1
|
Du L, Yang P, Yang F, Lai D, Hou X, Chen J. Preadsorbed Particles with Cross-Shaped DNA Scaffolds Enable Spherical Nucleic Acid to Directly Respond to Protein in Complex Matrices. Anal Chem 2025; 97:694-702. [PMID: 39723745 DOI: 10.1021/acs.analchem.4c05096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Spherical nucleic acids (SNAs) usually suffer from an undesired protein corona and disrupt the function of nucleic acids (e.g., aptamer), thereby compromising recognition and response to proteins in the biological environment. To overcome the unexpected protein interference, specific proteins were initially adsorbed onto magnetic particles (MPs) as a customized protein corona "shield" with fabricated nucleic acid scaffolds, forming a preadsorbed particle-based spherical nucleic acid (pap-SNA). By comparing with AuNPs-SNA or COOH-MPs, it was found that such a protein corona "shield" of pap-SNA significantly eliminated the adsorption of nonspecific proteins or other biomolecules onto the MPs' interface, thereby enabling the SNA to directly respond to proteins in complex matrices. To further reduce the interference of protein on SNA performance, a series of nucleic acid scaffolds (Z-type, dsDNA type, circle type, T-type, and cross-shaped type) were designed by changing the rigidity and thermal stability of functional nucleic acids on the MPs. As a consequence, the pap-SNA with a cross-shaped scaffold improved the sensitivity of the pap-SNA-based detection platform in that the orderly arrangement of functional nucleic acids provides a steric hindrance to interferents. Moreover, the presence of the cross-shaped scaffold not only enables pap-SNA to exhibit a proportional response to varied protein concentrations but also enhances the detection sensitivity of pap-SNA by 160% in serum and by 190% in urine. Therefore, incorporating optimized DNA scaffolds maintained and facilitated the function of a probe (aptamer) on the surface of SNA. This approach offers a pathway for creating SNA with direct response and anti-interference capability applicable to detecting diverse biomolecules such as nucleic acids and proteins in biological matrices.
Collapse
Affiliation(s)
- Lijie Du
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Peng Yang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fengyi Yang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Dongmei Lai
- Sichuan Institute of Product Quality Supervision & Inspection, Chengdu, Sichuan 610014, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Junbo Chen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
2
|
Liang X, He C, Shen H. Programmable stopped-flow injection analysis: A comparative study on the effects of adenosine and its aptamer on respiratory burst of salivary and circulatory neutrophils. Talanta 2024; 271:125672. [PMID: 38295446 DOI: 10.1016/j.talanta.2024.125672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/06/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024]
Abstract
Neutrophils play a pivotal role in innate immunity by releasing ROS through respiratory bursts to neutralize various pathogenic factors. However, excessive ROS release can cause tissue damage. Adenosine is an endogenous anti-inflammatory molecule inhibiting respiratory burst to protect the host. Adenosine aptamers with antibody-like properties and good stability are expected to act as adenosine antagonists with functional modulation capability. This study compares the effects of adenosine and its aptamer on the respiratory bursts of salivary polymorphonuclear leukocytes and circulating polymorphonuclear leukocytes using a programmable stopped-flow injection approach, ensuring rapid and efficient analysis while maintaining the neutrophils' viability. The results show that primed salivary polymorphonuclear leukocytes exhibit specificities that differ from circulating polymorphonuclear leukocytes. Adenosine aptamer can function as an inhibitory antagonist that distinguishes between physiologically controlled and excessive priming of neutrophils, showing potential application prospects in immunotherapy.
Collapse
Affiliation(s)
- Xiaoning Liang
- Institute of Analytical Chemistry, Zhejiang University 310058, China.
| | - Chaoman He
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China; Qiantang Hospital, Hangzhou, China.
| | - Hong Shen
- Institute of Analytical Chemistry, Zhejiang University 310058, China.
| |
Collapse
|
3
|
Chen L, Yang G, Qu F. Advances of aptamer-based small-molecules sensors in body fluids detection. Talanta 2024; 268:125348. [PMID: 37925822 DOI: 10.1016/j.talanta.2023.125348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
The field of aptamer-based sensing has evolved considerably over the past three decades. The aptamer sensor-based detection of small-molecule targets in body fluids is designed for real-time or rapid, low-cost, non- or minimally invasive tracking and diagnosis of human health status. It can be achieved by specifically monitoring biomarkers or metabolites excreted from various body fluids, including blood, urine, cerebrospinal fluid, saliva, ect. This article reviews a comprehensive collection of aptamer-based sensors for detecting small-molecule in various body fluids. A comparative analysis of aptamer features, emerging chemistry, advanced sensing materials, transduction techniques, and detection performance is conducted, and the strengths and pitfalls of each approach are discussed. Finally, the development process and application challenges of aptamer-based sensors in the detection of small-molecule in body fluids are presented and discussed.
Collapse
Affiliation(s)
- Li Chen
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Feng Qu
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
4
|
Choi Y, Jeong JY, Hong S. Highly Sensitive Real-Time Monitoring of Adenosine Receptor Activities in Nonsmall Cell Lung Cancer Cells Using Carbon Nanotube Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2101-2109. [PMID: 38166368 DOI: 10.1021/acsami.3c14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Adenosine metabolism through adenosine receptors plays a critical role in lung cancer biology. Although recent studies showed the potential of targeting adenosine receptors as drug targets for lung cancer treatment, conventional methods for investigating receptor activities often suffer from various drawbacks, including low sensitivity and slow analysis speed. In this study, adenosine receptor activities in nonsmall cell lung cancer (NSCLC) cells were monitored in real time with high sensitivity through a carbon nanotube field-effect transistor (CNT-FET). In this method, we hybridized a CNT-FET with NSCLC cells expressing A2A and A2B adenosine receptors to construct a hybrid platform. This platform could detect adenosine, an endogenous ligand of adenosine receptors, down to 1 fM in real time and sensitively discriminate adenosine among other nucleosides. Furthermore, we could also utilize the platform to detect adenosine in complicated environments, such as human serum. Notably, our hybrid platform allowed us to monitor pharmacological effects between adenosine and other drugs, including dipyridamole and theophylline, even in human serum samples. These results indicate that the NSCLC cell-hybridized CNT-FET can be a practical tool for biomedical applications, such as the evaluation and screening of drug-candidate substances.
Collapse
Affiliation(s)
- Yoonji Choi
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Young Jeong
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Firouzy M, Hashemi P. Ionic Liquid-Based Magnetic Needle Headspace Single-Drop Microextraction Combined with HPLC/UV for the Determination of Chlorophenols in Wastewater. J Chromatogr Sci 2023; 61:743-749. [PMID: 36806901 DOI: 10.1093/chromsci/bmad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/03/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023]
Abstract
A magnetic needle headspace single-drop microextraction (MN-HS-SDME) method coupled to HPLC/UV has been developed. Trihexyl(tetradecyl)phosphonium chloride was employed as an ionic liquid (IL) solvent for the headspace extraction of some chlorophenol (CP) compounds from wastewater samples. Despite of the nonmagnetic character of the IL, a significant improvement in the extraction efficiency was obtained by the magnetization of the single-drop microextraction needle using a pair of permanent disk magnets. A simplex method for the fast optimization of the experimental conditions (e.g., stirring speed, ionic strength, pH, extraction time and temperature) was used. The coefficients of determination (R2) varied between 0.9932 and 0.9989, the limits of detection were from 0.004 to 0.007 μg mL-1 and the relative recoveries were in the range of 88-120% for the studied analytes. The developed MN-HS-SDME HPLC/UV method was successfully applied to the determination of CPs in industrial wastewater.
Collapse
Affiliation(s)
- Masoumeh Firouzy
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 411417135167, Iran
| | - Payman Hashemi
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 411417135167, Iran
| |
Collapse
|
6
|
Du X, Wang R, Zhai J, Xie X. Surface PEGylation of ionophore-based microspheres enables determination of serum sodium and potassium ion concentration under flow cytometry. Anal Bioanal Chem 2022:10.1007/s00216-022-04301-2. [PMID: 36045175 DOI: 10.1007/s00216-022-04301-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/01/2022]
Abstract
We present here an ionophore-based ion-selective optode (ISO) platform to detect potassium and sodium concentrations in serum through flow cytometry. The ion-selective microsensors were based on polyethylene glycol (PEG)-modified polystyrene (PS) microspheres (PEG-PS). Ratiometric response curves were observed using peak channel fluorescence intensities for K+ (10-6 M to 0.1 M) and Na+ (10-4 M to 0.2 M) with sufficient selectivity for clinical diagnosis. Due to the matrix effect, proteins such as albumin and immunoglobulin caused an obvious increase in response for serum sample determination. To solve this problem, 4-arm PEG chains were covalently attached onto the surface of PS microspheres through a two-step reaction, which improved the stability and combated pollution of microspheres. As a preliminary application, potassium and sodium concentrations in human serums were successfully determined by the PEG-PS microsensors through flow cytometry.
Collapse
Affiliation(s)
- Xinfeng Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Renjie Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingying Zhai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaojiang Xie
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China. .,Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Guo K, Song Z, Wang G, Tang C. Detecting Redox Potentials Using Porous Boron Nitride/ATP-DNA Aptamer/Methylene Blue Biosensor to Monitor Microbial Activities. MICROMACHINES 2022; 13:mi13010083. [PMID: 35056248 PMCID: PMC8777636 DOI: 10.3390/mi13010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023]
Abstract
Microbial activity has gained attention because of its impact on the environment and the quality of people’s lives. Most of today’s methods, which include genome sequencing and electrochemistry, are costly and difficult to manage. Our group proposed a method using the redox potential change to detect microbial activity, which is rooted in the concept that metabolic activity can change the redox potential of a microbial community. The redox potential change was captured by a biosensor consisting of porous boron nitride, ATP-DNA aptamer, and methylene blue as the fluorophore. This assembly can switch on or off when there is a redox potential change, and this change leads to a fluorescence change that can be examined using a multipurpose microplate reader. The results show that this biosensor can detect microbial community changes when its composition is changed or toxic metals are ingested.
Collapse
Affiliation(s)
- Kai Guo
- Correspondence: (K.G.); (C.T.)
| | | | | | | |
Collapse
|
8
|
Song M, Lin X, Peng Z, Zhang M, Wu J. Enhancing affinity-based electroanalytical biosensors by integrated AC electrokinetic enrichment-A mini review. Electrophoresis 2021; 43:201-211. [PMID: 34453857 DOI: 10.1002/elps.202100168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/03/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022]
Abstract
Biosensors play a central role in moving diagnostics to being on-site or decentralized. Affinity biosensor, an important category of biosensors, has important applications in clinical diagnosis, pharmaceuticals, immunology, and other fields. Affinity biosensors rely on specific binding between target analytes and biological ligands such as antibodies, nucleic acids, or other receptors to generate measurable signals. Oftentimes the target analytes in practical samples are of low abundance in a complex matrix. Traditional affinity biosensors mainly rely on random diffusion of analytes in solution to conjugate with biorecognition elements on the sensor surface of electrodes. The process may take hours or even days, which is not conducive to rapid and sensitive detection of biosensors. Therefore, it is strongly desired to incorporate an enrichment mechanism for target analytes into biosensor-based detection. AC electrokinetic (ACEK) effect can realize rapid enrichment of analytes by application of AC electric fields, which holds great promise for achieving high sensitivity, low detection limit, and rapid turnaround. This article reviews the studies of affinity biosensors integrated with ACEK enrichment in the past decade, and summarizes the latest detection methods, detection devices and applications, hoping to provide some insights and references for researchers in related fields.
Collapse
Affiliation(s)
- Min Song
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, P. R. China
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, P. R. China
| | - Zhijia Peng
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, P. R. China
| | - Maoxiao Zhang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, P. R. China
| | - Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
9
|
Niu C, Wang C, Li F, Zheng X, Xing X, Zhang C. Aptamer assisted CRISPR-Cas12a strategy for small molecule diagnostics. Biosens Bioelectron 2021; 183:113196. [PMID: 33839534 DOI: 10.1016/j.bios.2021.113196] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/03/2021] [Accepted: 03/20/2021] [Indexed: 12/26/2022]
Abstract
Molecular diagnostics are vital for the identification, prevention, and treatment of numerous diseases and are of particular demand in point-of-care (POC) settings. Nevertheless, most reported biosensors based on the CRISPR-Cas system have focused on nucleic-acid targets. Here, we report a versatile diagnostic strategy for small molecules called Molecular Radar (Random Molecular Aptamer-Dependent CRISPR-Assist Reporter), The workflow is simple, convenient, and rapid (conducted at 37 °C in under 25 min), indicating the substantial potential of the proposed assay could be adapted into a biosensor for POC settings and on-site molecular diagnostics. This strategy is based on the CRISPR Cas12a-assisted fluorescence reporter system that consists of Cas12a, CRISPR RNA (crRNA), a single-stranded DNA (ssDNA) probe labeled with a fluorophore at the 5' end and a quencher at the 3' end (F-Q probe), and a single-stranded DNA aptamer for the target molecule. In the presence of a target molecule, the aptamer binds to this small molecule with high specificity and affinity, resulting in a decrease of aptamer hybridized to the crRNA-Cas12a duplex. This decrease in activated Cas12a leads to a significant reduction in fluorescence signal. In this study, adenosine-5'-triphosphate (ATP) was selected as model target molecule and an ATP detect method was developed with high specificity and sensitivity with a linear range from 25 to 500 μM and a detection limit of 104 nM. Moreover, the particular characteristics of CRISPR-Cas12a that we report here for the first time have enriched our understanding of Cas12a and provided guidance for further research on CRISPR-Cas12a-based biosensors.
Collapse
Affiliation(s)
- Chenqi Niu
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chuyi Wang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fan Li
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiang Zheng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xinhui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Simmons MD, Miller LM, Sundström MO, Johnson S. Aptamer-Based Detection of Ampicillin in Urine Samples. Antibiotics (Basel) 2020; 9:E655. [PMID: 33003560 PMCID: PMC7601551 DOI: 10.3390/antibiotics9100655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
The misuse of antibiotics in health care has led to increasing levels of drug resistant infections (DRI's) occurring in the general population. Most technologies developed for the detection of DRI's typically focus on phenotyping or genotyping bacterial resistance rather than on the underlying cause and spread of DRI's; namely the misuse of antibiotics. An aptameric based assay has been developed for the monitoring of ampicillin in urine samples, for use in determining optimal antibiotic dosage and monitoring patient compliance with treatment. The fluorescently labelled aptamers were shown to perform optimally at pH 7, ideal for buffered clinical urine samples, with limits of detection as low as 20.6 nM, allowing for determination of ampicillin in urine in the clinically relevant range of concentrations (100 nM to 100 µM). As the assay requires incubation for only 1 h with a small sample volume, 50 to 150 µL, the test would fit within current healthcare pathways, simplifying the adoption of the technology.
Collapse
Affiliation(s)
- Matthew D. Simmons
- Department of Electronic Engineering, University of York, Heslington, York, North Yorkshire YO10 5DD, UK;
| | - Lisa M. Miller
- Department of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, UK;
| | - Malin O. Sundström
- Department of Electronic Engineering, University of York, Heslington, York, North Yorkshire YO10 5DD, UK;
| | - Steven Johnson
- Department of Electronic Engineering, University of York, Heslington, York, North Yorkshire YO10 5DD, UK;
| |
Collapse
|
11
|
An electrochemiluminescence aptamer sensor for chloramphenicol based on GO-QDs nanocomposites and enzyme-linked aptamers. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113870] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Rasolzadeh F, Hashemi P. Magnetic fiber headspace solid-phase microextraction coupled to GC-MS for the extraction and quantitation of polycyclic aromatic hydrocarbons. Mikrochim Acta 2019; 186:432. [PMID: 31197476 DOI: 10.1007/s00604-019-3482-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
A technique was developed for magnetic fiber headspace-solid phase microextraction (MF-HS-SPME) of polycyclic aromatic hydrocarbons (PAHs). The efficiency of the extraction of a steel SPME fiber coated with an aminoethyl-functionalized SBA-15 (Santa Barbara Amorphous 15; a nanoporous sorbent) is substantially improved after its magnetization during HS-SPME. The effects of magnetic field strength, extraction temperature, extraction time, moisture content of the sample, desorption time and desorption temperature were optimized using a simplex method. The application of a moderately strong magnetic field to the fiber results in up to 135% increase in the extraction efficiency and wider linear dynamic ranges. The PAHs (specifically naphthalene, acenaphthene, fluorene, anthracene, phenanthrene, fluoranthene and pyrene) were then quantified by GC-MS analysis. Comparison of an electromagnet and a permanent magnet indicated the superior effect of the permanent magnet for the target analytes due to the Ohmic heating of the magnetic coil and its negative effect on the extraction of some of the PAHs. The limits of detections of the PAHs are between 0.17 to 0.57 ng g-1 by using the electromagnet, and between 0.10 and 0.32 ng g-1 for the permanent magnet. Relative standard deviations of 2.9 to 7.6% were obtained for six replicated analyses of the analytes. The method was applied to some polluted soil samples, and satisfactory results were obtained. Graphical abstract Schematic representation of the designed magnetic fiber headspace solid-phase microextraction (MF-HS-SPME) system using (a) an electromagnet, (b) a pair of permanent disc magnets.
Collapse
Affiliation(s)
- Fahimeh Rasolzadeh
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, 6815144316, Iran
| | - Payman Hashemi
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, 6815144316, Iran.
| |
Collapse
|
13
|
Chen L, Liu M, Tang Y, Chen C, Wang X, Hu Z. Preparation and Properties of a Low Fouling Magnetic Nanoparticle and Its Application to the HPV Genotypes Assay in Whole Serum. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18637-18644. [PMID: 31026394 DOI: 10.1021/acsami.9b04147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold magnetic particles as a new carrier of disease diagnosis probes have attracted wide attention but encountered a bottleneck. That is, the interfacial properties of gold magnetic particles are susceptible to the influence of nonspecific biological molecules in actual diagnostic samples. Here, a novel nanoparticle made by the covalent attachment of polyethyleneimine and hyperbranched polyether polyol onto the gold shell surface of a magnetic bead demonstrated not only low fouling properties but also excellent stability in a variety of external environments, especially in complex biological systems. Most importantly, in its application as the probe for sensitive and selective fluorescence detection of high-risk human papillomavirus (HPV) genotypes 18, 16 in buffer, even in 100% serum, a good linear correlation with the concentration of HPV18/16 target DNA ranging from 5 nM to 1 μM was shown with the low detection limits. To our knowledge, this is one of the few successful examples of direct application of magnetic beads to the detection of disease markers in whole serum, suggesting that this material has good commercial potential and value.
Collapse
Affiliation(s)
- Lihua Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Shandong Province; Key Laboratory of Eco-Chemical Engineering; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
- Key Laboratory of Prevention and Control of Animal Disease of Xinjiang Corps. College of Animal Science and Technology , Shihezi University , 832000 Shihezi , Xinjiang , P. R. China
| | - Mingchao Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Shandong Province; Key Laboratory of Eco-Chemical Engineering; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Yan Tang
- Key Laboratory of Prevention and Control of Animal Disease of Xinjiang Corps. College of Animal Science and Technology , Shihezi University , 832000 Shihezi , Xinjiang , P. R. China
| | - Chuangfu Chen
- Key Laboratory of Prevention and Control of Animal Disease of Xinjiang Corps. College of Animal Science and Technology , Shihezi University , 832000 Shihezi , Xinjiang , P. R. China
| | - Xingxing Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Shandong Province; Key Laboratory of Eco-Chemical Engineering; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Zhiqiang Hu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Shandong Province; Key Laboratory of Eco-Chemical Engineering; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| |
Collapse
|
14
|
Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev 2019; 48:1390-1419. [PMID: 30707214 DOI: 10.1039/c8cs00880a] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nucleic acid aptamers are single stranded DNA or RNA sequences that specifically bind a cognate ligand. In addition to their widespread use as stand-alone affinity binding reagents in analytical chemistry, aptamers have been engineered into a variety of ligand-specific biosensors, termed aptasensors. One of the most common aptasensor formats is the duplexed aptamer (DA). As defined herein, DAs are aptasensors containing two nucleic acid elements coupled via Watson-Crick base pairing: (i) an aptamer sequence, which serves as a ligand-specific receptor, and (ii) an aptamer-complementary element (ACE), such as a short DNA oligonucleotide, which is designed to hybridize to the aptamer. The ACE competes with ligand binding, such that DAs generate a signal upon ligand-dependent ACE-aptamer dehybridization. DAs possess intrinsic advantages over other aptasensor designs. For example, DA biosensing designs generalize across DNA and RNA aptamers, DAs are compatible with many readout methods, and DAs are inherently tunable on the basis of nucleic acid hybridization. However, despite their utility and popularity, DAs have not been well defined in the literature, leading to confusion over the differences between DAs and other aptasensor formats. In this review, we introduce a framework for DAs based on ACEs, and use this framework to distinguish DAs from other aptasensor formats and to categorize cis- and trans-DA designs. We then explore the ligand binding dynamics and chemical properties that underpin DA systems, which fall under conformational selection and induced fit models, and which mirror classical SN1 and SN2 models of nucleophilic substitution reactions. We further review a variety of in vitro and in vivo applications of DAs in the chemical and biological sciences, including riboswitches and riboregulators. Finally, we present future directions of DAs as ligand-responsive nucleic acids. Owing to their tractability, versatility and ease of engineering, DA biosensors bear a great potential for the development of new applications and technologies in fields ranging from analytical chemistry and mechanistic modeling to medicine and synthetic biology.
Collapse
Affiliation(s)
- Jeffrey D Munzar
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
15
|
Zeng Y, Zhang D, Qi P. Combination of a flow cytometric bead system with 16S rRNA-targeted oligonucleotide probes for bacteria detection. Anal Bioanal Chem 2019; 411:2161-2168. [PMID: 30859270 DOI: 10.1007/s00216-019-01651-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
Abstract
Here we report a bacteria detection method based on a flow cytometric bead system and 16S rRNA-targeted oligonucleotide probes. Polymerase chain reaction (PCR) was first used to acquire bacterial DNA including bacteria-specific sequences. Half of the resulting target DNA was then captured by a capture probe immobilized on a magnetic microbead (MB) surface. The other half of the target DNA was hybridized with a fluorescence-labeled signal probe. In this manner, a sandwich DNA hybridization involving a MB-based capture probe, the target DNA, and a signal probe was realized. The MB carriers modified with reporter dye were analyzed one by one by flow cytometry through a capillary. Using PCR amplicons and this flow cytometric bead system, a detection limit of 180 cfu mL-1 was achieved, along with high selectivity that permitted the discrimination of different targets when challenged with control bacteria targets and multiplexing capabilities that enabled the simultaneous detection of two kinds of bacteria. Given these advantages, the developed method can be used for the highly sensitive and specific PCR amplicon analysis of DNA extracted from a fresh bacterial culture, as well as multiplex target analysis. Graphical abstract The flow cytometric bead system with 16S rRNA-targeted oligonucleotide probes for bacteria detection developed in this work. This system is highly specific and sensitive, with a detection limit of 180 cfu mL-1 bacteria.
Collapse
Affiliation(s)
- Yan Zeng
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, China.,Center for Ocean Megascience, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, China.,Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, Shandong, China
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, China. .,Center for Ocean Megascience, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, China. .,Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, Shandong, China.
| | - Peng Qi
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, China. .,Center for Ocean Megascience, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, China. .,Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, Shandong, China.
| |
Collapse
|
16
|
Guo J, Gao M, Song Y, Lin L, Zhao K, Tian T, Liu D, Zhu Z, Yang CJ. An Allosteric-Probe for Detection of Alkaline Phosphatase Activity and Its Application in Immunoassay. Front Chem 2018; 6:618. [PMID: 30619826 PMCID: PMC6299030 DOI: 10.3389/fchem.2018.00618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/30/2018] [Indexed: 01/22/2023] Open
Abstract
A fluorescence strategy for alkaline phosphatase (ALP) assay in complicated samples with high sensitivity and strong stability is developed based on an allosteric probe (AP). This probe consists of two DNA strands, a streptavidin (SA) aptamer labeled by fluorophore and its totally complementary DNA (cDNA) with a phosphate group on the 5′ end. Upon ALP introduction, the phosphate group on the cDNA is hydrolyzed, leaving the unhydrolyzed cDNA sequence for lambda exonuclease (λ exo) digestion and releasing SA aptamer for binding to SA beads, which results in fluorescence enhancement of SA beads that can be detected by flow cytometry or microscopy. We have achieved a detection limit of 0.012 U/mL with a detection range of 0.02~0.15 U/mL in buffer and human serum. These figures of merit are better than or comparable to those of other methods. Because the fluorescence signal is localized on the beads, they can be separated to remove fluorescence background from complicated biological systems. Notably, the new strategy not only applies to ALP detection with simple design, easy operation, high sensitivity, and good compatibility in complex solution, but also can be utilized in ALP-linked immunosorbent assays for the detection of a wide range of targets.
Collapse
Affiliation(s)
- Jingjing Guo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Mingxuan Gao
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yanling Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Lin
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Kaifeng Zhao
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Tian Tian
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Dan Liu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Chaoyong James Yang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.,Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Qu H, Wang L, Liu J, Zheng L. Direct Screening for Cytometric Bead Assays for Adenosine Triphosphate. ACS Sens 2018; 3:2071-2078. [PMID: 30084633 DOI: 10.1021/acssensors.8b00224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytometric bead assays have caught much attention because of their many exceptional advantages. Unfortunately, the immobilization of existing molecular recognition elements including monoclonal antibodies and aptamers onto solid particles may lead to the functional failure of the molecular recognition elements since they are generally obtained in free state. Herein we develop a powerful screening approach for direct and rapid discovery of aptamer based cytometric bead assays (AB-CBAs) by individually measuring the functional activity of every aptamer particles in a library and sorting them at rates of up to 108 particles per hour. The strategy is based on the transformation of molecular libraries into pools of monoclonal aptamer particles so that one individual particle displays ∼105 copies of an identical aptamer sequence. Our library design incorporates a two-color fluorescent reporter system in which changes in aptamer structure generate an optical readout, such that we can use fluorescence-activated cell sorting to rapidly and selectively separate the individual aptamer particles that exhibit large fluorescent signal change upon target binding. For demonstration, we isolated AB-CBA aptamer particles with high signaling performance for ATP after just 3 rounds of screening. We believe that the rapid and direct screening features of this strategy make it an excellent platform for generating AB-CBAs for for a wide range of important analytes.
Collapse
Affiliation(s)
- Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
18
|
Phan DT, Jin L, Wustoni S, Chen CH. Buffer-free integrative nanofluidic device for real-time continuous flow bioassays by ion concentration polarization. LAB ON A CHIP 2018; 18:574-584. [PMID: 29299579 DOI: 10.1039/c7lc01066d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To perform precision medicine in real-time, a sensor capable of continuously monitoring target biomolecules secreted from a patient under dynamic situations is essential. In this study, a novel portable device combining an aptamer probe and a nanofluidic component was developed, enabling the buffer-free continuous monitoring of small molecules in biological fluids. This integration is synergistic: the aptamer sensor is used to bind target biomolecules, triggering a fluorescence signal change, while the nanofluidic component is applied to achieve ion concentration polarization and convert serum into a clean buffer for aptamer signal regeneration. To demonstrate the system's versatility, we measured various adenosine triphosphate concentrations in human serum for hours with high sensitivity and specificity at minute temporal resolution. Our results demonstrate that this integrative device can be applied for the continuous measurement of target biomolecules and online signal regeneration in patient samples without the use of bulky clean buffer solutions for dynamic real-time healthcare.
Collapse
Affiliation(s)
- Dinh-Tuan Phan
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574.
| | | | | | | |
Collapse
|
19
|
Gao M, Guo J, Song Y, Zhu Z, Yang CJ. Detection of T4 Polynucleotide Kinase via Allosteric Aptamer Probe Platform. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38356-38363. [PMID: 29027787 DOI: 10.1021/acsami.7b14185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a vital enzyme in DNA phosphorylation and restoration, T4 polynucleotide kinase (T4 PNK) has aroused great interest in recent years. Therefore, numerous strategies have been established for highly sensitive detection of T4 PNK based on diverse signal amplification techniques. However, they often need sophisticated design, a variety of auxiliary reagents and enzymes, or cumbersome manipulations. We have designed a new kind of allosteric aptamer probe (AAP) consisting of streptavidin (SA) aptamer and the complementary DNA (cDNA) for simple detection of T4 PNK without signal amplification and with minimized interference in complex biological samples. When the 5'-terminus of the cDNA is phosphorylated by T4 PNK, the cDNA is degraded by lambda exonuclease to release the fluorescein amidite (FAM)-labeled SA aptamer, which subsequently binds to streptavidin beads. The enhancement of the fluorescence signal on SA beads can be detected precisely and easily by a microscope or flow cytometer. Our method performs well in complex biological samples as a result of the enrichment of the signaling molecules on beads, as well as simple manipulations to discard the background interference and nonbinding molecules. Without signal amplification techniques, our AAP method not only avoids complicated manipulations but also decreases the time required. With the advantages of ease of operation, reliability, and robustness for T4 PNK detection in buffer as well as real biological samples, the AAP has great potential for clinical diagnostics, inhibitor screening, and drug discovery.
Collapse
Affiliation(s)
- Mingxuan Gao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Jingjing Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Yanling Song
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
- The Key Lab of Analysis and Detection Technology for Food Safety of MOE, State Key Laboratory of Photocatalysis on Energy and Environment, College of Biological Science and Engineering, Fuzhou University , Fuzhou 350116, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Chaoyong James Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| |
Collapse
|
20
|
Cui L, Lu M, Li Y, Tang B, Zhang CY. A reusable ratiometric electrochemical biosensor on the basis of the binding of methylene blue to DNA with alternating AT base sequence for sensitive detection of adenosine. Biosens Bioelectron 2017; 102:87-93. [PMID: 29127900 DOI: 10.1016/j.bios.2017.11.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/13/2022]
Abstract
We develop a reusable ratiometric electrochemical biosensor on the basis of the binding of methylene blue (MB) to DNA with alternating AT base sequence for sensitive detection of adenosine. We design a strand 1 with MB-modified thymine (T) base in the proximal 3' termini as the capture probe for its immobilization on the gold electrode and a 3' termini ferrocene (Fc)-modified aptamer for the recognition of adenosine. The hybridization of strand 1 with the aptamer leads to the formation of a double-stranded DNA (dsDNA) and consequently the away of MB from the electrode surface and the close of Fc to the electrode surface, generating a small value of IMB/IFc (IMB and IFc are the peak currents of MB and Fc, respectively). In the presence of adenosine, its binding with the aptamer induces the release of Fc from the electrode surface and the close of MB to the electrode surface, generating a large value of IMB/IFc. As a result, adenosine may be accurately quantified by the measurement of ratiometric signal (IMB/IFc). This ratiometric electrochemical biosensor can be simply fabricated and exhibits high sensitivity with a limit of detection of as low as 90.8pM and a large dynamic range from 0.1nM to 100μM. Moreover, this biosensor demonstrates good performance with excellent selectivity, regeneration capability, high reliability and good reproducibility, and may become a universal platform for the detection of various biomolecules which can be recognized by aptamers, holding great potential for further applications in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, PR China
| | - Mengfei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, PR China
| | - Ying Li
- School of Medicine, Health Science Center,Shenzhen University, Shenzhen 518060, PR China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, PR China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
21
|
Zhang Z, Oni O, Liu J. New insights into a classic aptamer: binding sites, cooperativity and more sensitive adenosine detection. Nucleic Acids Res 2017; 45:7593-7601. [PMID: 28591844 PMCID: PMC5737652 DOI: 10.1093/nar/gkx517] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/01/2017] [Indexed: 11/27/2022] Open
Abstract
The DNA aptamer for adenosine (also for AMP and ATP) is a highly conserved sequence that has recurred in a few selections. It it a widely used model aptamer for biosensor development, and its nuclear magnetic resonance structure shows that each aptamer binds two AMP molecules. In this work, each binding site was individually removed by rational sequence design, while the remaining site still retained a similar binding affinity and specificity as confirmed by isothermal titration calorimetry. The thermodynamic parameters of binding are presented, and its biochemical implications are discussed. The number of binding sites can also be increased, and up to four sites are introduced in a single DNA sequence. Finally, the different sequences are made into fluorescent biosensors based on the structure-switching signaling aptamer design. The one-site aptamer has 3.8-fold higher sensitivity at lower adenosine concentration with a limit of detection of 9.1 μM adenosine, but weaker fluorescence signal at higher adenosine concentrations, consistent with a moderate cooperativity in the original aptamer. This work has offered insights into a classic aptamer for the relationship between the number of binding sites and sensitivity, and a shorter aptamer for improved biosensor design.
Collapse
Affiliation(s)
- Zijie Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Olatunji Oni
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
22
|
Zhao H, Wang L, Li W, Zhai S, Jiang W. Ultrasensitive and Accurate Assay of Human Methyltransferase Activity at the Single-Cell Level Based on a Single Integrated Magnetic Microprobe. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29554-29561. [PMID: 28812361 DOI: 10.1021/acsami.7b09631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human DNA methyltransferase (MTase) activity expression patterns and inhibition response are linked to related cancer initiation, progression, and therapeutic responses. Sensitive and accurate human MTase activity assay in cancer cells, especially at the single-cell level, is essential for biological study, clinical diagnosis, and therapy. Here, we developed an ultrasensitive and accurate DNA (cytosine-5)-methyltransferase 1 (Dnmt1) activity assay at the single-cell level based on a single integrated magnetic microprobe of functionalized double-stranded DNA (dsDNA) anchored to a single magnetic microbead surface. Functionalized dsDNA is designed with a hemimethylated DNA site for Dnmt1 recognition and a single-stranded tail to trigger in situ rolling circle amplification (RCA). Under the action of Dnmt1, hemimethylated dsDNA could be recognized and catalyzed to fully methylated dsDNA, which would protect them from the cleavage of BssHII. However, the dsDNA without full methylation would be cut by BssHII, making single-stranded tail separated from the single integrated microprobe. Subsequently, full methylation-protected in situ RCA could be performed, and multiple signal probes were hybridized to the single integrated microprobe for amplified signal accumulation. Finally, Dnmt1 activity could be evaluated by reading the fluorescence of the single integrated microprobe. Meanwhile, to minimize matrix interferences, magnetic separation was performed in the process. In this strategy, the single integrated magnetic microprobe was provided with integrated capacities of target recognition, signal amplification, signal accumulation, and matrix isolation. Therefore, an ultralow detection limit of 0.007 U/mL Dnmt1 was obtained, and accurate Dnmt1 activity assays in multiple cell lysates at the single-cell level were achieved. Furthermore, the inhibition effect of RG108 was evaluated conveniently. These results indicate that the single integrated magnetic microprobe-based strategy is an excellent candidate for sensitive monitoring of Dnmt1 activity and screening of anticancer drugs.
Collapse
Affiliation(s)
- Haiyan Zhao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Shandong University , Jinan 250012, China
| | - Weiqi Li
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
| | - Shumei Zhai
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
| |
Collapse
|
23
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
24
|
Using the Rubik's Cube to directly produce paper analytical devices for quantitative point-of-care aptamer-based assays. Biosens Bioelectron 2017; 96:194-200. [PMID: 28499195 DOI: 10.1016/j.bios.2017.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/15/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022]
Abstract
In this article, we describe a facile method named as Rubik's Cube stamping (RCS) for equipment-free fabrication of microfluidic paper-based analytical devices (μPADs). RCS is inspired by the worldwide ubiquitous RC toy and requires no specialized electric equipment other than a classical six-faced RC that is assembled with home-made small iron components. It can pattern various rosin microstructures in paper simply by either using different functional faces of the modified RC or applying its internal pivot mechanism to adjust the components' patterning forms on one functional face. Such a versatile stamping method is quite simple and inexpensive, and thus holds potential for producing rosin-patterned μPADs by untrained users in resource-limited environments such as small laboratories and private clinics, or even at home and in the field. Moreover, a set of one-channel devices are fabricated to design a point-of-care aptamer-based assay with near sample-in-answer-out capability that integrates enzymatic reactions for robust yet efficient signal amplification and a personal glucometer for portable, user-friendly, rapid and quantitative readout. Its utility is well demonstrated with the sensitive and specific detection of adenosine as a model target in buffer samples and undiluted human urine within several minutes. With the advantages of low cost, simplicity, portability, rapidity, and aptamer variety, this general point-of-care assay system reported here may find broad applications including home healthcare, field-based environmental monitoring or food analysis and emergency situations.
Collapse
|
25
|
Li CY, Cao D, Qi CB, Chen HL, Wan YT, Lin Y, Zhang ZL, Pang DW, Tang HW. One-step separation-free detection of carcinoembryonic antigen in whole serum: Combination of two-photon excitation fluorescence and optical trapping. Biosens Bioelectron 2017; 90:146-152. [DOI: 10.1016/j.bios.2016.11.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
|
26
|
Qi Y, Qiu L, Fan W, Liu C, Li Z. An enzyme-free flow cytometric bead assay for the sensitive detection of microRNAs based on click nucleic acid ligation-mediated signal amplification. Analyst 2017; 142:2967-2973. [DOI: 10.1039/c7an00989e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An enzyme-free flow cytometric assay is developed for the sensitive detection of microRNAs based on click nucleic acid ligation-mediated signal amplification.
Collapse
Affiliation(s)
- Yan Qi
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Liying Qiu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Zhengping Li
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| |
Collapse
|
27
|
Duan Y, Wang L, Gao Z, Wang H, Zhang H, Li H. An aptamer-based effective method for highly sensitive detection of chloramphenicol residues in animal-sourced food using real-time fluorescent quantitative PCR. Talanta 2016; 165:671-676. [PMID: 28153315 DOI: 10.1016/j.talanta.2016.12.090] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 12/17/2022]
Abstract
Chloramphenicol (CAP) residues can not only harm human health through entering food chain, but also cause the spreading of drug-resistant bacteria, thereby leading to secondary environmental pollution. Therefore, it is in urgent need of establishing an efficient technology to detect CAP residues in animal-sourced food. In this study, a novel sensitive approach for detection of CAP was designed based on a CAP specific aptamer and real-time fluorescent quantitative PCR (qRT-PCR). The CAP specific aptamer was firstly hybridized with a biotin modified complementary probe, and then was immobilized on streptavidin conjugated magnetic beads through biotin. When CAP was added, the aptamer would specifically bind with CAP by forming a hairpin structure and be released from the magnetic beads for CAP detection by qRT-PCR. Factors (i.e., probe strand length, aptamer concentration, NaCl concentration and incubation time) that would influence the determination accuracy of this aptamer-based detection system were optimized. Under the optimized conditions, the present detection system exhibited a high sensitivity toward CAP with a limit of detection of 0.1ng/mL (linear range from 0.1 to 20ng/mL). Moreover, this detection system also showed high selectivity against thiamphenicol (TAP) and florfenicol (FF), which are CAP's structure analogs. Eventually, this detection system was applied for detecting CAP in real spiked milk. The recovery rate of CAP from spiked milk samples ranged from 94.0-102.0%. These results indicated this developed detection system a promising high sensitive and specific method of CAP residues detection in animal-sourced food.
Collapse
Affiliation(s)
- Ye Duan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihui Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqiang Gao
- Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing 100026, China
| | - Huishan Wang
- Beijing Senkang Biotechnology Development Co., Ltd, Beijing 101400, China
| | - Hexiao Zhang
- Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing 100026, China.
| | - Hao Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
28
|
Shen J, Wang H, Li C, Zhao Y, Yu X, Luo X. Label-free electrochemical aptasensor for adenosine detection based on cascade signal amplification strategy. Biosens Bioelectron 2016; 90:356-362. [PMID: 27940239 DOI: 10.1016/j.bios.2016.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/21/2016] [Accepted: 12/04/2016] [Indexed: 12/19/2022]
Abstract
In this work, a simple and highly sensitive label-free electrochemical aptasensor for adenosine detection was developed based on target-aptamer binding triggered nicking endonuclease-assisted strand-replacement DNA polymerization and rolling circle amplification (RCA) strategy. The magnetic beads (MB) probe, which was attached the aptamer of adenosine and mDNA, was firstly fabricated. In the presence of adenosine, mDNA was released from MB upon recognition of the aptamer to target adenosine. The released mDNA as the primer activated autonomous DNA polymerization/nicking process and accompanied by the continuous release of replicated DNA fragments. Subsequently, numerous released DNA fragments were captured on the working electrode, and then as initiators to trigger the downstream RCA process leading to the formation of a long ssDNA concatemer for loading large amounts of Ru(NH3)63+. Therefore, a conspicuously amplified electrochemical signal through the developed dual-amplification strategy could be achieved. This method exhibited a high sensitivity toward adenosine with a detection limit of 0.032nM. Also, it exhibited high selectivity to different nucleoside families and good reproducibility. This design opens new horizons for integrating different disciplines, presenting a versatile tool for ultrasensitive detecting organic small molecules in medical research and clinical diagnosis.
Collapse
Affiliation(s)
- Jing Shen
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Hongyang Wang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Chunxiang Li
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China.
| | - Yanyan Zhao
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Xijuan Yu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China.
| |
Collapse
|
29
|
Song HY, Kang TF, Lu LP, Cheng SY. Highly sensitive aptasensor based on synergetic catalysis activity of MoS 2-Au-HE composite using cDNA-Au-GOD for signal amplification. Talanta 2016; 164:27-33. [PMID: 28107929 DOI: 10.1016/j.talanta.2016.10.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 01/10/2023]
Abstract
Single or few-layer nanosheets of MoS2 (MoS2 nanosheets) and a composite composed of MoS2 nanosheets, Au nanoparticles (AuNPs) and hemin (HE) (denoted as MoS2-Au-HE) were prepared. The composites possessed high synergetic catalysis activity towards the electroreduction of hydrogen peroxide. Furthermore, glucose oxidase (GOD) and AuNPs were used as marker of the complementary DNA (cDNA) strand of kanamycin aptamer to prepare a conjugate (reffered as cDNA-Au-GOD) that was designed as the signal probe. Both cDNA-Au-GOD and MoS2-Au-HE were applied to fabricate aptasensor for kanamycin. MoS2-Au-HE acted as solid platform for kanamycin aptamer and signal transmitters. AuNPs were employed as the supporter of cDNA and GOD which catalyze dissolved oxygen to produce hydrogen peroxide in the presence of glucose. Then cathodic peak current of H2O2 was recorded by differential pulse voltammetry (DPV). The electrochemical reduction of H2O2 was catalyzed by MoS2-Au-HE that was modified onto the surface of a glassy carbon electrode (GCE). The cathodic peak current of H2O2 was highly linearly decreased with an increase of kanamycin concentrations from 1.0ng/L to 1.0×105ng/L, with a detection limit of 0.8ng/L. This aptasensor can be used to detect kanamycin in milk with high specificity, sensitivity and selectivity.
Collapse
Affiliation(s)
- Hai-Yan Song
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Tian-Fang Kang
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Li-Ping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Shui-Yuan Cheng
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
30
|
Zhang Y, Gao D, Fan J, Nie J, Le S, Zhu W, Yang J, Li J. Naked-eye quantitative aptamer-based assay on paper device. Biosens Bioelectron 2016; 78:538-546. [PMID: 26684676 DOI: 10.1016/j.bios.2015.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 12/16/2022]
Abstract
This work initially describes the design of low-cost, naked-eye quantitative aptamer-based assays by using microfluidic paper-based analytical device (μPAD). Two new detection motifs are proposed for quantitative μPAD measurement without using external electronic readers, which depend on the length of colored region in a strip-like μPAD and the number of colorless detection microzones in a multi-zone μPAD. The length measuring method is based on selective color change of paper from colorless to blue-black via formation of iodine-starch complex. The counting method is conducted on the basis of oxidation-reduction reaction between hydrogen peroxide and potassium permanganate. Their utility is well demonstrated with sensitive, specific detection of adenosine as a model analyte with the naked eye in buffer samples and undiluted human serum. These equipment-free quantitative methods proposed thus hold great potential for the development of more aptamer-based assays that are simple, cost-efficient, portable, and user-friendly for various point-of-care applications particularly in resource-constrained environments.
Collapse
Affiliation(s)
- Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Dong Gao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Jinlong Fan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Shangwang Le
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Wenyuan Zhu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Jiani Yang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| |
Collapse
|
31
|
Lu L, Zhong HJ, He B, Leung CH, Ma DL. Development of a luminescent G-quadruplex-selective iridium(III) complex for the label-free detection of adenosine. Sci Rep 2016; 6:19368. [PMID: 26778273 PMCID: PMC4726048 DOI: 10.1038/srep19368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/14/2015] [Indexed: 01/25/2023] Open
Abstract
A panel of six luminescent iridium(III) complexes were synthesized and evaluated for their ability to act as G-quadruplex-selective probes. The novel iridium(III) complex 1 was found to be highly selective for G-quadruplex DNA, and was employed for the construction of a label-free G-quadruplex-based adenosine detection assay in aqueous solution. Two different detection strategies were investigated for adenosine detection, and the results showed that initial addition of adenosine to the adenosine aptamer gave superior results. The assay exhibited a linear response for adenosine in the concentration range of 5 to 120 μM (R(2) = 0.992), and the limit of detection for adenosine was 5 μM. Moreover, this assay was highly selective for adenosine over other nucleosides, and exhibited potential use for biological sample analysis.
Collapse
Affiliation(s)
- Lihua Lu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Bingyong He
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
32
|
Fang BY, Yao MH, Wang CY, Wang CY, Zhao YD, Chen F. Detection of adenosine triphosphate in HeLa cell using capillary electrophoresis-laser induced fluorescence detection based on aptamer and graphene oxide. Colloids Surf B Biointerfaces 2015; 140:233-238. [PMID: 26764106 DOI: 10.1016/j.colsurfb.2015.12.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 12/20/2022]
Abstract
A method for ATP quantification based on dye-labeled aptamer/graphene oxide (aptamer/GO) using capillary electrophoresis-laser induced fluorescence (CE-LIF) detecting technique has been established. In this method, the carboxyfluorescein (FAM)-labelled ATP aptamers were adsorbed onto the surface of GO, leading to the fluorescence quenching of FAM; after the incubation with a limited amount of ATP, stronger affinity between ATP aptamer and ATP resulted in the desorption of aptamers and the fluorescence restoration of FAM. Then, aptamer-ATP complex and excess of aptamer/GO and GO were separated and quantified by CE-LIF detection. It was shown that a linear relation was existing in the CE-LIF peak intensity of aptamer-ATP and ATP concentration in range of 10-700 μM, the regression equation was F=1.50+0.0470C(ATP) (R(2)=0.990), and the limit of detection was 1.28 μM (3S/N, n=5), which was one order magnitude lower than that of detection in solution by fluorescence method. The approach with excellent specificity and reproducibility has been successfully applied to detecting concentration of ATP in HeLa cell.
Collapse
Affiliation(s)
- Bi-Yun Fang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ming-Hao Yao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chun-Yuan Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chao-Yang Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Fang Chen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
33
|
Cheng D, Yu M, Fu F, Han W, Li G, Xie J, Song Y, Swihart MT, Song E. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters. Anal Chem 2015; 88:820-5. [PMID: 26641108 DOI: 10.1021/acs.analchem.5b03320] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food poisoning and infectious diseases caused by pathogenic bacteria such as Staphylococcus aureus (SA) are serious public health concerns. A method of specific, sensitive, and rapid detection of such bacteria is essential and important. This study presents a strategy that combines aptamer and antibiotic-based dual recognition units with magnetic enrichment and fluorescent detection to achieve specific and sensitive quantification of SA in authentic specimens and in the presence of much higher concentrations of other bacteria. Aptamer-coated magnetic beads (Apt-MB) were employed for specific capture of SA. Vancomycin-stabilized fluorescent gold nanoclusters (AuNCs@Van) were prepared by a simple one-step process and used for sensitive quantification of SA in the range of 32-10(8) cfu/mL with the detection limit of 16 cfu/mL via a fluorescence intensity measurement. And using this strategy, about 70 cfu/mL of SA in complex samples (containing 3 × 10(8) cfu/mL of other different contaminated bacteria) could be successfully detected. In comparison to prior studies, the developed strategy here not only simplifies the preparation procedure of the fluorescent probes (AuNCs@Van) to a great extent but also could sensitively quantify SA in the presence of much higher concentrations of other bacteria directly with good accuracy. Moreover, the aptamer and antibiotic used in this strategy are much less expensive and widely available compared to common-used antibodies, making it cost-effective. This general aptamer- and antibiotic-based dual recognition strategy, combined with magnetic enrichment and fluorescent detection of trace bacteria, shows great potential application in monitoring bacterial food contamination and infectious diseases.
Collapse
Affiliation(s)
- Dan Cheng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing 400715, People's Republic of China
| | - Mengqun Yu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing 400715, People's Republic of China
| | - Fei Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing 400715, People's Republic of China
| | - Weiye Han
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing 400715, People's Republic of China
| | - Gan Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing 400715, People's Republic of China
| | - Jianping Xie
- College of Life Sciences, Southwest University , Chongqing 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing 400715, People's Republic of China
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing 400715, People's Republic of China
| |
Collapse
|
34
|
Xing XJ, Xiao WL, Liu XG, Zhou Y, Pang DW, Tang HW. A fluorescent aptasensor using double-stranded DNA/graphene oxide as the indicator probe. Biosens Bioelectron 2015; 78:431-437. [PMID: 26655184 DOI: 10.1016/j.bios.2015.11.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 01/09/2023]
Abstract
We developed a fluorescent aptasensor based on the making use of double-stranded DNA (dsDNA)/graphene oxide (GO) as the signal probe and the activities of exonuclease I (Exo I). This method takes advantage of the stronger affinity of the aptamer to its target rather than to its complementary sequence (competitor), and the different interaction intensity of dsDNA, mononucleotides with GO. Specifically, in the absence of target, the competitor hybridizes with the aptamer, preventing the digestion of the competitor by Exo I, and thus the formed dsDNA is adsorbed on GO surface, allowing fluorescence quenching. When the target is introduced, the aptamer preferentially binds with its target. Thereby, the corresponding nuclease reaction takes place, and slight fluorescence change is obtained after the introduction of GO due to the weak affinity of the generated mononucleotides to GO. Adenosine (AD) was chosen as a model system and tested in detail. Under the optimized conditions, smaller dissociation constant (Kd, 311.0 µM) and lower detection limit (LOD, 3.1 µM) were obtained in contrast with traditional dye-labeled aptamer/GO based platform (Kd=688.8 µM, LOD=21.2 µM). Satisfying results were still obtained in the evaluation of the specificity and the detection of AD in human serum, making it a promising tool for the diagnosis of AD-relevant diseases. Moreover, we demonstrated the effect of the competitor on the LOD, and the results reveal that the sensitivity could be enhanced by using the rational competitor. The present design not only constructs a label-free aptamer based platform but also extends the application of dsDNA/GO complex in biochemical and biomedical studies.
Collapse
Affiliation(s)
- Xiao-Jing Xing
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, China; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Wan-Lu Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, China
| | - Xue-Guo Liu
- Department of Biology and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Ying Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, China
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
35
|
Li Q, Wang YD, Shen GL, Tang H, Yu RQ, Jiang JH. Split aptamer mediated endonuclease amplification for small-molecule detection. Chem Commun (Camb) 2015; 51:4196-9. [PMID: 25672262 DOI: 10.1039/c5cc00390c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel, highly sensitive split aptamer mediated endonuclease amplification strategy for the construction of aptameric sensors is reported.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | | | | | | | | | | |
Collapse
|
36
|
Zhao H, Wang YS, Tang X, Zhou B, Xue JH, Liu H, Liu SD, Cao JX, Li MH, Chen SH. An enzyme-free strategy for ultrasensitive detection of adenosine using a multipurpose aptamer probe and malachite green. Anal Chim Acta 2015; 887:179-185. [PMID: 26320800 DOI: 10.1016/j.aca.2015.05.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022]
Abstract
We report on an enzyme-free and label-free strategy for the ultrasensitive determination of adenosine. A novel multipurpose adenosine aptamer (MAAP) is designed, which serves as an effective target recognition probe and a capture probe for malachite green. In the presence of adenosine, the conformation of the MAAP is converted from a hairpin structure to a G-quadruplex. Upon addition of malachite green into this solution, a noticeable enhancement of resonance light scattering was observed. The signal response is directly proportional to the concentration of adenosine ranging from 75 pM to 2.2 nM with a detection limit of 23 pM, which was 100-10,000 folds lower than those obtained by previous reported methods. Moreover, this strategy has been applied successfully for detecting adenosine in human urine and blood samples, further proving its reliability. The mechanism of adenosine inducing MAAP to form a G-quadruplex was demonstrated by a series of control experiments. Such a MAAP probe can also be used to other strategies such as fluorescence or spectrophotometric ones. We suppose that this strategy can be expanded to develop a universal analytical platform for various target molecules in the biomedical field and clinical diagnosis.
Collapse
Affiliation(s)
- Hui Zhao
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Yong-Sheng Wang
- College of Public Health, University of South China, Hengyang, 421001, PR China.
| | - Xian Tang
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Bin Zhou
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Jin-Hua Xue
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Hui Liu
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Shan-Du Liu
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Jin-Xiu Cao
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Ming-Hui Li
- College of Public Health, University of South China, Hengyang, 421001, PR China
| | - Si-Han Chen
- College of Public Health, University of South China, Hengyang, 421001, PR China
| |
Collapse
|
37
|
Bai Y, Feng F, Zhao L, Chen Z, Wang H, Duan Y. A turn-on fluorescent aptasensor for adenosine detection based on split aptamers and graphene oxide. Analyst 2015; 139:1843-6. [PMID: 24608985 DOI: 10.1039/c4an00084f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A simple, sensitive and selective turn-on fluorescent aptasensor for adenosine detection was developed based on target-induced split aptamer fragment conjunction and different interactions of graphene oxide and the two states of the designed aptamer sequences.
Collapse
Affiliation(s)
- Yunfeng Bai
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, P. R. China.
| | | | | | | | | | | |
Collapse
|
38
|
Chen L, Huang X, Zhang Y, Yuan D. A new polymeric ionic liquid-based magnetic adsorbent for the extraction of inorganic anions in water samples. J Chromatogr A 2015; 1403:37-44. [DOI: 10.1016/j.chroma.2015.05.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 01/20/2023]
|
39
|
Zhou W, Huang PJJ, Ding J, Liu J. Aptamer-based biosensors for biomedical diagnostics. Analyst 2015; 139:2627-40. [PMID: 24733714 DOI: 10.1039/c4an00132j] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aptamers are single-stranded nucleic acids that selectively bind to target molecules. Most aptamers are obtained through a combinatorial biology technique called SELEX. Since aptamers can be isolated to bind to almost any molecule of choice, can be readily modified at arbitrary positions and they possess predictable secondary structures, this platform technology shows great promise in biosensor development. Over the past two decades, more than one thousand papers have been published on aptamer-based biosensors. Given this progress, the application of aptamer technology in biomedical diagnosis is still in a quite preliminary stage. Most previous work involves only a few model aptamers to demonstrate the sensing concept with limited biomedical impact. This Critical Review aims to summarize progress that might enable practical applications of aptamers for biological samples. First, general sensing strategies based on the unique properties of aptamers are summarized. Each strategy can be coupled to various signaling methods. Among these, a few detection methods including fluorescence lifetime, flow cytometry, upconverting nanoparticles, nanoflare technology, magnetic resonance imaging, electronic aptamer-based sensors, and lateral flow devices have been discussed in more detail since they are more likely to work in a complex sample matrix. The current limitations of this field include the lack of high quality aptamers for clinically important targets. In addition, the aptamer technology has to be extensively tested in a clinical sample matrix to establish reliability and accuracy. Future directions are also speculated to overcome these challenges.
Collapse
Affiliation(s)
- Wenhu Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Central South University, Tongzipo Road #172, Changsha 410013, Hunan, PR China.
| | | | | | | |
Collapse
|
40
|
Zhou W, Chen Q, Huang PJJ, Ding J, Liu J. DNAzyme Hybridization, Cleavage, Degradation, and Sensing in Undiluted Human Blood Serum. Anal Chem 2015; 87:4001-7. [DOI: 10.1021/acs.analchem.5b00220] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenhu Zhou
- School
of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Qingyun Chen
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Po-Jung Jimmy Huang
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jinsong Ding
- School
of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Juewen Liu
- School
of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
41
|
A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III-aided cycling amplification. Talanta 2015; 132:59-64. [DOI: 10.1016/j.talanta.2014.08.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
|
42
|
Zhang Y, Liu C, Sun S, Tang Y, Li Z. Phosphorylation-induced hybridization chain reaction on beads: an ultrasensitive flow cytometric assay for the detection of T4 polynucleotide kinase activity. Chem Commun (Camb) 2015; 51:5832-5. [DOI: 10.1039/c5cc00572h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A versatile flow cytometric bead assay (FCBA) has been developed for an ultrasensitive detection of T4 PNK activity.
Collapse
Affiliation(s)
- Yuecheng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Sujuan Sun
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Yanli Tang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Zhengping Li
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| |
Collapse
|
43
|
Balcioglu M, Buyukbekar BZ, Yavuz MS, Yigit MV. Smart-Polymer-Functionalized Graphene Nanodevices for Thermo-Switch-Controlled Biodetection. ACS Biomater Sci Eng 2014; 1:27-36. [DOI: 10.1021/ab500029h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mustafa Balcioglu
- Department
of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Burak Zafer Buyukbekar
- Department
of Metallurgy and Materials Engineering, Advanced Technology Research
and Application Center, Selcuk University, Konya, Turkey
| | - Mustafa Selman Yavuz
- Department
of Metallurgy and Materials Engineering, Advanced Technology Research
and Application Center, Selcuk University, Konya, Turkey
| | - Mehmet V. Yigit
- Department
of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
44
|
Hung SY, Shih YC, Tseng WL. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity. Anal Chim Acta 2014; 857:64-70. [PMID: 25604821 DOI: 10.1016/j.aca.2014.11.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/26/2014] [Accepted: 11/30/2014] [Indexed: 01/27/2023]
Abstract
This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the determination of adenosine in urine.
Collapse
Affiliation(s)
- Szu-Ying Hung
- Department of Chemistry, National Sun Yat-sen University, Taiwan
| | - Ya-Chen Shih
- Department of Chemistry, National Sun Yat-sen University, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan; Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Taiwan.
| |
Collapse
|
45
|
Highly sensitive and rapid bacteria detection using molecular beacon–Au nanoparticles hybrid nanoprobes. Biosens Bioelectron 2014; 57:133-8. [DOI: 10.1016/j.bios.2014.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/30/2014] [Accepted: 02/10/2014] [Indexed: 01/31/2023]
|
46
|
Qu L, Xu J, Tan X, Liu Z, Xu L, Peng R. Dual-aptamer modification generates a unique interface for highly sensitive and specific electrochemical detection of tumor cells. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7309-15. [PMID: 24801611 DOI: 10.1021/am5006783] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Because circulating tumor cells (CTCs) have been proven to be an important clue of the tumor metastasis, their detection thus plays a pivotal role in the diagnosis and prognosis of cancer. Herein, we fabricate an electrochemical sensor by directly conjugating two cell-specific aptamers, TLS1c and TLS11a, which specifically recognize MEAR cancer cells, to the surface of a glassy carbon electrode (GCE) via the formation of amide bonds. The two aptamers are simultaneously conjugated to the GCE surface via precisely controlled linkers: TLS1c through a flexible linker (a single-stranded DNA T15; ss-TLS1c) and TLS11a through a rigid linker (a double-stranded DNA T15/A15; ds-TLS11a). It is found that such ss-TLS1c/ds-TLS11a dual-modified GCEs show greatly improved sensitivity in comparison with those modified with a single type of aptamer alone or ds-TLS1c/ds-TLS11a with both rigid linkers, suggesting that our optimized, rationally designed electrode-aptamer biosensing interface may enable better recognition and thus more sensitive detection of tumor cells. Through the utilization of this dual-aptamer-modified GCE, as few as a single MEAR cell in 10(9) whole blood cells can be successfully detected with a linear range of 1-14 MEAR cells. Our work demonstrates a rather simple yet well-designed and ultrasensitive tumor cell detection method based on the cell-specific aptamer-modified GCE, showing a promising potential for further CTC-related clinical applications.
Collapse
Affiliation(s)
- Liming Qu
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, China
| | | | | | | | | | | |
Collapse
|
47
|
Wang Y, Feng J, Tan Z, Wang H. Electrochemical impedance spectroscopy aptasensor for ultrasensitive detection of adenosine with dual backfillers. Biosens Bioelectron 2014; 60:218-23. [PMID: 24813910 DOI: 10.1016/j.bios.2014.04.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 01/04/2023]
Abstract
A highly sensitive and label-free electrochemical impedance spectroscopy (EIS) aptasensor for the detection of adenosine was fabricated by co-assembling thiolated aptamer, dithiothreitol (DTT) and 6-mercaptohexanol (MCH) on gold electrode surface, forming Au/aptamer-DTT/MCH. The interfacial electron transfer resistance (Ret) of the aptasensor using [Fe(CN)6](3-/4-) as the probe increased with adenosine concentration, and the change in Ret (∆Ret) against the logarithm of adenosine concentration was linear over the range from 0.05 pM to 17 pM with a detection limit of 0.02 pM. Compared to that of aptasensors fabricated with MCH or DTT alone as the backfiller, the detection limit was improved dramatically (LOD was 0.03 nM and 0.2 pM for Au/aptamer/MCH and Au/aptamer-DTT, respectively), which was attributed primarily to the coupling of the cyclic- and linear -configuration backfillers. The coupling showed remarkably higher resistance to nonspecific adsorption, leading to low background noise and high response signal. The aptasensor reported herein is applicable for the detection of other kinds of aptamer-binding chemicals and biomolecules.
Collapse
Affiliation(s)
- Yitan Wang
- Anhui Key Laboratory of Chemo-biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Juanjuan Feng
- Anhui Key Laboratory of Chemo-biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Zhian Tan
- Anhui Key Laboratory of Chemo-biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Haiyan Wang
- Anhui Key Laboratory of Chemo-biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
48
|
Feng C, Dai S, Wang L. Optical aptasensors for quantitative detection of small biomolecules: a review. Biosens Bioelectron 2014; 59:64-74. [PMID: 24690563 DOI: 10.1016/j.bios.2014.03.014] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 01/16/2023]
Abstract
Aptasensors are aptamer-based biosensors with excellent recognition capability towards a wide range of targets. Specially, there have been ever-growing interests in the development of aptasensors for the detection of small molecules. This phenomenon is contributed to two reasons. On one hand, small biomolecules play an important role in living organisms with many kinds of biological function, such as antiarrhythmic effect and vasodilator activity of adenosine. On the other hand, the concentration of small molecules can be an indicator for disease diagnosis, for example, the concentration of ATP is closely associated with cell injury and cell viability. As a potential analysis tool in the construction of aptasensors, optical analysis has attracted much more interest of researchers due to its high sensitivity, quick response and simple operation. Besides, it promises the promotion of aptasensors in performance toward a new level. Review the development of optical aptasensors for small biomolecules will give readers an overall understanding of its progress and provide some theoretical guidelines for its future development. Hence, we give a mini-review on the advance of optical aptasensors for small biomolecules. This review focuses on recent achievements in the design of various optical aptasensors for small biomolecules, containing fluorescence aptasensors, colorimetric aptasensors, chemiluminescence aptasensors and other optical aptasensors.
Collapse
Affiliation(s)
- Chunjing Feng
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 250012 Jinan, PR China
| | - Shuang Dai
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 250012 Jinan, PR China
| | - Lei Wang
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 250012 Jinan, PR China.
| |
Collapse
|
49
|
Shahidi-Hamedani N, Shier WT, Moghadam Ariaee F, Abnous K, Ramezani M. Targeted gene delivery with noncovalent electrostatic conjugates of sgc-8c aptamer and polyethylenimine. J Gene Med 2014; 15:261-9. [PMID: 23794147 DOI: 10.1002/jgm.2718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Several strategies have been shown to improve the transfection efficiency of polyethylenimine (PEI) as a nonviral gene delivery vector. In the present study, a nucleic acid aptamer specific for protein tyrosine kinase 7 (PTK7) surface marker, sgc-8c, was conjugated electrostatically to pre-formed 10-kDa PEI/plasmid DNA polyplexes, and the ability of the conjugate to transfer genetic material was evaluated in MOLT-4 human acute lymphoblastic leukemia T-cells, which express PTK7 on their surface. METHODS Polyplexes (plasmid DNA-vector conjugates), prepared using PEI-sgc-8c conjugate and pCMVLuc as a reporter gene, were characterized in terms of particle size, surface charge and the extent of DNA condensation. Polyplexes were also evaluated for cytotoxicity using the MTS colorimetric assay, as well as for transfection efficiency in MOLT-4 cells, and compared with the results obtained in U266 cells, which lack cell surface PTK7. RESULTS Relative to pDNA/PEI, the size of pDNA/PEI/sgc-8c aptamer polyplexes increased with decreasing zeta potential. In MOLT-4 cells, pDNA/PEI/sgc-8c aptamer polyplexes exhibited an almost six- to eight-fold increase in transfection efficiency compared to that of pDNA/PEI polyplex, indicating that conjugation of sgc-8c aptamer to pre-formed 10-kDa PEI/plasmid DNA polyplexes achieved effective targeting without covalent attachment, whereas receptor-mediated conducted transfection was confirmed by performing a competitive transfection experiment and a cellular uptake study. CONCLUSIONS The results of the present study provide an example of the usefulness of a nucleic acid aptamer in the form of noncovalent, electrostatic conjugates as an approach for enhancing the transfection efficiency of a polycation vector such as PEI without significant induced cytotoxicity.
Collapse
Affiliation(s)
- Nasim Shahidi-Hamedani
- Pharmaceutical Research Centre, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | |
Collapse
|
50
|
Zhang H, Hu X, Fu X. Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels. Biosens Bioelectron 2014; 57:22-9. [PMID: 24534576 DOI: 10.1016/j.bios.2014.01.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/18/2014] [Accepted: 01/28/2014] [Indexed: 02/01/2023]
Abstract
This study reports the development of an aptamer-mediated microfluidic beads-based sensor for multiple analytes detection and quantification using multienzyme-linked nanoparticle amplification and quantum dots labels. Adenosine and cocaine were selected as the model analytes to validate the assay design based on strand displacement induced by target-aptamer complex. Microbeads functionalized with the aptamers and modified electron rich proteins were arrayed within a microfluidic channel and were connected with the horseradish peroxidases (HRP) and capture DNA probe derivative gold nanoparticles (AuNPs) via hybridization. The conformational transition of aptamer induced by target-aptamer complex contributes to the displacement of functionalized AuNPs and decreases the fluorescence signal of microbeads. In this approach, increased binding events of HRP on each nanosphere and enhanced mass transport capability inherent from microfluidics are integrated for enhancing the detection sensitivity of analytes. Based on the dual signal amplification strategy, the developed aptamer-based microfluidic bead array sensor could discriminate as low as 0.1 pM of adenosine and 0.5 pM cocaine, and showed a 500-fold increase in detection limit of adenosine compared to the off-chip test. The results proved the microfluidic-based method was a rapid and efficient system for aptamer-based targets assays (adenosine (0.1 pM) and cocaine (0.5 pM)), requiring only minimal (microliter) reagent use. This work demonstrated the successful application of aptamer-based microfluidic beads array sensor for detection of important molecules in biomedical fields.
Collapse
Affiliation(s)
- He Zhang
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People׳s Republic of China.
| | - Xinjiang Hu
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People׳s Republic of China
| | - Xin Fu
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People׳s Republic of China
| |
Collapse
|