1
|
Guo G, Ren X, Li X, Wu X, Qu C, Duan W, Zeng J. A three-stage amplified pressure bioassay for sensitive detection of cardiac troponin. Talanta 2025; 289:127772. [PMID: 39987615 DOI: 10.1016/j.talanta.2025.127772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Cardiac troponin I (cTnI) level in human blood is a key biomarker associated with acute myocardial infarction (AMI). Rapid, convenient, inexpensive and highly sensitive point-of-care (POC) bioassays for cTnI in home and community are of great importance in saving the lives of AMI patients. Herein, we present a three-stage amplified pressure-sensing bioassay system for highly sensitive detection of cTnI. Specifically, the magnetic bead-cTnI-Pt nanoclusters protein complex formed by the immunoconjugation of antigen and antibody can be conveniently subjected to magnetic separation to reduce background interference and achieve first-stage amplification. Then, the Pt nanoclusters in the complex can effectively catalyze the decomposition of H2O2 into O2, thus achieving the secondary amplification of the pressure signal. Finally, the biotin and streptavidin cross-linked Pt nanoclusters significantly increase the amount of catalyst, enabling the tertiary amplification of the bioassay. The method has good linearity in the range of 10 to 1 × 104 pg/mL for quantitative detection, and the detection limit of the method was calculated to be 3.8 pg/mL (in water), which is 30 times more sensitive than the original secondary amplification detection system. In addition, the results of clinical samples tested with the developed method were consistent with those tested with commercial kits. Given the automation, rapid response and miniaturization of pressure-based sensors, our bioassay is expected to be a powerful tool for home and community-based POC diagnosis of patients with various acute diseases in the future.
Collapse
Affiliation(s)
- Gengchen Guo
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xuqian Ren
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiang Li
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xian Wu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, 100034, China
| | - Chenxue Qu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, 100034, China.
| | - Wei Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Jingbin Zeng
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
2
|
Anti-CD44 antibodies grafted immunoaffinity Fe 3O 4@MnO 2 nanozymes with highly oxidase-like catalytic activity for specific detection of triple-negative breast cancer MDA-MB-231 cells. Anal Chim Acta 2023; 1249:340947. [PMID: 36868774 DOI: 10.1016/j.aca.2023.340947] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/07/2023]
Abstract
Cell-enzyme-linked immunosorbent assay (CELISA) is extensively applied for cancer diagnosis and screening because of its simple operation, high sensitivity, and intuitive color change. However, the unstable horseradish peroxidase (HRP), hydrogen peroxide (H2O2) and non-specificity have led to a high false negative rate, which limits its application. In this study, we have developed an innovative immunoaffinity nanozyme aided CELISA based on anti-CD44 monoclonal antibodies (mAbs) bioconjugated manganese dioxide-modified magnetite nanoparticles (Fe3O4@MnO2 NPs) for the specific detection of triple-negative breast cancer MDA-MB-231 cells. The CD44FM nanozymes were fabricated to replace unstable HRP and H2O2 to counteract possible negative effects in conventional CELISA. Results suggested that CD44FM nanozymes displayed remarkable oxidase-like activities over an extensive pH and temperature range. The bioconjugation of CD44 mAbs enabled CD44FM nanozymes to enter MDA-MB-231 cells selectively via over-expressed CD44 antigens on the membrane surface of these cells, and then catalyzed oxidation of the chromogenic substrate TMB, further achieving specific detection of these cells. Additionally, this study exhibited high sensitivity and low detection limit for MDA-MB-231 cells with a quantitation range of just 186 cells. To sum up, this report developed a simple, specific and sensitive assay platform based on CD44FM nanozymes, which could provide a promising strategy for targeted diagnosis and screening of breast cancer.
Collapse
|
3
|
Shi Z, Xu Z, Hu J, Wei W, Zeng X, Zhao WW, Lin P. Ascorbic acid-mediated organic photoelectrochemical transistor sensing strategy for highly sensitive detection of heart-type fatty acid binding protein. Biosens Bioelectron 2022; 201:113958. [PMID: 34996003 DOI: 10.1016/j.bios.2021.113958] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022]
Abstract
Heart-type fatty acid binding protein (H-FABP) has been regarded as a promising biomarker for early diagnosis of acute myocardial infarction (AMI). Developing fast and reliable method for H-FABP detection is still highly desirable but challenging. Herein, an ascorbic acid (AA)-mediated organic photoelectrochemical transistor (OPECT) sensing strategy was reported for the detection of H-FABP in phosphate buffer saline (PBS) solution and human serum. A primary antibody/H-FABP/secondary antibody-Au NPs-alkaline phosphatase (ALP) sandwich immunorecognition structure was constructed. The modified ALP could catalytically convert ascorbic acid-2-phosphate to AA, which was then analyzed by OPECT. As a result, the AA-mediated OPECT sensing strategy realized highly sensitive detection of H-FABP with a detection limit of 3.23 × 10-14 g/mL which is two orders of magnitude lower than that of PEC method. Under optimal experimental conditions, H-FABP concentration could be obtained in ∼90 min. Importantly, the analysis of H-FABP was resistant to the interference from immunoglobulin G, bovine serum albumin, cysteine, AA and human serum. The proposed AA-mediated OPECT sensing strategy provides a simple, fast, and accurate way for H-FABP detection in AMI suspected patients.
Collapse
Affiliation(s)
- Zhuonan Shi
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhe Xu
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Jin Hu
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Weiwei Wei
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xierong Zeng
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
4
|
Long G, Wang Q, Li S, Tao J, Li B, Zhang X, Zhao X. Engineering of injectable hydrogels associate with Adipose-Derived stem cells delivery for anti-cardiac hypertrophy agents. Drug Deliv 2021; 28:1334-1341. [PMID: 34180762 PMCID: PMC8245104 DOI: 10.1080/10717544.2021.1943060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) treatment offers support to new methods of transporting baseline cell protein endothelial cells in alginate (A)/silk sericin (SS) lamellar-coated antioxidant system (ASS@L) to promote acute myocardial infarction. In the synthesized frames of ASS, the ratio of fixity modules, pores, the absorption and inflammation was detected at ka (65ka), 151 ± 40.12 μm, 92.8%, 43.2 ± 2.58 and 30.10 ± 2.1. In this context, ADSC-ASS@L was developed and the corresponding material was stable and physically chemical for the development of cardiac regenerative applications. ADSC-ASS@L injectable hydrogels in vitro examination demonstrated higher cell survival rates and pro-angiogenic and pro-Inflammatory expression factors, demonstrating the favorable effect of fractional ejections, fibre-areas, and low infracture vessel densities. In successful cardiac damage therapy in acute myocardial infarction the innovative ADSC injection hydrogel approach may be helpful. The approach could also be effective during coronary artery hypertrophy for successful heart damage treatment.
Collapse
Affiliation(s)
- Guangyu Long
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Quanhe Wang
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shaolin Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junzhong Tao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Boyan Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangxiang Zhang
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xi Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Xin Y, Yang R, Qu Y, Liu H, Feng Y, Li L, Shi W, Liu Q. Novel, Highly Sensitive, and Specific Assay to Monitor Acute Myocardial Infarction (AMI) by the Determination of Cardiac Troponin I (cTnI) and Heart-Type Fatty Acid Binding Protein (H-FABP) by a Colloidal Gold-Based Immunochromatographic Test Strip. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1802594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yuanrong Xin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- Jiangsu Sunan Pharmaceutical Industrial Co., Ltd, Zhenjiang, Jiangsu, China
| | - Renlong Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yang Qu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- Chia Tai Qingjiang Pharmaceutical Industry Co., Ltd, Huaian, China
| | - Hongfei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- School of Medical Technology, Zhenjiang college, Zhenjiang, Jiangsu, China
| | - Yingshu Feng
- School of Medical Technology, Zhenjiang college, Zhenjiang, Jiangsu, China
| | - Lin Li
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Wenjing Shi
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qiang Liu
- Department of Medical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
6
|
Wang X, Lu P, Zhu L, Qin L, Zhu Y, Yan G, Duan S, Guo Y. Anti-CD133 Antibody-Targeted Therapeutic Immunomagnetic Albumin Microbeads Loaded with Vincristine-Assisted to Enhance Anti-Glioblastoma Treatment. Mol Pharm 2019; 16:4582-4593. [PMID: 31573817 DOI: 10.1021/acs.molpharmaceut.9b00704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poor uptake of antitumor drugs by tumor cells is a critical challenge for anticancer therapeutics. Moreover, the deficiency of specific tumor selectivity for tumor sites may further limit the therapeutic efficacy and cause side effects in healthy regions of the body. Vincristine (VCR) is an effective antitumor drug; however, because of its severe nerve toxicity, short half-life, and fast metabolism, its clinical application is limited. Herein, novel anti-CD133 monoclonal antibody (CD133mAb)-targeted therapeutic immunomagnetic albumin microbeads (CD133mAb/TMAMbs) are smartly constructed for enhancing antiglioblastoma treatment. Superparamagnetic iron oxide nanoparticles (SPIO NPs) were first fabricated as nanocarrier cores, then encapsulated with human serum albumin (HSA), and loaded antitumor drug VCR. Then CD133mAb, which has specific affinity with the cell membrane CD133, was subsequently conjugated to form CD133mAb-decorated therapeutic immunomagnetic albumin microbeads (CD133mAb/TMAMbs). The influence of CD133mAb/TMAMbs on the viability, cell cycle, apoptosis, cell cytoskeleton, migration, and invasion of CD133-overexpressing U251 cells was explored. The CD133mAb-conjugated magnetic albumin microbeads exhibited a high drug loading capacity, stability and hemocompatibility, and active targeting ability by specific recognition of the CD133 surface antigen by the bioconjugation of CD133mAb. More importantly, the constructed therapeutic CD133mAb/TMAMbs have a specifically effective uptake via the CD133 transmembrane protein that is overexpressed in U251 glioblastoma cells and displayed an effective antitumor proliferation and invasive ability. Therefore, based on these results, the fabricated CD133mAb/TMAMbs demonstrate promising uses in brain cancer-targeted diagnosis and therapy.
Collapse
Affiliation(s)
- Xueqin Wang
- Henan Provincial People's Hospital , Zhengzhou , Henan 450003 , People's Republic of China.,College of Bioengineering , Henan University of Technology , Zhengzhou , Henan 450001 , People's Republic of China
| | - Ping Lu
- Henan Province Direct Third People's Hospital . Zhengzhou , Henan 450003 , People's Republic of China
| | - Li Zhu
- Henan Provincial People's Hospital , Zhengzhou , Henan 450003 , People's Republic of China.,Department of Obstetrics and Gynecology , People's Hospital of Zhengzhou University , Zhengzhou , Henan 450003 , People's Republic of China
| | - Li Qin
- Henan Provincial People's Hospital , Zhengzhou , Henan 450003 , People's Republic of China.,Department of Obstetrics and Gynecology , People's Hospital of Zhengzhou University , Zhengzhou , Henan 450003 , People's Republic of China
| | - Yongxia Zhu
- Henan Provincial People's Hospital , Zhengzhou , Henan 450003 , People's Republic of China.,School of Clinical Medicine , Henan University , Zhengzhou , Henan 450003 , People's Republic of China
| | - Guoyi Yan
- Henan Provincial People's Hospital , Zhengzhou , Henan 450003 , People's Republic of China.,School of Clinical Medicine , Henan University , Zhengzhou , Henan 450003 , People's Republic of China
| | - Shaofeng Duan
- School of Pharmacy , Henan University , Kaifeng , Henan 475004 , People's Republic of China.,Center for Multi-Omics Research, State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology , Henan University , Kaifeng , Henan 475001 , People's Republic of China
| | - Yuqi Guo
- Henan Provincial People's Hospital , Zhengzhou , Henan 450003 , People's Republic of China.,School of Clinical Medicine , Henan University , Zhengzhou , Henan 450003 , People's Republic of China.,Department of Obstetrics and Gynecology , People's Hospital of Zhengzhou University , Zhengzhou , Henan 450003 , People's Republic of China.,International Joint Laboratory for Gynecological Oncology Nanomedicine of Henan Province , Zhengzhou , Henan 450003 , People's Republic of China
| |
Collapse
|
7
|
Miyajima K, Miwa Y, Kitamoto Y. Fabrication of porous FePt microcapsules for immunosensing techniques. Colloids Surf B Biointerfaces 2019; 173:407-411. [PMID: 30321798 DOI: 10.1016/j.colsurfb.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 09/22/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
Porous FePt microcapsules are fabricated for use in bead-based immunoassay technologies, that generally use magnetic spheres to immobilize biomolecules on their surface. The magnetic capsules can be used to carry assay reagents to reduce the time required to perform immunoassay processes, and microsize capsules are easier to manipulate magnetically than nanosize ones. Silica particles of approximately 2.5 μm diameter are used as templates and modified with poly(ethyleneimine) (PEI), which enables FePt nanoparticles to accumulate selectively on the template particles and an FePt shell to be formed by a polyol process. To increase the mechanical stability of the FePt nanoparticle assembly shell, a double-layered FePt nanoparticle assembly is fabricated by repeating the modification process of PEI and the synthesis process of FePt nanoparticles, resulting in the fabrication of magnetic capsules with a three-dimensional structure. We further investigate the ability of magnetic capsules to immobilize antibodies on their surface. Gold nanoparticles are used as linkers between the magnetic microcapsules and antibodies. The antibodies are successfully immobilized on the surface of the developed microsize FePt capsules.
Collapse
Affiliation(s)
- Kumiko Miyajima
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan.
| | - Yuki Miwa
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Yoshitaka Kitamoto
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| |
Collapse
|
8
|
Affiliation(s)
- Xu Han
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| | - Shanghao Li
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| | - Zhili Peng
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| | - Abdelhameed M. Othman
- Department
of Chemistry, Faculty of Science at Yanbu, Taibah University, P.O. Box 344, Medina, Kingdom of Saudi Arabia
| | - Roger Leblanc
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| |
Collapse
|
9
|
Wang X, Chang Y, Zhang D, Tian B, Yang Y, Wei F. Transferrin-conjugated drug/dye-co-encapsulated magnetic nanocarriers for active-targeting fluorescent/magnetic resonance imaging and anti-tumor effects in human brain tumor cells. RSC Adv 2016. [DOI: 10.1039/c6ra20903c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A combinatorial nanosystem with the advantages of superparamagnetic iron oxide nanoparticles (SPIO NPs) and targeting polymer carriers is expected to improve the therapeutic effects in developing multifunctional delivery systems.
Collapse
Affiliation(s)
- Xueqin Wang
- College of Bioengineering
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Yanyan Chang
- College of Bioengineering
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Dongxu Zhang
- College of Bioengineering
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Baoming Tian
- School of Life Sciences
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Yan Yang
- School of Life Sciences
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Fang Wei
- School of Life Sciences
- Zhengzhou University
- Zhengzhou
- P. R. China
| |
Collapse
|
10
|
Wang X, Zhang H, Jing H, Cui L. Highly Efficient Labeling of Human Lung Cancer Cells Using Cationic Poly-l-lysine-Assisted Magnetic Iron Oxide Nanoparticles. NANO-MICRO LETTERS 2015; 7:374-384. [PMID: 30464985 PMCID: PMC6223914 DOI: 10.1007/s40820-015-0053-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/23/2015] [Indexed: 05/18/2023]
Abstract
Cell labeling with magnetic iron oxide nanoparticles (IONPs) is increasingly a routine approach in the cell-based cancer treatment. However, cell labeling with magnetic IONPs and their leading effects on the biological properties of human lung carcinoma cells remain scarcely reported. Therefore, in the present study the magnetic γ-Fe2O3 nanoparticles (MNPs) were firstly synthesized and surface-modified with cationic poly-l-lysine (PLL) to construct the PLL-MNPs, which were then used to magnetically label human A549 lung cancer cells. Cell viability and proliferation were evaluated with propidium iodide/fluorescein diacetate double staining and standard 3-(4,5-dimethylthiazol-2-diphenyl-tetrazolium) bromide assay, and the cytoskeleton was immunocytochemically stained. The cell cycle of the PLL-MNP-labeled A549 lung cancer cells was analyzed using flow cytometry. Apoptotic cells were fluorescently analyzed with nuclear-specific staining after the PLL-MNP labeling. The results showed that the constructed PLL-MNPs efficiently magnetically labeled A549 lung cancer cells and that, at low concentrations, labeling did not affect cellular viability, proliferation capability, cell cycle, and apoptosis. Furthermore, the cytoskeleton in the treated cells was detected intact in comparison with the untreated counterparts. However, the results also showed that at high concentration (400 µg mL-1), the PLL-MNPs would slightly impair cell viability, proliferation, cell cycle, and apoptosis and disrupt the cytoskeleton in the treated A549 lung cancer cells. Therefore, the present results indicated that the PLL-MNPs at adequate concentrations can be efficiently used for labeling A549 lung cancer cells and could be considered as a feasible approach for magnetic targeted anti-cancer drug/gene delivery, targeted diagnosis, and therapy in lung cancer treatment.
Collapse
Affiliation(s)
- Xueqin Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001 Henan People’s Republic of China
| | - Huiru Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001 Henan People’s Republic of China
| | - Hongjuan Jing
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001 Henan People’s Republic of China
| | - Liuqing Cui
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
11
|
Wang X, Wang L, Tan X, Zhang H, Sun G. Construction of doxorubicin-loading magnetic nanocarriers for assaying apoptosis of glioblastoma cells. J Colloid Interface Sci 2014; 436:267-75. [DOI: 10.1016/j.jcis.2014.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
|
12
|
Shen J, Li Y, Gu H, Xia F, Zuo X. Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 2014; 114:7631-77. [PMID: 25115973 DOI: 10.1021/cr300248x] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Juwen Shen
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, China
| | | | | | | | | |
Collapse
|
13
|
Wang X, Wei F, Yan S, Zhang H, Tan X, Zhang L, Zhou G, Cui L, Li C, Wang L, Li Y. Innovative fluorescent magnetic albumin microbead-assisted cell labeling and intracellular imaging of glioblastoma cells. Biosens Bioelectron 2014; 54:55-63. [DOI: 10.1016/j.bios.2013.10.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/17/2022]
|
14
|
XU C, YANG K, LIU Z, QIN Z, HE W, DAI Q, ZHANG J, ZHANG F. Superparamagnetic Supported Catalyst H3PW12O40/γ-Fe2O3 for Alkylation of Thiophene with Olefine. Chin J Chem Eng 2014. [DOI: 10.1016/s1004-9541(14)60053-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Krishnan S, Walgama C. Electrocatalytic Features of a Heme Protein Attached to Polymer-Functionalized Magnetic Nanoparticles. Anal Chem 2013; 85:11420-6. [DOI: 10.1021/ac402421z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sadagopan Krishnan
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Charuksha Walgama
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
16
|
Kakoti A, Goswami P. Heart type fatty acid binding protein: structure, function and biosensing applications for early detection of myocardial infarction. Biosens Bioelectron 2013; 43:400-411. [PMID: 23357005 DOI: 10.1016/j.bios.2012.12.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/27/2012] [Indexed: 12/16/2022]
Abstract
Heart type fatty acid binding protein (HFABP) as an early marker of cardiac injury holds a promising future with studies indicating surpassing performance as compared to myoglobin. As a plasma marker, this cytoplasmic protein owing to its small size (∼15kDa) and water solubility, appears readily in the blood-stream following cardiomyocyte damage, reaching peak levels within 6h of symptom onset. Low plasma levels of HFABP as compared to tissue levels indicate that minute amounts of the protein when released during myocardial infarction leads to a greater proportional rise. These parameters of kinetic release make it an ideal candidate for rapid assessment of acute myocardial infarction (AMI). The need for development of rapid immunoassays and immunotests so as to use HFABP as an early marker for AMI exclusion is tremendous. In the present review, we outline the various immunoassays and immunosensors developed so far for the detection of HFABP in buffer, plasma or whole blood. The principles behind the detection techniques along with their performance parameters compared to standard ELISA techniques are elucidated.
Collapse
Affiliation(s)
- Ankana Kakoti
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | |
Collapse
|
17
|
Zhang Y, Tu Q, Wang DE, Chen Y, Lu B, Yuan MS, Wang J. Adamantyl-terminated dendronized molecules: synthesis and interaction with β-cyclodextrin-functionalized poly(dimethylsiloxane) interface. NEW J CHEM 2013. [DOI: 10.1039/c3nj00129f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Ren L, Wang JC, Liu W, Tu Q, Liu R, Wang X, Xu J, Wang Y, Zhang Y, Li L, Wang J. An enzymatic immunoassay microfluidics integrated with membrane valves for microsphere retention and reagent mixing. Biosens Bioelectron 2012; 35:147-154. [DOI: 10.1016/j.bios.2012.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 01/12/2023]
|
19
|
Zhang X, Song D, Jiang W, Sun Z, Hao L, Ye Y, Yang X, Hu X, Li F. Factors influencing magnetic protein nanospheres prepared by sonochemical method. J Appl Polym Sci 2012. [DOI: 10.1002/app.36258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
LIU WM, LI L, REN L, WANG JC, TU Q, WANG XQ, WANG JY. Diversification of Microfluidic Chip for Applications in Cell-Based Bioanalysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/s1872-2040(11)60519-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Zhang Y, Ren L, Tu Q, Wang X, Liu R, Li L, Wang JC, Liu W, Xu J, Wang J. Fabrication of Reversible Poly(dimethylsiloxane) Surfaces via Host–Guest Chemistry and Their Repeated Utilization in Cardiac Biomarker Analysis. Anal Chem 2011; 83:9651-9. [DOI: 10.1021/ac202517x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanrong Zhang
- Colleges of Science and Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Li Ren
- Colleges of Science and Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qin Tu
- Colleges of Science and Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xueqin Wang
- Colleges of Science and Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Rui Liu
- Colleges of Science and Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Li Li
- Colleges of Science and Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jian-Chun Wang
- Colleges of Science and Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Wenming Liu
- Colleges of Science and Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Juan Xu
- Colleges of Science and Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jinyi Wang
- Colleges of Science and Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
22
|
Huang PJJ, Liu J. Immobilization of DNA on Magnetic Microparticles for Mercury Enrichment and Detection with Flow Cytometry. Chemistry 2011; 17:5004-10. [DOI: 10.1002/chem.201002934] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/25/2010] [Indexed: 02/02/2023]
|
23
|
Bottenus D, Jubery TZ, Ouyang Y, Dong WJ, Dutta P, Ivory CF. 10,000-fold concentration increase of the biomarker cardiac troponin I in a reducing union microfluidic chip using cationic isotachophoresis. LAB ON A CHIP 2011; 11:890-8. [PMID: 21416810 PMCID: PMC3289062 DOI: 10.1039/c0lc00490a] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This paper describes the preconcentration of the biomarker cardiac troponin I (cTnI) and a fluorescent protein (R-phycoerythrin) using cationic isotachophoresis (ITP) in a 3.9 cm long poly(methyl methacrylate) (PMMA) microfluidic chip. The microfluidic chip includes a channel with a 5× reduction in depth and a 10× reduction in width. Thus, the overall cross-sectional area decreases by 50× from inlet (anode) to outlet (cathode). The concentration is inversely proportional to the cross-sectional area so that as proteins migrate through the reductions, the concentrations increase proportionally. In addition, the proteins gain additional concentration by ITP. We observe that by performing ITP in a cross-sectional area reducing microfluidic chip we can attain concentration factors greater than 10,000. The starting concentration of cTnI was 2.3 μg mL⁻¹ and the final concentration after ITP concentration in the microfluidic chip was 25.52 ± 1.25 mg mL⁻¹. To the author's knowledge this is the first attempt at concentrating the cardiac biomarker cTnI by ITP. This experimental approach could be coupled to an immunoassay based technique and has the potential to lower limits of detection, increase sensitivity, and quantify different isolated cTnI phosphorylation states.
Collapse
Affiliation(s)
- Danny Bottenus
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, USA; Fax: +1 (509) 335-4806
| | - Talukder Zaki Jubery
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, USA; Fax: +1 (509) 335-4806
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99163, USA
| | - Yexin Ouyang
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, USA; Fax: +1 (509) 335-4806
| | - Wen-Ji Dong
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, USA; Fax: +1 (509) 335-4806
| | - Prashanta Dutta
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, USA; Fax: +1 (509) 335-4806
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99163, USA
| | - Cornelius F. Ivory
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, USA; Fax: +1 (509) 335-4806
| |
Collapse
|
24
|
Wang X, Ren L, Tu Q, Wang J, Zhang Y, Li M, Liu R, Wang J. Magnetic protein microbead-aided indirect fluoroimmunoassay for the determination of canine virus specific antibodies. Biosens Bioelectron 2011; 26:3353-60. [DOI: 10.1016/j.bios.2011.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/05/2011] [Accepted: 01/13/2011] [Indexed: 11/17/2022]
|
25
|
Bottenus D, Jubery TZ, Dutta P, Ivory CF. 10,000-fold concentration increase in proteins in a cascade microchip using anionic ITP by a 3-D numerical simulation with experimental results. Electrophoresis 2011; 32:550-62. [PMID: 21308695 PMCID: PMC3229181 DOI: 10.1002/elps.201000510] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/02/2010] [Accepted: 12/05/2010] [Indexed: 11/07/2022]
Abstract
This paper describes both the experimental application and 3-D numerical simulation of isotachophoresis (ITP) in a 3.2 cm long "cascade" poly(methyl methacrylate) (PMMA) microfluidic chip. The microchip includes 10 × reductions in both the width and depth of the microchannel, which decreases the overall cross-sectional area by a factor of 100 between the inlet (cathode) and outlet (anode). A 3-D numerical simulation of ITP is outlined and is a first example of an ITP simulation in three dimensions. The 3-D numerical simulation uses COMSOL Multiphysics v4.0a to concentrate two generic proteins and monitor protein migration through the microchannel. In performing an ITP simulation on this microchip platform, we observe an increase in concentration by over a factor of more than 10,000 due to the combination of ITP stacking and the reduction in cross-sectional area. Two fluorescent proteins, green fluorescent protein and R-phycoerythrin, were used to experimentally visualize ITP through the fabricated microfluidic chip. The initial concentration of each protein in the sample was 1.995 μg/mL and, after preconcentration by ITP, the final concentrations of the two fluorescent proteins were 32.57 ± 3.63 and 22.81 ± 4.61 mg/mL, respectively. Thus, experimentally the two fluorescent proteins were concentrated by over a factor of 10,000 and show good qualitative agreement with our simulation results.
Collapse
Affiliation(s)
- Danny Bottenus
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | | | | | | |
Collapse
|