strategies still need exploration for the improvement of recognition performance of MIPs. Herein, we developed a hydrazone bond-oriented surface imprinting strategy for an endogenous peptide hormone, human atrial natriuretic peptide (ANP). Surface-oriented imprinting of peptide via reversible covalent bond anchoring approach increased the orientation homogeneity of imprinted cavities as well as the utility of templates. The prepared nanoparticles exhibited high selectivity and fast recognition kinetics for ANP epitope. The dissociation constant between ANP epitope and MIP was measured as 5.3 μM. The applicability of the material in real samples was verified by the selective magnetic extraction of ANP from human plasma samples. This hydrazone bond-oriented surface imprinting strategy provides an alternative approach for the separation of peptides or proteins in complex bio-samples.
Collapse
Affiliation(s)
- Huiqing Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Le Sheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Wang X, Chen G, Zhang P, Jia Q. Advances in epitope molecularly imprinted polymers for protein detection: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1660-1671. [PMID: 33861232 DOI: 10.1039/d1ay00067e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Epitope molecularly imprinted polymers (EMIPs) are novel imprinted materials using short characteristic peptides as templates rather than entire proteins. To be specific, the amino acid sequence of the template peptide is the same as an exposed N- or C-terminus of a target protein, or its amino acid composition and sequence replicate a similar conformational arrangement as the same amino acid residues on the surface of the target protein. EMIPs have a good application prospect in protein research. Herein, we focus on classification of epitope imprinting techniques, methods of epitope immobilization on matrix materials including boronate affinity immobilization, covalent bonding immobilization, physical adsorption immobilization and metal ion chelation immobilization, and application of EMIPs in peptides, proteins, target imaging and target therapy fields. Finally, the main problems and future development are summarized.
Collapse
Affiliation(s)
- Xindi Wang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | |
Collapse
|
29
|
Epitope-imprinted polydopamine electrochemical sensor for ovalbumin detection. Bioelectrochemistry 2021; 140:107805. [PMID: 33838516 DOI: 10.1016/j.bioelechem.2021.107805] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 01/02/2023]
Abstract
A novel, sensitive and selective electrochemical sensor based on epitope-imprinted polydopamine (PDA) was developed for ovalbumin (OVA) detection. Molecularly imprinted polydopamine was synthesized on an AuNP-coated screen-printed carbon electrode (SPCE) via electropolymerization in the presence of OVA IgE-binding epitope as the template. Key process parameters including template concentration, electropolymerization cycle, pH, time required for template removal and rebinding were optimized. Electrochemical detection of OVA was performed by differential pulse voltammetry (DPV) in 5 mM K3Fe(CN)6 and 0.1 M KCl as the supporting electrolyte. Under optimized conditions, the sensor demonstrated excellent sensitivity toward OVA with linear range from 23.25 to 232.50 nM (1 to 10 ppm), limit of detection (LOD) of 10.76 nM (0.46 ppm), and limit of quantification (LOQ) of 35.87 nM (1.54 ppm). The sensor also exhibited good selectivity against other proteins such as human serum albumin (HSA), bovine serum albumin (BSA), and lysozyme (LYZ). OVA in wine samples was detected with RSD of 5.63-10.82%, and recovery percentage of 104.74-105.96%. The developed method can be easily adapted to detect other allergic proteins in the food supply chain.
Collapse
|
30
|
Khumsap T, Corpuz A, Nguyen LT. Epitope-imprinted polymers: applications in protein recognition and separation. RSC Adv 2021; 11:11403-11414. [PMID: 35423617 PMCID: PMC8695941 DOI: 10.1039/d0ra10742e] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) have evolved as promising platforms for specific recognition of proteins. However, molecular imprinting of the whole protein molecule is complicated by its large size, conformational instability, and structural complexity. These inherent limitations can be overcome by using epitope imprinting. Significant breakthroughs in the synthesis and application of epitope-imprinted polymers (EIPs) have been achieved and reported. This review highlights recent advances in epitope imprinting, from the selection of epitope peptide sequences and functional monomers to the methods applied in polymerization and template removal. Technological innovations in detection and extraction of proteins by EIPs are also provided.
Collapse
Affiliation(s)
- Tabkrich Khumsap
- Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology 58 Moo 9, Km. 42, Paholyothin Highway Klong Luang Pathumthani 12120 Thailand
| | - Angelica Corpuz
- Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology 58 Moo 9, Km. 42, Paholyothin Highway Klong Luang Pathumthani 12120 Thailand
| | - Loc Thai Nguyen
- Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology 58 Moo 9, Km. 42, Paholyothin Highway Klong Luang Pathumthani 12120 Thailand
| |
Collapse
|
31
|
Bossi AM, Pasquardini L. The Search for Peptide Epitopes for Molecular Imprinting Through Bioinformatics. Methods Mol Biol 2021; 2359:269-283. [PMID: 34410676 DOI: 10.1007/978-1-0716-1629-1_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Epitope imprinting is an effective strategy to prepare molecularly imprinted polymers (MIPs) for protein recognition. Indeed, the idea to use as a template just a fragment of the protein of interest, called the epitope, instead of the whole protein, presents some key advantages for the imprinting process, in particular: cutting the costs for MIP production and avoiding protein unfolding during the imprinting process, so to ultimately improve the quality of the stamped binding sites. How to select an epitope for the imprinting is the strategic question. Here, the bioinformatics tools to search for suitable epitopes for the imprinting process and rational tools to select the most suitable epitope are briefly introduced along with protocols for their practical use.
Collapse
|
32
|
Kalecki J, Iskierko Z, Cieplak M, Sharma PS. Oriented Immobilization of Protein Templates: A New Trend in Surface Imprinting. ACS Sens 2020; 5:3710-3720. [PMID: 33225686 PMCID: PMC7771019 DOI: 10.1021/acssensors.0c01634] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022]
Abstract
In this Review, we have summarized recent trends in protein template imprinting. We emphasized a new trend in surface imprinting, namely, oriented protein immobilization. Site-directed proteins were assembled through specially selected functionalities. These efforts resulted in a preferably oriented homogeneous protein construct with decreased protein conformation changes during imprinting. Moreover, the maximum functionality for protein recognition was utilized. Various strategies were exploited for oriented protein immobilization, including covalent immobilization through a boronic acid group, metal coordinating center, and aptamer-based immobilization. Moreover, we have discussed the involvement of semicovalent as well as covalent imprinting. Interestingly, these approaches provided additional recognition sites in the molecular cavities imprinted. Therefore, these molecular cavities were highly selective, and the binding kinetics was improved.
Collapse
Affiliation(s)
- Jakub Kalecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush S. Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
33
|
Silva MS, Tavares APM, de Faria HD, Sales MGF, Figueiredo EC. Molecularly Imprinted Solid Phase Extraction Aiding the Analysis of Disease Biomarkers. Crit Rev Anal Chem 2020; 52:933-948. [DOI: 10.1080/10408347.2020.1843131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matheus Siqueira Silva
- Laboratory of Toxicant and Drug Analyses, Federal University of Alfenas, Alfenas, Brazil
| | - Ana P. M. Tavares
- BioMark/ISEP, School of Engineering of the Polytechnic School of Porto, Porto, Portugal
- BioMark/UC, Department of Chemical Engineering, Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal
| | - Henrique Dipe de Faria
- Laboratory of Toxicant and Drug Analyses, Federal University of Alfenas, Alfenas, Brazil
| | - Maria Goreti Ferreira Sales
- BioMark/ISEP, School of Engineering of the Polytechnic School of Porto, Porto, Portugal
- BioMark/UC, Department of Chemical Engineering, Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal
| | | |
Collapse
|
34
|
Wang Z, Fang X, Sun N, Deng C. A rational route to hybrid aptamer-molecularly imprinted magnetic nanoprobe for recognition of protein biomarkers in human serum. Anal Chim Acta 2020; 1128:1-10. [PMID: 32825893 DOI: 10.1016/j.aca.2020.06.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/20/2023]
Abstract
Although antibody has played a great role in highly specific recognition of protein biomarkers, it faces poor stability, reproducibility, high-cost and time-consuming preparation, etc. Here, aptamer and molecularly imprinted polymers (MIPs), both as promising substitutes of antibody, were integrated onto magnetic nanoparticles by Au-S bonds and SiO2 as imprinted layer for preparing a new nanoprobe. Highly specific and sensitive recognition of different protein biomarkers, such as insulin for diabetes and alpha-fetoprotein (AFP) for hepatic carcinoma, were achieved respectively by the system of combining hybrid aptamer-molecularly imprinted magnetic nanoprobe and mass spectrometry. With the double affinities offered by aptamer-MIPs, insulin can be detected at 0.5 ng mL-1 in human serum dilution, the equlibrium dissociation constant between nanoprobe and insulin is measured as 23.61 ± 2.27 μM. Likewise, AFP can be sufficiently detected in human saliva dilution from 1000 ng mL-1 to 20 ng mL-1, and two patients with hepatic carcinoma are discriminated from healthy person due to the abnormally high expression of AFP in serum.
Collapse
Affiliation(s)
- Zidan Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, And Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xiaowei Fang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, And Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, And Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Chunhui Deng
- Institutes of Biomedical Sciences, And Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
35
|
Zhang Y, Li S, Ma XT, He XW, Li WY, Zhang YK. Carbon dots-embedded epitope imprinted polymer for targeted fluorescence imaging of cervical cancer via recognition of epidermal growth factor receptor. Mikrochim Acta 2020; 187:228. [PMID: 32170469 DOI: 10.1007/s00604-020-4198-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/25/2020] [Indexed: 12/29/2022]
Abstract
A carbon dots-embedded epitope imprinted polymer (C-MIP) was fabricated for targeted fluorescence imaging of cervical cancer by specifically recognizing the epidermal growth factor receptor (EGFR). The core-shell C-MIP was prepared by a reverse microemulsion polymerization method. This method used silica nanoparticles embedded with carbon dots as carriers, acrylamide as the main functional monomer, and N-terminal nonapeptides of EGFR modified by palmitic acid as templates. A series of characterizations (transmission electron microscope, dynamic light scattering, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, zeta potential, and energy dispersive X-ray spectroscopy) prove the successful synthesis of C-MIP. The fluorescence of C-MIP is quenched by the epitopes of EGFR due to the specific recognition of epitopes of EGFR through their imprinted cavities (analytical excitation/emission wavelengths, 540 nm/610 nm). The linear range of fluorescence quenching is 2.0 to 15.0 μg mL-1 and the determination limit is 0.73 μg mL-1. The targeted imaging capabilities of C-MIP are demonstrated through in vitro and in vivo experiments. The laser confocal imaging results indicate that HeLa cells (over-expression EGFR) incubated with C-MIP show stronger fluorescence than that of MCF-7 cells (low-expression EGFR), revealing that C-MIP can target tumor cells overexpressing EGFR. The results of imaging experiments in tumor-bearing mice exhibit that C-MIP has a better imaging effect than C-NIP, which further proves the targeted imaging ability of C-MIP in vivo. Graphical abstract An oriented epitope imprinted polymer embedded with carbon dots was prepared for the determination of the epitopes of epidermal growth factor receptor and targeted fluorescence imaging of cervical cancer.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Si Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Xiao-Tong Ma
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China.
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
36
|
Yang K, Li S, Liu L, Chen Y, Zhou W, Pei J, Liang Z, Zhang L, Zhang Y. Epitope Imprinting Technology: Progress, Applications, and Perspectives toward Artificial Antibodies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902048. [PMID: 31423663 DOI: 10.1002/adma.201902048] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Epitope imprinting is a promising tool to generate antibody-like specific recognition sites. Recently, because of the ease of obtaining templates, the flexibility in selecting monomers, their resistance to harsh environments, and the high specificity toward targets, epitope-imprinted materials have attracted much attention in various fields, such as bioanalysis, clinical therapy, and pharmacy. Here, the discussion is focused on the current representative epitope imprinting technologies, including epitope bulk imprinting and epitope surface imprinting. Moreover, the application of epitope-imprinted materials to the recognition of peptides, proteins, and cells is reviewed. Finally, the remaining challenges arising from the intrinsic properties of epitope imprinting are discussed, and future development in the field is prospected.
Collapse
Affiliation(s)
- Kaiguang Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Senwu Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lukuan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuwan Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wen Zhou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiaqi Pei
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
37
|
Jiang L, Ye L. Nanoparticle-supported temperature responsive polymer brushes for affinity separation of histidine-tagged recombinant proteins. Acta Biomater 2019; 94:447-458. [PMID: 31055124 DOI: 10.1016/j.actbio.2019.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/14/2023]
Abstract
We developed a modular approach for the preparation of nanoparticle-supported polymer brushes carrying repeating iminodiacetate units for affinity separation of histidine-tagged recombinant proteins. The nanoparticle-supported polymer brushes were prepared via the combination of surface-initiated atom transfer radical polymerization with Cu(I)-catalyzed azide-alkyne cycloaddition reaction. The nanocomposite materials were characterized to determine the particle size, morphology, organic content, densities of polymer chains and the affinity ligand. Protein binding assay illustrated that the iminodiacetate-rich polymer brushes enable to selectively bind histidine-tagged recombinant proteins in the presence of abundant interfering proteins. More importantly, the protein binding capacity can be tuned by adjusting the environmental temperature. STATEMENT OF SIGNIFICANCE: The nanoparticle core-polymer brush structure enables selective binding of histidine-tagged recombinant proteins via multiple metal-coordination interactions. The soft and flexible structure of the polymer brushes was found beneficial for lowering the steric hindrance in protein binding. Taking advantage of the conformational changes of the polymer brushes at different temperatures, it is possible to modulate the protein binding on the nanocomposite by adjusting the environmental temperature. In general, the iminodiacetate-rich core-brush nano adsorbents are attractive for purifying histidine-tagged recombinant proteins practically. The synthetic approach reported here may be expanded to develop other advanced functional materials for applications in various biomedical fields ranging from biosensors to drug delivery.
Collapse
Affiliation(s)
- Lingdong Jiang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
38
|
Xing R, Wen Y, Dong Y, Wang Y, Zhang Q, Liu Z. Dual Molecularly Imprinted Polymer-Based Plasmonic Immunosandwich Assay for the Specific and Sensitive Detection of Protein Biomarkers. Anal Chem 2019; 91:9993-10000. [DOI: 10.1021/acs.analchem.9b01826] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanrong Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yueru Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yijia Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
39
|
Xu Z, Deng P, Li J, Tang S, Cui Y. Modification of mesoporous silica with molecular imprinting technology: A facile strategy for achieving rapid and specific adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:684-693. [DOI: 10.1016/j.msec.2018.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/23/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
|
40
|
Ma XT, He XW, Li WY, Zhang YK. Oriented surface epitope imprinted polymer-based quartz crystal microbalance sensor for cytochrome c. Talanta 2019; 191:222-228. [DOI: 10.1016/j.talanta.2018.08.079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 01/23/2023]
|
41
|
Turan E. His‐Tag‐Epitope Imprinted Thermoresponsive Magnetic Nanoparticles for Recognition and Separation Thyroid Peroxidase Antigens from Whole Blood Samples. ChemistrySelect 2018. [DOI: 10.1002/slct.201801557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Eylem Turan
- Department of ChemistryGazi UniversityFaculty of ScienceDepartment of Chemistry 06500, Besevler, Ankara Turkey
| |
Collapse
|
42
|
Qin YP, Wang HY, He XW, Li WY, Zhang YK. Metal chelation dual-template epitope imprinting polymer via distillation-precipitation polymerization for recognition of porcine serum albumin. Talanta 2018; 185:620-627. [DOI: 10.1016/j.talanta.2018.03.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/20/2018] [Accepted: 03/25/2018] [Indexed: 11/16/2022]
|
43
|
Qin YP, Jia C, He XW, Li WY, Zhang YK. Thermosensitive Metal Chelation Dual-Template Epitope Imprinting Polymer Using Distillation-Precipitation Polymerization for Simultaneous Recognition of Human Serum Albumin and Transferrin. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9060-9068. [PMID: 29461037 DOI: 10.1021/acsami.8b00327] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new type of thermosensitive dual-template epitope molecular imprinting polymer was prepared and coated on magnetic carbon nanotubes (MCNTs@D-EMIP) for simultaneous recognition of human serum albumin (HSA) and transferrin (Trf) via the strategies of dual-template epitope imprinting, metal chelation imprinting, and distillation-precipitation polymerization (DPP). C-terminal peptides of HSA and C-terminal peptides of Trf were selected as templates, zinc acrylate and N-isopropylacrylamide were used as functional monomers, and MCNTs@D-EMIP was prepared by the method of DPP. The two types of template epitopes were immobilized by metal chelation and six-membered ring formed with zinc acylate. MCNTs@D-EMIP was prepared in only 30 min, which was much shorter than other polymerization methods. The resultant MCNTs@D-EMIP showed excellent specific recognition ability toward HSA and Trf. The adsorption amounts of MCNTs@D-EMIP for HSA and Trf were 103.67 and 68.48 mg g-1 and the imprinting factors were 2.57 and 2.17, respectively. In addition, MCNTs@D-EMIP displayed a thermosensitive property to realize temperature-controlled recognition and release of target proteins. Furthermore, the results of high-performance liquid chromatography analysis proved that MCNTs@D-EMIP could be applied to specifically recognize two types of targets simultaneously in the biosample. The proposed strategy provided a preparation method for the thermosensitive dual-template epitope imprinting polymer via dual-template imprinting, metal chelation imprinting, and DPP.
Collapse
Affiliation(s)
- Ya-Ping Qin
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Chao Jia
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
44
|
Li J, Ma X, Li M, Zhang Y. Does polysaccharide is an idea template selection for glycosyl imprinting? Biosens Bioelectron 2018; 99:438-442. [DOI: 10.1016/j.bios.2017.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/19/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022]
|
45
|
Sheng L, Jin Y, He Y, Huang Y, Yan L, Zhao R. Well-defined magnetic surface imprinted nanoparticles for selective enrichment of 2,4-dichlorophenoxyacetic acid in real samples. Talanta 2017; 174:725-732. [DOI: 10.1016/j.talanta.2017.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/22/2017] [Accepted: 07/01/2017] [Indexed: 11/26/2022]
|
46
|
Qian L, Sun J, Hou C, Yang J, Li Y, Lei D, Yang M, Zhang S. Immobilization of BSA on ionic liquid functionalized magnetic Fe 3 O 4 nanoparticles for use in surface imprinting strategy. Talanta 2017; 168:174-182. [DOI: 10.1016/j.talanta.2017.03.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/05/2017] [Accepted: 03/16/2017] [Indexed: 12/19/2022]
|
47
|
Su L, Jin Y, Huang Y, Zhao R. Surface-imprinted magnetic nanoparticles for the selective enrichment and fast separation of fluoroquinolones in human serum. J Sep Sci 2017; 40:2269-2277. [DOI: 10.1002/jssc.201700080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Liming Su
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| |
Collapse
|
48
|
Wang J, Lan J, Li H, Liu X, Zhang H. Fabrication of diverse pH-sensitive functional mesoporous silica for selective removal or depletion of highly abundant proteins from biological samples. Talanta 2017; 162:380-389. [DOI: 10.1016/j.talanta.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/16/2016] [Accepted: 10/02/2016] [Indexed: 12/23/2022]
|
49
|
Ma RT, Sun XY, Ha W, Chen J, Shi YP. Improved surface imprinting based on a simplified mass-transfer process for the selective extraction of IgG. J Mater Chem B 2017; 5:7512-7518. [DOI: 10.1039/c7tb01519d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption and elution efficiencies of conventional MMIPs were almost doubled by preparing MMINs.
Collapse
Affiliation(s)
- Run-tian Ma
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Xiao-yu Sun
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Juan Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Yan-ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| |
Collapse
|
50
|
Yang K, Li S, Liu J, Liu L, Zhang L, Zhang Y. Multiepitope Templates Imprinted Particles for the Simultaneous Capture of Various Target Proteins. Anal Chem 2016; 88:5621-5. [DOI: 10.1021/acs.analchem.6b01247] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kaiguang Yang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Senwu Li
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianxi Liu
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lukuan Liu
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihua Zhang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yukui Zhang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|