1
|
Zhou Y, Jönsson A, Sticker D, Zhou G, Yuan Z, Kutter JP, Emmer Å. Thiol-ene-based microfluidic chips for glycopeptide enrichment and online digestion of inflammation-related proteins osteopontin and immunoglobulin G. Anal Bioanal Chem 2023; 415:1173-1185. [PMID: 36607393 PMCID: PMC9817458 DOI: 10.1007/s00216-022-04498-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Proteins, and more specifically glycoproteins, have been widely used as biomarkers, e.g., to monitor disease states. Bottom-up approaches based on mass spectrometry (MS) are techniques commonly utilized in glycoproteomics, involving protein digestion and glycopeptide enrichment. Here, a dual function polymeric thiol-ene-based microfluidic chip (TE microchip) was applied for the analysis of the proteins osteopontin (OPN) and immunoglobulin G (IgG), which have important roles in autoimmune diseases, in inflammatory diseases, and in coronavirus disease 2019 (COVID-19). TE microchips with larger internal surface features immobilized with trypsin were successfully utilized for OPN digestion, providing rapid and efficient digestion with a residence time of a few seconds. Furthermore, TE microchips surface-modified with ascorbic acid linker (TEA microchip) have been successfully utilized for IgG glycopeptide enrichment. To illustrate the use of the chips for more complex samples, they were applied to enrich IgG glycopeptides from human serum samples with antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The dual functional TE microchips could provide high throughput for online protein digestion and glycopeptide enrichment, showing great promise for future extended applications in proteomics and the study of related diseases.
Collapse
Affiliation(s)
- Yuye Zhou
- Department of Chemistry, Analytical Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Alexander Jönsson
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Drago Sticker
- Novo Nordisk A/S, Biophysics and Formulation, 2760, Måløv, Denmark
| | - Guojun Zhou
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Zishuo Yuan
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jörg P Kutter
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Åsa Emmer
- Department of Chemistry, Analytical Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
| |
Collapse
|
2
|
Yamamoto K, Morikawa K, Imanaka H, Imamura K, Kitamori T. Kinetics of Enzymatic Reactions at the Solid/Liquid Interface in Nanofluidic Channels. Anal Chem 2022; 94:15686-15694. [DOI: 10.1021/acs.analchem.2c02878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koki Yamamoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| | - Kyojiro Morikawa
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan, ROC
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| | - Hiroyuki Imanaka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama700-8530, Japan
| | - Koreyoshi Imamura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama700-8530, Japan
| | - Takehiko Kitamori
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan, ROC
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| |
Collapse
|
3
|
Ai Y, Xu J, Gunawardena HP, Zare RN, Chen H. Investigation of Tryptic Protein Digestion in Microdroplets and in Bulk Solution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1238-1249. [PMID: 35647885 PMCID: PMC10512443 DOI: 10.1021/jasms.2c00072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent studies have shown that ultrafast enzymatic digestion of proteins can be achieved in microdroplet within 250 μs. Further investigation of peptides resulting from microdroplet digestion (MD) would be necessary to evaluate it as an alternative to the conventional bulk digestion for bottom-up and biotherapeutic protein characterization. Herein we examined and compared protein tryptic digestion in both MD and bulk solution. In the case of MD of β-lactoglobulin B, the preservation of long peptides was observed due to the short digestion time. In addition, MD is applicable to digest both high- and low-abundance proteins in mixture. In the case of digesting NIST 8671 mAb antibody containing a low level of commonly encountered host cell protein (HCP) PLBL2 (mAb:PLBL2 = 100:1 by weight), MD produced lower levels of digestion-induced chemical modifications of asparagine/glutamine deamidation, compared with overnight digestion. No significant difference between MD and bulk digestion was observed in terms of trypsin digestion specificity based on examination of semi- and unspecific-cleaved peptides. Our study suggests that MD, a fast digestion approach, could be adopted for bottom-up proteomics research and for peptide mapping of mAbs to characterize site-specific deamidation and glycosylation, for the purpose of development of biopharmaceuticals.
Collapse
Affiliation(s)
- Yongling Ai
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Jeffrey Xu
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Harsha P. Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, USA
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|
4
|
Ladner Y, Liu D, Montels J, Morel J, Perrin C. Enzymatic Reaction Automation in Nanodroplet Microfluidic for the Quality Control of Monoclonal Antibodies. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Hahor W, Thongprajukaew K, Nuntapong N, Saekhow S, Rungruangsak-Torrissen K, Dumrongrittamatt T, Phonchai A. Partial pretreatment of ingredient mixture effectively improved feed chemical composition, physicochemical properties and in vitro digestibility. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Liu T, Yin Y, Yang Y, Russell TP, Shi S. Layer-by-Layer Engineered All-Liquid Microfluidic Chips for Enzyme Immobilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105386. [PMID: 34796557 DOI: 10.1002/adma.202105386] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/17/2021] [Indexed: 05/19/2023]
Abstract
Enzyme immobilization in the confines of microfluidic chips, that promote enzyme activity and stability, has become a powerful strategy to enhance biocatalysis and biomass conversion. Here, based on a newly developed all-liquid microfluidic chip, fabricated by the interfacial assembly of nanoparticle surfactants (NPSs) in a biphasic system, a layer-by-layer assembly strategy to generate polysaccharide multilayers on the surface of a microchannel, greatly enhancing the mechanical properties of the microchannel and offering a biocompatible microenvironment for enzyme immobilization, is presented. Using horseradish peroxidase and glucose oxidase as model enzymes, all-liquid microfluidic enzymatic and cascade reactors have been constructed and the crucial role of polysaccharide multilayers on enhancing the enzyme loading and catalytic efficiency is demonstrated.
Collapse
Affiliation(s)
- Tan Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yixuan Yin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Zhao P, Gunawardena HP, Zhong X, Zare RN, Chen H. Microdroplet Ultrafast Reactions Speed Antibody Characterization. Anal Chem 2021; 93:3997-4005. [PMID: 33590747 DOI: 10.1021/acs.analchem.0c04974] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently, microdroplet reactions have aroused much interest because the microdroplet provides a unique medium where organic reactions could be accelerated by a factor of 103 or more. However, microdroplet reactions of proteins have been rarely studied. We report the occurrence of multiple-step reactions of a large protein, specifically, the digestion, reduction, and deglycosylation of an intact antibody, which can take place in microseconds with high reaction yields in aqueous microdroplets at room temperature. As a result, fast structural characterization of a monoclonal antibody, essential for assessing its quality as a therapeutic drug, can be enabled. We found that the IgG1 antibody can be digested completely by the IdeS protease in aqueous microdroplets in 250 microseconds, a 7.5 million-fold improvement in speed in comparison to traditional digestion in bulk solution (>30 min). Strikingly, inclusion of the reductant tris(2-carboxyethyl)phosphine in the spray solution caused simultaneous antibody digestion and disulfide bond reduction. Digested and reduced antibody fragments were either collected or analyzed online by mass spectrometry. Further addition of PNGase F glycosylase into the spray solution led to antibody deglycosylation, thereby producing reduced and deglycosylated fragments of analytical importance. In addition, glycated fragments of IgG1 derived from glucose modification were identified rapidly with this ultrafast digestion/reduction technique. We suggest that microdroplets can serve as powerful microreactors for both exploring large-molecule reactions and speeding their structural analyses.
Collapse
Affiliation(s)
- Pengyi Zhao
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Xiaoqin Zhong
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
8
|
Ultrafast enzymatic digestion of proteins by microdroplet mass spectrometry. Nat Commun 2020; 11:1049. [PMID: 32103000 PMCID: PMC7044307 DOI: 10.1038/s41467-020-14877-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/21/2020] [Indexed: 11/15/2022] Open
Abstract
Enzymatic digestion for protein sequencing usually requires much time, and does not always result in high sequence coverage. Here we report the use of aqueous microdroplets to accelerate enzymatic reactions and, in particular, to improve protein sequencing. When a room temperature aqueous solution containing 10 µM myoglobin and 5 µg mL−1 trypsin is electrosonically sprayed (−3 kV) from a homemade setup to produce tiny (∼9 µm) microdroplets, we obtain 100% sequence coverage in less than 1 ms of digestion time, in sharp contrast to 60% coverage achieved by incubating the same solution at 37 °C for 14 h followed by analysis with a commercial electrospray ionization source that produces larger (∼60 µm) droplets. We also confirm the sequence of the therapeutic antibody trastuzumab (∼148 kDa), with a sequence coverage of 100% for light chains and 85% for heavy chains, demonstrating the practical utility of microdroplets in drug development. Mass spectrometry (MS)-based protein sequencing usually relies on in-solution proteolytic digestion, which is time-consuming and inefficient for certain proteins. Here, the authors achieve full protein sequence coverage in less than 1 ms by subjecting protein-protease mixtures to electrosonic spray ionization-MS.
Collapse
|
9
|
Rao X, Abou Hassan A, Guyon C, Martinez Ruiz EO, Tatoulian M, Ognier S. Synthesis of benzaldehyde with high selectivity using immobilized AuNPs and AuNPs@zeolite in a catalytic microfluidic system. LAB ON A CHIP 2019; 19:2866-2873. [PMID: 31309213 DOI: 10.1039/c9lc00386j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present work, gold based catalysts were synthesized and immobilized on the surface of cyclic olefin copolymer (COC) microreactors. The microreactors were subsequently applied in a homemade microfluidic system for synthesizing benzaldehyde by oxidation of benzyl alcohol in water medium. The Au nanoparticles (NPs) immobilized on the inner surface of the microchannel showed a very high selectivity (94%) for benzaldehyde, while zeolite NPs exhibited only an adsorption feature to this reaction. Moreover, the results showed that the AuNP catalytic activity was maintained for at least 9 hours. However, the obtained conversion with AuNPs was only 20%, indicating a relatively low productivity. In comparison, AuNPs assembled on the surface of zeolite NPs (AuNPs@zeolite) and immobilized in the microchannel showed the best catalytic performance, as the highest benzaldehyde selectivity (>99%) with a relatively high benzyl alcohol conversion of 42.4% was achieved under the same conditions. To the best of our knowledge, this is the first example demonstrating the use of AuNP or AuNP@zeolite catalysts in a microsystem performing such high selectivity for benzaldehyde in water medium.
Collapse
Affiliation(s)
- Xi Rao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P.R. China. and Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France and School of Materials Science and Engineering and Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Ali Abou Hassan
- Sorbonne Université, Centre National de la Recherche Scientifique CNRS, Physico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX, F-75005 Paris, France
| | - Cédric Guyon
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - Erick Osvaldo Martinez Ruiz
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P.R. China. and Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France and School of Materials Science and Engineering and Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Michaël Tatoulian
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - Stephanie Ognier
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| |
Collapse
|
10
|
Highly sensitive ratiometric fluorescent paper sensor for the urine assay of cancer. Talanta 2018; 194:199-204. [PMID: 30609522 DOI: 10.1016/j.talanta.2018.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/24/2022]
Abstract
Telomerase, as a valuable biomarker, is an important target in cancer diagnosis. Here, we report a ratiometric fluorescent probe for telomerase activity assay in urine and bladder cancer diagnoses based on the color change of Rox-DNA functionalized quantum dots (QDs). The green fluorescence of the QDs was sensitive to H2O2, but the red fluorescence of Rox showed no change. An HRP-mimicking hemin/G-quadruplex, which was formed with the help of telomerase activity, catalyzed H2O2 into H2O and O2. This quadruplex effectively avoided H2O2 interference with green fluorescence. In the presence of H2O2, the detected color changed from red to yellow-green by increasing the telomerase concentration. The detection limit (LOD) was 10 cells, and response time was within 60 min. More importantly, a paper sensor was developed based on this probe and used for the assay of telomerase activity in urine samples. The results were highly sensitive and reproducible, and visual semi-quantitative detection was realized using the naked eye.
Collapse
|
11
|
Lynch KB, Ren J, Beckner MA, He C, Liu S. Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Anal Chim Acta 2018; 1046:48-68. [PMID: 30482303 DOI: 10.1016/j.aca.2018.09.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
In this article we survey 256 references (with an emphasis on the papers published in the past decade) on monolithic columns for intact protein separation. Protein enrichment and purification are included in the broadly defined separation. After a brief introduction, we describe the types of monolithic columns and modes of chromatographic separations employed for protein separations. While the majority of the work is still in the research and development phase, papers have been published toward utilizing monolithic columns for practical applications. We survey these papers as well in this review. Characteristics of selected methods along with their pros and cons will also be discussed.
Collapse
Affiliation(s)
- Kyle B Lynch
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Jiangtao Ren
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Matthew A Beckner
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Chiyang He
- School of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Textile Road, Wuhan, 430073, PR China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States.
| |
Collapse
|
12
|
Díaz U, Corma A. Organic-Inorganic Hybrid Materials: Multi-Functional Solids for Multi-Step Reaction Processes. Chemistry 2018; 24:3944-3958. [PMID: 29194811 DOI: 10.1002/chem.201704185] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 11/07/2022]
Abstract
The design of new hybrid materials with tailored properties at the nano-, meso-, and macro-scale, with the use of structural functional nanobuilding units, is carried out to obtain specific multi-functional materials. Organization into controlled 1D, 2D, and 3D architectures with selected functionalities is key for developing advanced catalysts, but this is hardly accomplished using conventional synthesis procedures. The use of pre-formed nanostructures, derived either from known materials or made with specific innovative synthetic methodologies, has enormous potential in the generation of multi-site catalytic materials for one-pot processes. The present concept article introduces a new archetype wherein self-assembled nanostructured builder units are the base for the design of multifunctional catalysts, which combine catalytic efficiency with fast reactant and product diffusion. The article addresses a new generation of versatile hybrid organic-inorganic multi-site catalytic materials for their use in the production of (chiral) high-added-value products within the scope of chemicals and fine chemicals production. The use of those multi-reactive solids for more nanotechnological applications, such as sensors, due to the inclusion of electron donor-acceptor structural arrays is also considered, together with the adsorption-desorption capacities due to the combination of hydrophobic and hydrophilic sub-domains. The innovative structured hybrid materials for multipurpose processes here considered, can allow the development of multi-stage one-pot reactions with industrial applications, using the materials as one nanoreactor systems, favoring more sustainable production pathways with economic, environmental and energetic advantages.
Collapse
Affiliation(s)
- Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior, de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022, Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior, de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
13
|
Wouters B, Dapic I, Valkenburg TS, Wouters S, Niezen L, Eeltink S, Corthals GL, Schoenmakers PJ. A cyclic-olefin-copolymer microfluidic immobilized-enzyme reactor for rapid digestion of proteins from dried blood spots. J Chromatogr A 2017; 1491:36-42. [DOI: 10.1016/j.chroma.2017.01.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 11/27/2022]
|
14
|
Lazar IM, Deng J, Smith N. Fast Enzymatic Processing of Proteins for MS Detection with a Flow-through Microreactor. J Vis Exp 2016:e53564. [PMID: 27078683 DOI: 10.3791/53564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The vast majority of mass spectrometry (MS)-based protein analysis methods involve an enzymatic digestion step prior to detection, typically with trypsin. This step is necessary for the generation of small molecular weight peptides, generally with MW < 3,000-4,000 Da, that fall within the effective scan range of mass spectrometry instrumentation. Conventional protocols involve O/N enzymatic digestion at 37 ºC. Recent advances have led to the development of a variety of strategies, typically involving the use of a microreactor with immobilized enzymes or of a range of complementary physical processes that reduce the time necessary for proteolytic digestion to a few minutes (e.g., microwave or high-pressure). In this work, we describe a simple and cost-effective approach that can be implemented in any laboratory for achieving fast enzymatic digestion of a protein. The protein (or protein mixture) is adsorbed on C18-bonded reversed-phase high performance liquid chromatography (HPLC) silica particles preloaded in a capillary column, and trypsin in aqueous buffer is infused over the particles for a short period of time. To enable on-line MS detection, the tryptic peptides are eluted with a solvent system with increased organic content directly in the MS ion source. This approach avoids the use of high-priced immobilized enzyme particles and does not necessitate any aid for completing the process. Protein digestion and complete sample analysis can be accomplished in less than ~3 min and ~30 min, respectively.
Collapse
|
15
|
Deng J, Lazar IM. Proteolytic Digestion and TiO2 Phosphopeptide Enrichment Microreactor for Fast MS Identification of Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:686-698. [PMID: 26883530 DOI: 10.1007/s13361-015-1332-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/20/2015] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
The characterization of phosphorylation state(s) of a protein is best accomplished by using isolated or enriched phosphoprotein samples or their corresponding phosphopeptides. The process is typically time-consuming as, often, a combination of analytical approaches must be used. To facilitate throughput in the study of phosphoproteins, a microreactor that enables a novel strategy for performing fast proteolytic digestion and selective phosphopeptide enrichment was developed. The microreactor was fabricated using 100 μm i.d. fused-silica capillaries packed with 1-2 mm beds of C18 and/or TiO2 particles. Proteolytic digestion-only, phosphopeptide enrichment-only, and sequential proteolytic digestion/phosphopeptide enrichment microreactors were developed and tested with standard protein mixtures. The protein samples were adsorbed on the C18 particles, quickly digested with a proteolytic enzyme infused over the adsorbed proteins, and further eluted onto the TiO2 microreactor for enrichment in phosphopeptides. A number of parameters were optimized to speed up the digestion and enrichments processes, including microreactor dimensions, sample concentrations, digestion time, flow rates, buffer compositions, and pH. The effective time for the steps of proteolytic digestion and enrichment was less than 5 min. For simple samples, such as standard protein mixtures, this approach provided equivalent or better results than conventional bench-top methods, in terms of both enzymatic digestion and selectivity. Analysis times and reagent costs were reduced ~10- to 15-fold. Preliminary analysis of cell extracts and recombinant proteins indicated the feasibility of integration of these microreactors in more advanced workflows amenable for handling real-world biological samples. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jingren Deng
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
16
|
Laurenti E, dos Santos Vianna Jr. A. Enzymatic microreactors in biocatalysis: history, features, and future perspectives. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/boca-2015-0008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractMicrofluidic reaction devices are a very promising technology for chemical and biochemical processes. In microreactors, the micro dimensions, coupled with a high surface area/volume ratio, permit rapid heat exchange and mass transfer, resulting in higher reaction yields and reaction rates than in conventional reactors. Moreover, the lower energy consumption and easier separation of products permit these systems to have a lower environmental impact compared to macroscale, conventional reactors. Due to these benefits, the use of microreactors is increasing in the biocatalysis field, both by using enzymes in solution and their immobilized counterparts. Following an introduction to the most common applications of microreactors in chemical processes, a broad overview will be given of the latest applications in biocatalytic processes performed in microreactors with free or immobilized enzymes. In particular, attention is given to the nature of the materials used as a support for the enzymes and the strategies employed for their immobilization. Mathematical and engineering aspects concerning fluid dynamics in microreactors were also taken into account as fundamental factors for the optimization of these systems.
Collapse
|
17
|
Rahimi M, Ng EP, Bakhtiari K, Vinciguerra M, Ahmad HA, Awala H, Mintova S, Daghighi M, Bakhshandeh Rostami F, de Vries M, Motazacker MM, Peppelenbosch MP, Mahmoudi M, Rezaee F. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins. Sci Rep 2015; 5:17259. [PMID: 26616161 PMCID: PMC4663482 DOI: 10.1038/srep17259] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/23/2015] [Indexed: 12/30/2022] Open
Abstract
The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.
Collapse
Affiliation(s)
- M. Rahimi
- Faculty of Science, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - E.-P. Ng
- School of Chemical Sciences, University Sains Malaysia, 11800 USM, Malaysia
| | - K. Bakhtiari
- Department of Plasma Proteins, Sanquin Research, Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - M. Vinciguerra
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, United Kingdom
| | - H. Ali Ahmad
- Laboratory of Catalysis and Spectroscopy, ENSICAEN, University of Caen, CNRS, 6 Boulevard du Maréchal Juin, 14050 Caen, France
| | - H. Awala
- Laboratory of Catalysis and Spectroscopy, ENSICAEN, University of Caen, CNRS, 6 Boulevard du Maréchal Juin, 14050 Caen, France
| | - S. Mintova
- Laboratory of Catalysis and Spectroscopy, ENSICAEN, University of Caen, CNRS, 6 Boulevard du Maréchal Juin, 14050 Caen, France
| | - M. Daghighi
- University of Groningen, University Medical Center Groningen, Department Bioengineering, Groningen, the Netherlands
| | | | - M. de Vries
- University of Groningen, University Medical Center Groningen, Department Cell Biology, Department medical proteomics, Groningen, the Netherlands
| | - M. M. Motazacker
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands
| | - M. P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - M. Mahmoudi
- Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, California, USA
- Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, USA
| | - F. Rezaee
- University of Groningen, University Medical Center Groningen, Department Cell Biology, Department medical proteomics, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
18
|
Dong J, Bruening ML. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:81-100. [PMID: 26001953 DOI: 10.1146/annurev-anchem-071114-040255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.
Collapse
Affiliation(s)
- Jinlan Dong
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824;
| | | |
Collapse
|
19
|
Wang GX, Yang Z, Li ZH, Zhao BT. Electrochemical Behavior of Cytochrome C as a Self-Assembled Monolayer on a Porous Gold Electrode. ANAL LETT 2015. [DOI: 10.1080/00032719.2014.968926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Physicochemical modifications of dietary palm kernel meal affect growth and feed utilization of Nile tilapia (Oreochromis niloticus). Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Li J, Zhou L, Wang H, Yan H, Li N, Zhai R, Jiao F, Hao F, Jin Z, Tian F, Peng B, Zhang Y, Qian X. A new sample preparation method for the absolute quantitation of a target proteome using 18O labeling combined with multiple reaction monitoring mass spectrometry. Analyst 2015; 140:1281-90. [DOI: 10.1039/c4an02092h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new sample preparation method for target proteome absolute quantitation using 18O labeling-MRM MS.
Collapse
|
22
|
Zhou S, Li Z, Lv X, Hu B, Jia Q. Preconcentration of synthetic phenolic antioxidants by using magnetic zeolites derived with carboxylatocalix[4]arenes combined with high performance liquid chromatography. Analyst 2015; 140:5944-52. [DOI: 10.1039/c5an00779h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hybrid adsorbent assembling carboxylatocalix[4]arene onto the surface of magnetic zeolite was prepared and used for the preconcentration and determination of synthetic phenolic antioxidants coupled with HPLC.
Collapse
Affiliation(s)
- Shaoyan Zhou
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Zheng Li
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Xueju Lv
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Bin Hu
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
| | - Qiong Jia
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
23
|
Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. Immobilization of Antibodies and Enzymes on 3-Aminopropyltriethoxysilane-Functionalized Bioanalytical Platforms for Biosensors and Diagnostics. Chem Rev 2014; 114:11083-130. [DOI: 10.1021/cr5000943] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sandeep Kumar Vashist
- HSG-IMIT - Institut für Mikro- und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Edmond Lam
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | | | - Keith B. Male
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | - John H. T. Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| |
Collapse
|
24
|
An ultra-fast and highly efficient multiple proteases digestion strategy using graphene-oxide-based immobilized protease reagents. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5082-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Wang C, Ouyang J, Wang YY, Ye DK, Xia XH. Sensitive assay of protease activity on a micro/nanofluidics preconcentrator fused with the fluorescence resonance energy transfer detection technique. Anal Chem 2014; 86:3216-21. [PMID: 24568176 DOI: 10.1021/ac500196s] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A fast and sensitive assay of protease activity on a micro/nanofluidics preconcentrator combining with fluorescence resonance energy transfer (FRET) detection technique has been developed in a homogeneous real-time format. First, the functionalized nanoprobes are formed by loading dye labeled protein onto gold nanoparticles (AuNPs), in which, the photoluminescence of donor dye was strongly quenched by AuNPs due to FRET mechanisms. For protease activity assay, the nanoprobes are enriched by a micro/nanofluidics preconcentrator. When the target protease is transported to the enriched nanoprobes, cleavage of protein occurs as a consequence of molecular recognition of enzyme to substrate. The release of cleavage fragments from AuNPs nanoprobes leads to the enhancement of fluorescence and enables the protease activity assay on the micro/nanofluidics chip. As a demonstration, digestion of fluorescein isothiocyanate labeled dog serum albumin (FITC-DSA) by trypsin was used as a model reaction. Because of the highly efficient preconcentration and space confinement effect, significantly increased protein cleavage rate and protease assay sensitivity can be achieved with enhanced enzyme activity. The present micro/nanofluidics platform fused with the FRET detection technique is promising for fast and sensitive bioanalysis such as immunoassay, DNA hybridization, drug discovery, and clinical diagnosis.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, 210093, China
| | | | | | | | | |
Collapse
|
26
|
Safdar M, Sproß J, Jänis J. Microscale immobilized enzyme reactors in proteomics: Latest developments. J Chromatogr A 2014; 1324:1-10. [DOI: 10.1016/j.chroma.2013.11.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/18/2013] [Accepted: 11/24/2013] [Indexed: 01/10/2023]
|
27
|
Chen FY, Wang Z, Li P, Lian HZ, Chen HY. Aptamer-based thrombin assay on microfluidic platform. Electrophoresis 2013; 34:3260-6. [PMID: 24127412 DOI: 10.1002/elps.201300338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/13/2013] [Accepted: 09/22/2013] [Indexed: 11/08/2022]
Abstract
A facile and sensitive aptamer-based protocol has been developed for protein assay on microfluidic platform with fluorescence detection using an off-chip microarray scanner. Aptamer-functionalized magnetic beads were used to capture thrombin that binds to a second aptamer fluorescently labeled by Cy3. Experimental conditions, such as incubation time and temperature, washing time, interfering proteins, and aptamer, etc., were optimized for the microchip method. This work demonstrated there was a good relationship between fluorescence intensity and thrombin concentration in the range of 65-1000 ng/mL with the RSD less than 8%. Notably, an analysis only needs 1 μL volume of sample injection and this system can capture extremely tiny amount thrombin (0.4 fmol). This method has been successfully applied to assay of thrombin in human serum with the recovery of 79.74-95.94%.
Collapse
Affiliation(s)
- Fang-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, P. R. China
| | | | | | | | | |
Collapse
|
28
|
Gao D, Liu H, Jiang Y, Lin JM. Recent advances in microfluidics combined with mass spectrometry: technologies and applications. LAB ON A CHIP 2013; 13:3309-22. [PMID: 23824006 DOI: 10.1039/c3lc50449b] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Instrument miniaturization is one of the critical issues to improve sensitivity, speed, throughput, and to reduce the cost of analysis. Microfluidics possesses the ability to handle small sample amounts, with minimal concerns related to sample loss and cross-contamination, problems typical for standard fluidic manipulations. Moreover, the native properties of microfluidics provide the potential for high-density, parallel sample processing, and high-throughput analysis. Recently, the coupling of microfluidic devices to mass spectrometry, especially electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), has attracted an increasing interest and produced tremendous achievements. The interfaces between microfluidics and mass spectrometry are one of the primary focused problems. In this review, we summarize the latest achievements since 2008 in the field of the technologies and applications in the combining of microfluidics with ESI-MS and MALDI-MS. The integration of several analytical functions on a microfluidic device such as sample pretreatment and separations before sample introduction into the mass spectrometer is also discussed.
Collapse
Affiliation(s)
- Dan Gao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
29
|
Abstract
This review highlights recent developments in the synthesis of nanosized zeolites. The strategies available for their preparation (organic-template assisted, organic-template free, and alternative procedures) are discussed. Major breakthroughs achieved by the so-called zeolite crystal engineering and encompass items such as mastering and using the physicochemical properties of the precursor synthesis gel/suspension, optimizing the use of silicon and aluminium precursor sources, the rational use of organic templates and structure-directing inorganic cations, and careful adjustment of synthesis conditions (temperature, pressure, time, heating processes from conventional to microwave and sonication) are addressed. An on-going broad and deep fundamental understanding of the crystallization process, explaining the influence of all variables of this complex set of reactions, underpins an even more rational design of nanosized zeolites with exceptional properties. Finally, the advantages and limitations of these methods are addressed with particular attention to their industrial prospects and utilization in existing and advanced applications.
Collapse
Affiliation(s)
- Svetlana Mintova
- Laboratoire Catalyse & Spectrochimie, ENSICAEN, Université de Caen, CNRS 6, boulevard Maréchal Juin, 14050 Caen, France.
| | | | | |
Collapse
|
30
|
Kim D, Herr AE. Protein immobilization techniques for microfluidic assays. BIOMICROFLUIDICS 2013; 7:41501. [PMID: 24003344 PMCID: PMC3747845 DOI: 10.1063/1.4816934] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
Microfluidic systems have shown unequivocal performance improvements over conventional bench-top assays across a range of performance metrics. For example, specific advances have been made in reagent consumption, throughput, integration of multiple assay steps, assay automation, and multiplexing capability. For heterogeneous systems, controlled immobilization of reactants is essential for reliable, sensitive detection of analytes. In most cases, protein immobilization densities are maximized, while native activity and conformation are maintained. Immobilization methods and chemistries vary significantly depending on immobilization surface, protein properties, and specific assay goals. In this review, we present trade-offs considerations for common immobilization surface materials. We overview immobilization methods and chemistries, and discuss studies exemplar of key approaches-here with a specific emphasis on immunoassays and enzymatic reactors. Recent "smart immobilization" methods including the use of light, electrochemical, thermal, and chemical stimuli to attach and detach proteins on demand with precise spatial control are highlighted. Spatially encoded protein immobilization using DNA hybridization for multiplexed assays and reversible protein immobilization surfaces for repeatable assay are introduced as immobilization methods. We also describe multifunctional surface coatings that can perform tasks that were, until recently, relegated to multiple functional coatings. We consider the microfluidics literature from 1997 to present and close with a perspective on future approaches to protein immobilization.
Collapse
Affiliation(s)
- Dohyun Kim
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 449-728, South Korea
| | | |
Collapse
|
31
|
In Vitro Multienzymatic Reaction Systems for Biosynthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 137:153-84. [DOI: 10.1007/10_2013_232] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
32
|
Ouyang Y, Wang S, Li J, Riehl PS, Begley M, Landers JP. Rapid patterning of 'tunable' hydrophobic valves on disposable microchips by laser printer lithography. LAB ON A CHIP 2013; 13:1762-1771. [PMID: 23478812 DOI: 10.1039/c3lc41275j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We recently defined a method for fabricating multilayer microdevices using poly(ethylene terephthalate) transparency film and printer toner, and showed these could be successfully applied to DNA extraction and amplification (Duarte et al., Anal. Chem. 2011, 83, 5182-5189). Here, we advance the functionality of these microdevices with flow control enabled by hydrophobic valves patterned using laser printer lithography. Laser printer patterning of toner within the microchannel induces a dramatic change in surface hydrophobicity (change in contact angle of DI water from 51° to 111°) with good reproducibility. Moreover, the hydrophobicity of the surface can be controlled by altering the density of the patterned toner via varying the gray-scale setting on the laser printer, which consequently tunes the valve's burst pressure. Toner density provided a larger burst pressure bandwidth (158 ± 18 Pa to 573 ± 16 Pa) than could be achieved by varying channel geometry (492 ± 18 Pa to 573 ± 16 Pa). Finally, we used a series of tuned toner valves (with varied gray-scale) for passive valve-based fluidic transfer in a predictable manner through the architecture of a rotating PeT microdevice. While an elementary demonstration, this presents the possibility for simplistic and cost-effective microdevices with valved fluid flow control to be fabricated using nothing more than a laser printer, a laser cutter and a laminator.
Collapse
Affiliation(s)
- Yiwen Ouyang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | | | | | |
Collapse
|
33
|
Wang C, Ye DK, Wang YY, Lu T, Xia XH. Insights into the "free state" enzyme reaction kinetics in nanoconfinement. LAB ON A CHIP 2013; 13:1546-1553. [PMID: 23429726 DOI: 10.1039/c3lc41319e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The investigation of enzyme reaction kinetics in nanoconfined spaces mimicking the conditions in living systems is of great significance. Here, a nanofluidics chip integrated with an electrochemical detector has been designed for studying "free state" enzyme reaction kinetics in nanoconfinement. The nanofluidics chip is fabricated using the UV-ablation technique developed in our group. The enzyme and substrate solutions are simultaneously supplied from two single streams into a nanochannel through a Y-shaped junction. The laminar flow forms in the front of the nanochannel, then the two liquids fully mix at their downstream where a homogeneous enzyme reaction occurs. The "free state" enzyme reaction kinetics in nanoconfinement can thus be investigated in this laminar flow based nanofluidics device. For demonstration, glucose oxidase (GOx) is chosen as the model enzyme, which catalyzes the oxidation of beta-d-glucose. The reaction product hydrogen peroxide (H2O2) can be electrochemically detected by a microelectrode aligning to the end of nanochannel. The steady-state electrochemical current responding to various glucose concentrations is used to evaluate the activity of the "free state" GOx under nanoconfinement conditions. The effect of liquid flow rate, enzyme concentration, and nanoconfinement on reaction kinetics has been studied in detail. Results show that the "free state" GOx activity increases significantly compared to the immobilized enzyme and bath system, and the GOx reaction rate in the nanochannel is two-fold faster than that in bulk solution, demonstrating the importance of "free state" and spatial confinement for the enzyme reaction kinetics. The present approach provides an effective method for exploiting the "free state" enzyme activity in nanospatial confinement.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | | | |
Collapse
|
34
|
Wang Z, Li X, Wang W, Tang Y, Zhang Y. Combination of bio- and chemocatalysis for dynamic kinetic resolution: The assembly strategies for nanozeolite-modified flow microchannel reactors. J Catal 2013. [DOI: 10.1016/j.jcat.2012.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Liu S, Bao H, Zhang L, Chen G. Efficient proteolysis strategies based on microchip bioreactors. J Proteomics 2013; 82:1-13. [DOI: 10.1016/j.jprot.2013.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/09/2013] [Accepted: 02/13/2013] [Indexed: 01/19/2023]
|
36
|
Liu Y, Wang H, Chen J, Liu C, Li W, Kong J, Yang P, Liu B. A Sensitive Microchip-Based Immunosensor for Electrochemical Detection of Low-Level Biomarker S100B. ELECTROANAL 2013. [DOI: 10.1002/elan.201200525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Switzar L, Giera M, Niessen WMA. Protein Digestion: An Overview of the Available Techniques and Recent Developments. J Proteome Res 2013; 12:1067-77. [DOI: 10.1021/pr301201x] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Linda Switzar
- AIMMS Division of BioMolecular
Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Martin Giera
- Division of Molecular Cell Physiology,
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry
Unit, Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Wilfried M. A. Niessen
- AIMMS Division of BioMolecular
Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
- hyphen MassSpec, de Wetstraat 8, 2332 XT Leiden, The Netherlands
| |
Collapse
|
38
|
Chao TC, Hansmeier N. Microfluidic devices for high-throughput proteome analyses. Proteomics 2012; 13:467-79. [PMID: 23135952 DOI: 10.1002/pmic.201200411] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 09/06/2012] [Accepted: 10/05/2012] [Indexed: 12/14/2022]
Abstract
Over the last decades, microfabricated bioanalytical platforms have gained enormous interest due to their potential to revolutionize biological analytics. Their popularity is based on several key properties, such as high flexibility of design, low sample consumption, rapid analysis time, and minimization of manual handling steps, which are of interest for proteomics analyses. An ideal totally integrated chip-based microfluidic device could allow rapid automated workflows starting from cell cultivation and ending with MS-based proteome analysis. By reducing or eliminating sample handling and transfer steps and increasing the throughput of analyses these workflows would dramatically improve the reliability, reproducibility, and throughput of proteomic investigations. While these complete devices do not exist for routine use yet, many improvements have been made in the translation of proteomic sample handling and separation steps into microfluidic formats. In this review, we will focus on recent developments and strategies to enable and integrate proteomic workflows into microfluidic devices.
Collapse
Affiliation(s)
- Tzu-Chiao Chao
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
39
|
Ji J, Nie L, Qiao L, Li Y, Guo L, Liu B, Yang P, Girault HH. Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry. LAB ON A CHIP 2012; 12:2625-9. [PMID: 22695710 DOI: 10.1039/c2lc40206h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A versatile microreactor protocol based on microfluidic droplets has been developed for on-line protein digestion. Proteins separated by liquid chromatography are fractionated in water-in-oil droplets and digested in sequence. The microfluidic reactor acts also as an electrospray ionization emitter for mass spectrometry analysis of the peptides produced in the individual droplets. Each droplet is an enzymatic micro-reaction unit with efficient proteolysis due to rapid mixing, enhanced mass transfer and automated handling. This droplet approach eliminates sample loss, cross-contamination, non-specific absorption and memory effect. A protein mixture was successfully identified using the droplet-based micro-reactor as interface between reverse phase liquid chromatography and mass spectrometry.
Collapse
Affiliation(s)
- Ji Ji
- Department of Chemistry, Institute of Biomedical Sciences and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang C, Sheng ZH, Ouyang J, Xu JJ, Chen HY, Xia XH. Nanoconfinement Effects: Glucose Oxidase Reaction Kinetics in Nanofluidics. Chemphyschem 2012; 13:762-8. [DOI: 10.1002/cphc.201100842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Indexed: 11/06/2022]
|
41
|
Enzyme-immobilized microfluidic process reactors. Molecules 2011; 16:6041-59. [PMID: 21772235 PMCID: PMC6264325 DOI: 10.3390/molecules16076041] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/13/2011] [Accepted: 07/17/2011] [Indexed: 11/17/2022] Open
Abstract
Microreaction technology, which is an interdisciplinary science and engineering area, has been the focus of different fields of research in the past few years. Several microreactors have been developed. Enzymes are a type of catalyst, which are useful in the production of substance in an environmentally friendly way, and they also have high potential for analytical applications. However, not many enzymatic processes have been commercialized, because of problems in stability of the enzymes, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices represent important tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies especially for enzyme immobilized microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared to conventional reaction devices. Fundamental techniques for enzyme immobilized microreactors and important applications of this multidisciplinary technology are also included in our topics.
Collapse
|
42
|
Jun SH, Chang MS, Kim BC, An HJ, Lopez-Ferrer D, Zhao R, Smith RD, Lee SW, Kim J. Trypsin coatings on electrospun and alcohol-dispersed polymer nanofibers for a trypsin digestion column. Anal Chem 2011; 82:7828-34. [PMID: 20718428 DOI: 10.1021/ac101633e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The construction of a trypsin column for rapid and efficient protein digestion in proteomics is described. Electrospun and alcohol-dispersed polymer nanofibers were used for the fabrication of highly stable trypsin coatings, which were prepared by a two-step process of covalent attachment and enzyme cross-linking. In a comparative study with the trypsin coatings on as-spun and nondispersed nanofibers, it has been observed that a simple step of alcohol dispersion improved not only the enzyme loading but also the performance of protein digestion. In-column digestion of enolase was successfully performed in less than 20 min. By applying the alcohol dispersion of polymer nanofibers, the bypass of samples was reduced by filling up the column with well-dispersed nanofibers, and subsequently, interactions between the protein and the trypsin coatings were improved, yielding more complete and reproducible digestions. Regardless of alcohol dispersion or not, trypsin coatings showed better digestion performance and improved performance stability under recycled uses than covalently attached trypsin, in-solution digestion, and commercial trypsin beads. The combination of highly stable trypsin coatings and alcohol dispersion of polymer nanofibers has opened up a new potential to develop a trypsin column for online and automated protein digestion.
Collapse
Affiliation(s)
- Seung-Hyun Jun
- Department of Chemical and Biological Engineering, Korea University, 1, 5-ka, Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pereira-Medrano AG, Forster S, Fowler GJS, McArthur SL, Wright PC. Rapid fabrication of glass/PDMS hybrid µIMER for high throughput membrane proteomics. LAB ON A CHIP 2010; 10:3397-406. [PMID: 20949197 DOI: 10.1039/c0lc00147c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mass spectrometry (MS) based proteomics has brought a radical approach to systems biology, offering a platform to study complex biological functions. However, key proteomic technical challenges remain, mainly the inability to characterise the complete proteome of a cell due to the thousands of diverse, complex proteins expressed at an extremely wide concentration range. Currently, high throughput and efficient techniques to unambiguously identify and quantify proteins on a proteome-wide scale are in demand. Miniaturised analytical systems placed upstream of MS help us to attain these goals. One time-consuming step in traditional techniques is the in-solution digestion of proteins (4-20 h). This also has other drawbacks, including enzyme autoproteolysis, low efficiency, and manual operation. Furthermore, the identification of α-helical membrane proteins has remained a challenge due to their high hydrophobicity and lack of trypsin cleavage targets in transmembrane helices. We demonstrate a new rapidly produced glass/PDMS micro Immobilised Enzyme Reactor (µIMER) with enzymes covalently immobilised onto polyacrylic acid plasma-modified surfaces for the purpose of rapidly (as low as 30 s) generating peptides suitable for MS analysis. This µIMER also allows, for the first time, rapid digestion of insoluble proteins. Membrane protein identification through this method was achieved after just 4 min digestion time, up to 9-fold faster than either dual-stage in-solution digestion approaches or other commonly used bacterial membrane proteomic workflows.
Collapse
Affiliation(s)
- Ana G Pereira-Medrano
- Biological and Environmental Systems Group, ChELSI Institute, Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | | | | | | | | |
Collapse
|
44
|
Xu F, Wang WH, Tan YJ, Bruening ML. Facile trypsin immobilization in polymeric membranes for rapid, efficient protein digestion. Anal Chem 2010; 82:10045-51. [PMID: 21087034 PMCID: PMC3052767 DOI: 10.1021/ac101857j] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequential adsorption of poly(styrene sulfonate) and trypsin in nylon membranes provides a simple, inexpensive method to create stable, microporous reactors for fast protein digestion. The high local trypsin concentration and short radial diffusion distances in membrane pores facilitate proteolysis in residence times of a few seconds, and the minimal pressure drop across the thin membranes allows their use in syringe filters. Membrane digestion and subsequent MS analysis of bovine serum albumin provide 84% sequence coverage, which is higher than the 71% coverage obtained with in-solution digestion for 16 h or the <50% sequence coverages of other methods that employ immobilized trypsin. Moreover, trypsin-modified membranes digest protein in the presence of 0.05 wt % sodium dodecyl sulfate (SDS), whereas in-solution digestion under similar conditions yields no peptide signals in mass spectra even after removal of SDS. These membrane reactors, which can be easily prepared in any laboratory, have a shelf life of several months and continuously digest protein for at least 33 h without significant loss of activity.
Collapse
Affiliation(s)
| | | | - Yu-Jing Tan
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Merlin L. Bruening
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
45
|
Wang C, Jemere AB, Harrison DJ. Multifunctional protein processing chip with integrated digestion, solid-phase extraction, separation and electrospray. Electrophoresis 2010; 31:3703-10. [PMID: 20967777 DOI: 10.1002/elps.201000317] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/16/2010] [Accepted: 07/21/2010] [Indexed: 11/08/2022]
Abstract
We describe a microfluidic device in which integrated tryptic digestion, SPE, CE separation and electrospray ionization for MS are performed. The chip comprised of 10 × 30 μm channels for CE, and two serially connected 150 μm deep, 800 μm wide channels packed with 40 to 60 μm diameter beads, loaded with either immobilized trypsin, reversed-phase packing or both. On-chip digestion of cytochrome c using the trypsin bed showed complete consumption of the protein in 3 min, in contrast to the 2 h required for conventional solution phase tryptic digestion. SPE of 0.25 μg/mL solutions of the peptides leu-enkephalin, angiotensin II and LHRH gave concentration enhancements in the range of 4.4-12, for a ten times nominal volume ratio. A 100 nM cytochrome c sample concentrated 13.3 times on-chip gave a sequence coverage of 85.6%, with recovery values ranging from 41.2 to 106%. The same sample run without SPE showed only five fragment peaks and a sequence coverage of 41.3%. When both on-chip digestion and SPE (13.3 volume ratio concentration enhancement) were performed on 200 nM cytochrome c samples, a sequence coverage of 76.0% and recovery values of 21-105% were observed. Performing on-chip digestion alone on the same sample gave only one significant fragment peak. The above digestion/peptide concentration step was compared to on-chip protein concentration by SPE followed by on-chip digestion with solution phase trypsin. Both procedures gave similar recovery results; however, much larger trypsin autodigestion interference in the latter approach was apparent.
Collapse
Affiliation(s)
- Can Wang
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
46
|
Guo K, Hu Y, Zhang Y, Liu B, Magner E. Electrochemistry of nanozeolite-immobilized cytochrome c in aqueous and nonaqueous solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9076-9081. [PMID: 20373776 DOI: 10.1021/la904630c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The electrochemical properties of cytochrome c (cyt c) immobilized on multilayer nanozeolite-modified electrodes have been examined in aqueous and nonaqueous solutions. Layers of Linde type-L zeolites were assembled on indium tin oxide (ITO) glass electrodes followed by the adsorption of cyt c, primarily via electrostatic interactions, onto modified ITO electrodes. The heme protein displayed a quasi-reversible response in aqueous solution with a redox potential of +324 mV (vs NHE), and the surface coverage (Gamma*) increased linearly for the first four layers and then gave a nearly constant value of 200 pmol cm(-2). On immersion of the modified electrodes in 95% (v/v) nonaqueous solutions, the redox potential decreased significantly, a decrease that originated from changes in both the enthalpy and entropy of reduction. On reimmersion of the modified electrode in buffer, the faradic response immediately returned to its original value. These results demonstrate that nanozeolites are potential stable supports for redox proteins and enzymes.
Collapse
Affiliation(s)
- Kai Guo
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
47
|
Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A. Latest Developments in Micro Total Analysis Systems. Anal Chem 2010; 82:4830-47. [PMID: 20462185 DOI: 10.1021/ac100969k] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Arora
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Giuseppina Simone
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Georgette B. Salieb-Beugelaar
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Jung Tae Kim
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Andreas Manz
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
48
|
Ponomareva E, Kartuzova V, Vlakh E, Tennikova T. Monolithic bioreactors: Effect of chymotrypsin immobilization on its biocatalytic properties. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:567-74. [DOI: 10.1016/j.jchromb.2010.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/23/2009] [Accepted: 01/07/2010] [Indexed: 10/19/2022]
|
49
|
Wang H, Liu Y, Liu C, Huang J, Yang P, Liu B. Microfluidic chip-based aptasensor for amplified electrochemical detection of human thrombin. Electrochem commun 2010. [DOI: 10.1016/j.elecom.2009.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
50
|
|