1
|
Wang PZ, Zhang B, Xiao WJ, Chen JR. Photocatalysis Meets Copper Catalysis: A New Opportunity for Asymmetric Multicomponent Radical Cross-Coupling Reactions. Acc Chem Res 2024. [PMID: 39535732 DOI: 10.1021/acs.accounts.4c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
ConspectusIn recent years, radical-mediated cross-coupling reactions have emerged as a compelling strategy for achieving a rich diversity in molecular topologies under benign conditions. However, the inherent high reactivity of radicals presents considerable challenges in controlling reaction pathways and selectivity, which often results in a limited range of substrates and a constrained reaction profile. Given the capacity of visible-light photoredox catalysis to generate a wide variety of reactive radicals and radical ions in a controlled manner and the propensity of copper complexes toward radical species, we envisaged that the synergy between chiral copper catalysts and photoactive catalysts would pave the way for developing innovative strategies. This integration is poised to unlock a broad spectrum of enantioselective multicomponent radical cross-coupling reactions.In this Account, we describe our insights and recent efforts in the realm of enantioselective multicomponent radical cross-coupling reactions. These advancements have been achieved through the innovative application of dual photoredox/copper catalysis or bifunctional copper catalysis under visible light irradiation. Our work is systematically divided into two sections based on the activation modes. The first section focuses on photoinduced copper-catalyzed chiral C-C and C-O bond formation through a radical addition/nucleophilic trap sequence. Our discussion of chiral C-C bond formation is particularly concentrated on the asymmetric carbocyanation and carboarylation of vinylarenes, 1,3-enynes, and 1,3-dienes. Our findings underscore that irradiation with visible light can adeptly modulate the pace of radical generation, thus orchestrating consecutive reaction stages and ensuring the attainment of both chemo- and stereoselectivity. In the domain of chiral C-O bond formation, leveraging carboxylic acids as a nucleophilic oxygen source, we introduce a suite of esterification reactions of benzylic, allylic, and propargylic radicals. These radicals are derived from a variety of radical precursors, showcasing the versatility of our approach. The following section highlights our innovative discovery in the field of dual photoredox/copper catalysis, which enables enantioselective three-component radical transformations via the direct activation of aromatic alkenes. This methodology begins with the generation of formal distonic radical anions through the photocatalytic single-electron reduction of aromatic alkenes, thus, enabling orthogonal reactivity. Employing H2O, D2O, and CO2 as external electrophile agents, we have developed three types of radical cyanofunctionalization reactions: hydrocyanation, deuteriocyanation, and cyanocarboxylation. These reactions provide practical access to diversely functionalized chiral nitriles with high enantiomeric excess.Collectively, these synthetic methodologies highlight the immense potential inherent in the synergistic integration of photocatalysis and asymmetric copper catalysis. This Account aspires to deepen our comprehension of the advantages conferred by these catalytic systems, elucidating the crucial role of photocatalysis in facilitating enantioselective multicomponent radical cross-couplings. We anticipate that this Account will provide valuable insights and stimulate the evolution of innovative methodologies within this rapidly expanding field.
Collapse
Affiliation(s)
- Peng-Zi Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Bin Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| | - Jia-Rong Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| |
Collapse
|
2
|
Xie F, Dong S, Liu J, Yu M, Ren D, Zhao J, Liu X. Enantio- and Diastereoselective Copper-Catalyzed Borylative Coupling of Styrenes and Azadienes. Org Lett 2024; 26:5335-5340. [PMID: 38885466 DOI: 10.1021/acs.orglett.4c01722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Here we disclose a CuB-catalyzed reaction between aurone-derived α,β-unsaturated imines and styrenes to produce 2-substituted benzofuran derivatives bearing both the γ-boryl functionality and α,β-unsymmetric stereogenic centers. The reaction represents the first transition-metal-catalyzed unsymmetric 1,4-Michael additions of azadienes, which would enrich the arsenal of CuB catalysis in organic synthesis. In addition, the synthetically versatile boron-alkylated products can be elaborated by chemical transformations to useful optically active benzofuran heterocycles.
Collapse
Affiliation(s)
- Fang Xie
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Shijie Dong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jiayi Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Miao Yu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Deyue Ren
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiaodan Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|
3
|
Kayano K, Tsutsumi T, Murata Y, Ogasa C, Watanabe T, Sato R, Karanjit S, Namba K. Epoxide Ring-Opening Reactions for Abundant Production of Mugineic Acids and Nicotianamine Probes. Angew Chem Int Ed Engl 2024; 63:e202401411. [PMID: 38500479 DOI: 10.1002/anie.202401411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
A succinct synthetic approach to mugineic acids and 2'-hydroxynicotianamine was established. Unlike all other synthetic methods, this approach utilized epoxide ring-opening reactions to form two C-N bonds and is characterized by the absence of redox reactions. Mugineic acid was synthesized from three readily available fragments on a gram scale in 6 steps. The protected 2'-hydroxynicotianamine was also synthesized in 4 steps, and the dansyl group, serving as a fluorophore, was introduced through a click reaction after propargylation of the 2'-hydroxy group. The dansyl-labeled nicotianamine (NA) iron complexes were internalized by oocytes overexpressing ZmYS1 (from maize) or PAT1 (from human) transporters, indicating successful transport of the synthesized NA-probe through these transporters.
Collapse
Affiliation(s)
- Kimika Kayano
- Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Tomohiro Tsutsumi
- Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Yoshiko Murata
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Chie Ogasa
- Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Takehiro Watanabe
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Ryota Sato
- Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Sangita Karanjit
- Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Kosuke Namba
- Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| |
Collapse
|
4
|
Galeote O, Kennington SCD, Benedito G, Fraedrich L, Davies-Howe E, Costa AM, Romea P, Urpí F, Aullón G, Font-Bardia M, Puigjaner C. Direct, Stereodivergent, and Catalytic Michael Additions of Thioimides to α,β-Unsaturated Aldehydes - Total Synthesis of Tapentadol. Angew Chem Int Ed Engl 2024; 63:e202319308. [PMID: 38231568 DOI: 10.1002/anie.202319308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Direct and stereodivergent Michael additions of N-acyl 1,3-thiazinane-2-thiones to α,β-unsaturated aldehydes catalyzed by chiral nickel(II) complexes are reported. The reactions proceed with a remarkable regio-, diastereo-, and enantioselectivity, so access to any of the four potential Michael stereoisomers is granted through the appropriate choice of the chiral ligand of the nickel(II) complex. Simple removal of the heterocyclic scaffold furnishes a wide array of either syn or anti enantiomerically pure derivatives, which can be exploited for the asymmetric synthesis of biologically active compounds, as demonstrated in a new approach to tapentadol. In turn, a mechanism, based on theoretical calculations, is proposed to account for the stereochemical outcome of these transformations.
Collapse
Affiliation(s)
- Oriol Galeote
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Stuart C D Kennington
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Gabriela Benedito
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Lena Fraedrich
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Evan Davies-Howe
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Anna M Costa
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Pedro Romea
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Fèlix Urpí
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Gabriel Aullón
- Department of Inorganic and Organic Chemistry, Section of Inorganic Chemistry and Institut de Química Teòrica i Computacional de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Mercè Font-Bardia
- X-Ray Diffraction Unity, CCiTUB, Universitat de Barcelona, Carrer Solé i Sabarís 1-3, 08028, Barcelona, Spain
| | - Cristina Puigjaner
- X-Ray Diffraction Unity, CCiTUB, Universitat de Barcelona, Carrer Solé i Sabarís 1-3, 08028, Barcelona, Spain
| |
Collapse
|
5
|
Fay N, Kouklovsky C, de la Torre A. Natural Product Synthesis: The Endless Quest for Unreachable Perfection. ACS ORGANIC & INORGANIC AU 2023; 3:350-363. [PMID: 38075446 PMCID: PMC10704578 DOI: 10.1021/acsorginorgau.3c00040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 06/13/2024]
Abstract
Total synthesis is a field in constant progress. Its practitioners aim to develop ideal synthetic strategies to build complex molecules. As such, they are both a driving force and a showcase of the progress of organic synthesis. In this Perspective, we discuss recent notable total syntheses. The syntheses selected herein are classified according to the key strategic considerations for each approach.
Collapse
Affiliation(s)
- Nicolas Fay
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 Avenue des Sciences, 91405 Orsay, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 Avenue des Sciences, 91405 Orsay, France
| | - Aurélien de la Torre
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 Avenue des Sciences, 91405 Orsay, France
| |
Collapse
|
6
|
Zhang B, He J, Gao Y, Levy L, Oderinde MS, Palkowitz MD, Dhar TGM, Mandler MD, Collins MR, Schmitt DC, Bolduc PN, Chen T, Clementson S, Petersen NN, Laudadio G, Bi C, Kawamata Y, Baran PS. Complex molecule synthesis by electrocatalytic decarboxylative cross-coupling. Nature 2023; 623:745-751. [PMID: 37788684 PMCID: PMC10754231 DOI: 10.1038/s41586-023-06677-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Modern retrosynthetic analysis in organic chemistry is based on the principle of polar relationships between functional groups to guide the design of synthetic routes1. This method, termed polar retrosynthetic analysis, assigns partial positive (electrophilic) or negative (nucleophilic) charges to constituent functional groups in complex molecules followed by disconnecting bonds between opposing charges2-4. Although this approach forms the basis of undergraduate curriculum in organic chemistry5 and strategic applications of most synthetic methods6, the implementation often requires a long list of ancillary considerations to mitigate chemoselectivity and oxidation state issues involving protecting groups and precise reaction choreography3,4,7. Here we report a radical-based Ni/Ag-electrocatalytic cross-coupling of substituted carboxylic acids, thereby enabling an intuitive and modular approach to accessing complex molecular architectures. This new method relies on a key silver additive that forms an active Ag nanoparticle-coated electrode surface8,9 in situ along with carefully chosen ligands that modulate the reactivity of Ni. Through judicious choice of conditions and ligands, the cross-couplings can be rendered highly diastereoselective. To demonstrate the simplifying power of these reactions, concise syntheses of 14 natural products and two medicinally relevant molecules were completed.
Collapse
Affiliation(s)
- Benxiang Zhang
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Jiayan He
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Yang Gao
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Laura Levy
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Martins S Oderinde
- Department of Discovery Synthesis, Bristol Myers Squibb Research & Early Development, Princeton, NJ, USA
| | - Maximilian D Palkowitz
- Small Molecule Drug Discovery, Bristol Myers Squibb Research & Early Development, Cambridge, MA, USA
| | - T G Murali Dhar
- Bristol Myers Squibb Research & Early Development, Princeton, NJ, USA
| | - Michael D Mandler
- Bristol Myers Squibb Research & Early Development, Princeton, NJ, USA
| | - Michael R Collins
- Oncology Medicinal Chemistry Department, Pfizer Pharmaceuticals, San Diego, CA, USA
| | - Daniel C Schmitt
- Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, USA
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | | | - Cheng Bi
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
7
|
Wohlgemuth R. Synthesis of Metabolites and Metabolite-like Compounds Using Biocatalytic Systems. Metabolites 2023; 13:1097. [PMID: 37887422 PMCID: PMC10608848 DOI: 10.3390/metabo13101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland;
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
8
|
Sofiadis M, Xu D, Rodriguez AJ, Nissl B, Clementson S, Petersen NN, Baran PS. Convergent Total Synthesis of (-)-Cyclopamine. J Am Chem Soc 2023; 145:21760-21765. [PMID: 37782691 PMCID: PMC10696607 DOI: 10.1021/jacs.3c09085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A concise and enantioselective total synthesis of the Veratrum alkaloid cyclopamine is disclosed. This highly convergent synthesis with a 16-step longest linear sequence (LLS) was enabled by a de novo synthesis of the trans-6,5-heterobicycle via a strain-inducing halocyclization process, a key Tsuji-Trost cyclization to construct the fully substituted, spirocyclic THF motif with exquisite diastereocontrol, and a late-stage ring-closing metathesis (RCM) reaction to forge the central tetrasubstituted olefin.
Collapse
Affiliation(s)
- Manolis Sofiadis
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Dongmin Xu
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Anthony J. Rodriguez
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Benedikt Nissl
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | | | | | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|
9
|
Tang J, Li W, Chiu TY, Martínez-Peña F, Luo Z, Chong CT, Wei Q, Gazaniga N, West TJ, See YY, Lairson LL, Parker CG, Baran PS. Synthesis of portimines reveals the basis of their anti-cancer activity. Nature 2023; 622:507-513. [PMID: 37730997 PMCID: PMC10699793 DOI: 10.1038/s41586-023-06535-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Marine-derived cyclic imine toxins, portimine A and portimine B, have attracted attention because of their chemical structure and notable anti-cancer therapeutic potential1-4. However, access to large quantities of these toxins is currently not feasible, and the molecular mechanism underlying their potent activity remains unknown until now. To address this, a scalable and concise synthesis of portimines is presented, which benefits from the logic used in the two-phase terpenoid synthesis5,6 along with other tactics such as exploiting ring-chain tautomerization and skeletal reorganization to minimize protecting group chemistry through self-protection. Notably, this total synthesis enabled a structural reassignment of portimine B and an in-depth functional evaluation of portimine A, revealing that it induces apoptosis selectively in human cancer cell lines with high potency and is efficacious in vivo in tumour-clearance models. Finally, practical access to the portimines and their analogues simplified the development of photoaffinity analogues, which were used in chemical proteomic experiments to identify a primary target of portimine A as the 60S ribosomal export protein NMD3.
Collapse
Affiliation(s)
- Junchen Tang
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Weichao Li
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Tzu-Yuan Chiu
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Zengwei Luo
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Qijia Wei
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Thomas J West
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Yi Yang See
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Luke L Lairson
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| | | | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
10
|
Liu J, Gao S, Miliordos E, Chen M. Asymmetric Syntheses of ( Z)- or ( E)-β,γ-Unsaturated Ketones via Silane-Controlled Enantiodivergent Catalysis. J Am Chem Soc 2023; 145:19542-19553. [PMID: 37639380 PMCID: PMC11144060 DOI: 10.1021/jacs.3c02595] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cu-catalyzed highly stereoselective and enantiodivergent syntheses of (Z)- or (E)-β,γ-unsaturated ketones from 1,3-butadienyl silanes are developed. The nature of the silyl group of the dienes has a significant impact on the stereo- and enantioselectivity of the reactions. Under the developed catalytic systems, the reactions of acyl fluorides with phenyldiemthylsilyl-substituted 1,3-diene gave (Z)-β,γ-unsaturated ketones bearing an α-tertiary stereogenic center with excellent enantioselectivities and high Z-selectivities, where the reactions with triisopropylsilyl-substituted 1,3-butadiene formed (E)-β,γ-unsaturated ketones with high optical purities and excellent E-selectivities. The products generated from the reactions contain three functional groups with orthogonal chemical reactivities, which can undergo a variety of transformations to afford synthetically valuable intermediates.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
11
|
Angyal P, Hegedüs K, Mészáros BB, Daru J, Dudás Á, Galambos AR, Essmat N, Al-Khrasani M, Varga S, Soós T. Total Synthesis and Structural Plasticity of Kratom Pseudoindoxyl Metabolites. Angew Chem Int Ed Engl 2023; 62:e202303700. [PMID: 37332089 DOI: 10.1002/anie.202303700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Mitragynine pseudoindoxyl, a kratom metabolite, has attracted increasing attention due to its favorable side effect profile as compared to conventional opioids. Herein, we describe the first enantioselective and scalable total synthesis of this natural product and its epimeric congener, speciogynine pseudoindoxyl. The characteristic spiro-5-5-6-tricyclic system of these alkaloids was formed through a protecting-group-free cascade relay process in which oxidized tryptamine and secologanin analogues were used. Furthermore, we discovered that mitragynine pseudoindoxyl acts not as a single molecular entity but as a dynamic ensemble of stereoisomers in protic environments; thus, it exhibits structural plasticity in biological systems. Accordingly, these synthetic, structural, and biological studies provide a basis for the planned design of mitragynine pseudoindoxyl analogues, which can guide the development of next-generation analgesics.
Collapse
Affiliation(s)
- Péter Angyal
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Kristóf Hegedüs
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Bence Balázs Mészáros
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - János Daru
- Department of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Ádám Dudás
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Szilárd Varga
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| |
Collapse
|
12
|
Streety X, Obike JC, Townsend SD. A Hitchhiker's Guide to Problem Selection in Carbohydrate Synthesis. ACS CENTRAL SCIENCE 2023; 9:1285-1296. [PMID: 37521800 PMCID: PMC10375882 DOI: 10.1021/acscentsci.3c00507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 08/01/2023]
Abstract
Oligosaccharides are ubiquitous in molecular biology and are used for functions ranging from governing protein folding to intercellular communication. Perhaps paradoxically, the exact role of the glycan in most of these settings is not well understood. One reason for this contradiction concerns the fact that carbohydrates often appear in heterogeneous form in nature. These mixtures complicate the isolation of pure material and characterization of structure-activity relationships. As a result, a major bottleneck in glycoscience research is the synthesis and modification of pure materials. While synthetic and chemoenzymatic methods have enabled access to homogeneous tool compounds, a central problem, particularly for newer synthetic chemists, is the matter of problem selection. This outlook aims to provide an entry level overview of fundamental principles in carbohydrate chemistry with an eye toward enabling solutions to frontier challenges.
Collapse
|
13
|
Umemiya S, Shinagawa N, Terada M. Scalable Total Synthesis of Leucascandrolide A Macrolactone Using a Chiral Phosphoric Acid/CuX Combined Catalytic System. Org Lett 2023; 25:1924-1928. [PMID: 36920186 DOI: 10.1021/acs.orglett.3c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A scalable total synthesis of leucascandrolide A macrolactone has been accomplished with a longest linear sequence of 17 steps from readily available feedstocks in 31.2% yield. The key steps in this synthesis are the enantioselective allylation reaction by chiral phosphoric acid (CPA)/CuBr cooperative catalysis and the diastereoselective catalytic crotylation in the presence of CPA with CuCl. These catalytic reactions can be performed on a gram scale to afford the desired products with excellent stereoselectivities.
Collapse
Affiliation(s)
- Shigenobu Umemiya
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Naoya Shinagawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
14
|
Lin Y, Zhang R, Wang D, Cernak T. Computer-aided key step generation in alkaloid total synthesis. Science 2023; 379:453-457. [PMID: 36730413 DOI: 10.1126/science.ade8459] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Efficient chemical synthesis is critical to satisfying future demands for medicines, materials, and agrochemicals. Retrosynthetic analysis of modestly complex molecules has been automated over the course of decades, but the combinatorial explosion of route possibilities has challenged computer hardware and software until only recently. Here, we explore a computational strategy that merges computer-aided synthesis planning with molecular graph editing to minimize the number of synthetic steps required to produce alkaloids. Our study culminated in an enantioselective three-step synthesis of (-)-stemoamide by leveraging high-impact key steps, which could be identified in computer-generated retrosynthesis plans using graph edit distances.
Collapse
Affiliation(s)
- Yingfu Lin
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rui Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Di Wang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tim Cernak
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Scott KA, Groch JR, Bao J, Marshall CM, Allen RA, Nick SJ, Lauta NR, Williams RE, Qureshi MH, Delost MD, Njardarson JT. Minimalistic graphical presentation approach for total syntheses. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Lu HH, Gan KJ, Ni FQ, Zhang Z, Zhu Y. Concise Total Synthesis of Salimabromide. J Am Chem Soc 2022; 144:18778-18783. [PMID: 36194507 DOI: 10.1021/jacs.2c08337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We achieved a concise total synthesis of salimabromide by using a novel intramolecular radical cyclization to simultaneously construct the unique benzo-fused [4.3.1] carbon skeleton and the vicinal quaternary stereocenters. Other notable transformations include a tandem Michael/Mukaiyama aldol reaction to introduce most of the molecule's structural elements, along with hidden information for late-stage transformations, an intriguing tandem oxidative cyclization of a diene to form the bridged butyrolactone and enone moieties spontaneously, and a highly enantioselective hydrogenation of a cycloheptenone derivative (97% ee) that paved the way for the asymmetric synthesis of salimabromide.
Collapse
Affiliation(s)
- Hai-Hua Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Kang-Ji Gan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China.,Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fu-Qiang Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Zhihan Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Yao Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| |
Collapse
|
17
|
Palkowitz MD, Laudadio G, Kolb S, Choi J, Oderinde MS, Ewing TEH, Bolduc PN, Chen T, Zhang H, Cheng PTW, Zhang B, Mandler MD, Blasczak VD, Richter JM, Collins MR, Schioldager RL, Bravo M, Dhar TGM, Vokits B, Zhu Y, Echeverria PG, Poss MA, Shaw SA, Clementson S, Petersen NN, Mykhailiuk PK, Baran PS. Overcoming Limitations in Decarboxylative Arylation via Ag-Ni Electrocatalysis. J Am Chem Soc 2022; 144:17709-17720. [PMID: 36106767 PMCID: PMC9805175 DOI: 10.1021/jacs.2c08006] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A useful protocol for achieving decarboxylative cross-coupling (DCC) of redox-active esters (RAE, isolated or generated in situ) and halo(hetero)arenes is reported. This pragmatically focused study employs a unique Ag-Ni electrocatalytic platform to overcome numerous limitations that have plagued this strategically powerful transformation. In its optimized form, coupling partners can be combined in a surprisingly simple way: open to the air, using technical-grade solvents, an inexpensive ligand and Ni source, and substoichiometric AgNO3, proceeding at room temperature with a simple commercial potentiostat. Most importantly, all of the results are placed into context by benchmarking with state-of-the-art methods. Applications are presented that simplify synthesis and rapidly enable access to challenging chemical space. Finally, adaptation to multiple scale regimes, ranging from parallel milligram-based synthesis to decagram recirculating flow is presented.
Collapse
Affiliation(s)
- Maximilian D Palkowitz
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gabriele Laudadio
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Simon Kolb
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin Choi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Martins S Oderinde
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Tamara El-Hayek Ewing
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Philippe N Bolduc
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - TeYu Chen
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Hao Zhang
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Peter T W Cheng
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Benxiang Zhang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael D Mandler
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Vanna D Blasczak
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jeremy M Richter
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Michael R Collins
- Oncology Medicinal Chemistry Department, Pfizer Pharmaceuticals, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Ryan L Schioldager
- Oncology Medicinal Chemistry Department, Pfizer Pharmaceuticals, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Martin Bravo
- Oncology Medicinal Chemistry Department, Pfizer Pharmaceuticals, 10770 Science Center Drive, San Diego, California 92121, United States
| | - T G Murali Dhar
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Benjamin Vokits
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Yeheng Zhu
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | | | - Michael A Poss
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Scott A Shaw
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | | | | | | | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Fan Y, Yu L, Gardiner MG, Coote ML, Sherburn MS. Enantioselective oxa-Diels-Alder Sequences of Dendralenes. Angew Chem Int Ed Engl 2022; 61:e202204872. [PMID: 35900232 PMCID: PMC9804868 DOI: 10.1002/anie.202204872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 01/09/2023]
Abstract
Diene-transmissive hetero-Diels-Alder sequences involving carbonyl dienophiles are reported for the first time. High enantioselectivities are achieved in the reaction of phenylglyoxal with a broad range of dendralene structures, through the optimization of a Pd2+ catalyst system. The initial catalyst-controlled enantioselective oxa-Diels-Alder (ODA) cycloaddition to a [3]dendralene generates a dihydropyran carrying a semicyclic diene. This participates in a subsequent catalyst or substrate-controlled Diels-Alder reaction to generate sp3 -rich fused polycyclic systems containing both heterocycles and carbocycles. Computational investigations reveal a concerted asynchronous mechanism. π-Complexation of a diene C=C bond to Pd2+ occurs in both the pre-transition state (TS) complex and in cycloaddition TSs, controlling stereoselectivity. A formal enantioselective [4+2]cycloaddition of a CO2 dienophile is demonstrated.
Collapse
Affiliation(s)
- Yi‐Min Fan
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
| | - Li‐Juan Yu
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
| | - Michael G. Gardiner
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
| | - Michelle L. Coote
- Institute for Nanoscale Science & TechnologyFlinders UniversitySturt Road, Bedford ParkSouth Australia5042Australia
| | - Michael S. Sherburn
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
| |
Collapse
|
19
|
Multicomponent Reactions for the Synthesis of Active Pharmaceutical Ingredients. Pharmaceuticals (Basel) 2022; 15:ph15081009. [PMID: 36015157 PMCID: PMC9416173 DOI: 10.3390/ph15081009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Multicomponent reactions 9i.e., those that engage three or more starting materials to form a product that contains significant fragments of all of them), have been widely employed in the construction of compound libraries, especially in the context of diversity-oriented synthesis. While relatively less exploited, their use in target-oriented synthesis offers significant advantages in terms of synthetic efficiency. This review provides a critical summary of the use of multicomponent reactions for the preparation of active pharmaceutical principles.
Collapse
|
20
|
Fan YM, Yu LJ, Gardiner MG, Coote ML, Sherburn M. Enantioselective oxa‐Diels‐Alder Sequences of Dendralenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi-Min Fan
- Australian National University College of Science: Australian National University Research School of Chemistry AUSTRALIA
| | - Li-Juan Yu
- Australian National University College of Science: Australian National University Research School of Chemistry AUSTRALIA
| | - Michael G. Gardiner
- Australian National University College of Science: Australian National University Research School of Chemistry AUSTRALIA
| | - Michelle L. Coote
- Flinders University of South Australia: Flinders University Chemistry AUSTRALIA
| | - Michael Sherburn
- Australian National University Research School of Chemistry Building 137, Sullivan's Creek Road 0200 Canberra AUSTRALIA
| |
Collapse
|
21
|
Chemo-enzymatic synthesis of natural products and their analogs. Curr Opin Biotechnol 2022; 77:102759. [PMID: 35908314 DOI: 10.1016/j.copbio.2022.102759] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Enzymes continue to gain recognition as valuable tools in synthetic chemistry as they enable transformations, which elude conventional organochemical approaches. As such, the progressing expansion of the biocatalytic arsenal has introduced unprecedented opportunities for new synthetic strategies and retrosynthetic disconnections. As a result, enzymes have found a solid foothold in modern natural product synthesis for applications ranging from the generation of early chiral synthons to endgame transformations, convergent synthesis, and cascade reactions for the rapid construction of molecular complexity. As a primer to the state-of-the-art concerning strategic uses of enzymes in natural product synthesis and the underlying concepts, this review highlights selected recent literature examples, which make a strong case for the admission of enzymatic methodologies into the standard repertoire for complex small-molecule synthesis.
Collapse
|
22
|
Wohlgemuth R, Littlechild J. Complexity reduction and opportunities in the design, integration and intensification of biocatalytic processes for metabolite synthesis. Front Bioeng Biotechnol 2022; 10:958606. [PMID: 35935499 PMCID: PMC9355135 DOI: 10.3389/fbioe.2022.958606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The biosynthesis of metabolites from available starting materials is becoming an ever important area due to the increasing demands within the life science research area. Access to metabolites is making essential contributions to analytical, diagnostic, therapeutic and different industrial applications. These molecules can be synthesized by the enzymes of biological systems under sustainable process conditions. The facile synthetic access to the metabolite and metabolite-like molecular space is of fundamental importance. The increasing knowledge within molecular biology, enzyme discovery and production together with their biochemical and structural properties offers excellent opportunities for using modular cell-free biocatalytic systems. This reduces the complexity of synthesizing metabolites using biological whole-cell approaches or by classical chemical synthesis. A systems biocatalysis approach can provide a wealth of optimized enzymes for the biosynthesis of already identified and new metabolite molecules.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
- Swiss Coordination Committee for Biotechnology, Zurich, Switzerland
| | - Jennifer Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
23
|
Zhang Y, Szostak M. Synthesis of Natural Products by C-H Functionalization of Heterocycless. Chemistry 2022; 28:e202104278. [PMID: 35089624 PMCID: PMC9035081 DOI: 10.1002/chem.202104278] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Total synthesis is considered by many as the finest combination of art and science. During the last decades, several concepts were proposed for achieving the perfect vision of total synthesis, such as atom economy, step economy, or redox economy. In this context, C-H functionalization represents the most powerful platform that has emerged in the last years, empowering rapid synthesis of complex natural products and enabling diversification of bioactive scaffolds based on natural product architectures. In this review, we present an overview of the recent strategies towards the total synthesis of heterocyclic natural products enabled by C-H functionalization. Heterocycles represent the most common motifs in drug discovery and marketed drugs. The implementation of C-H functionalization of heterocycles enables novel tactics in the construction of core architectures, but also changes the logic design of retrosynthetic strategies and permits access to natural product scaffolds with novel and enhanced biological activities.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
24
|
Cao MY, Ma BJ, Gu QX, Fu B, Lu HH. Concise Enantioselective Total Synthesis of Daphenylline Enabled by an Intramolecular Oxidative Dearomatization. J Am Chem Soc 2022; 144:5750-5755. [PMID: 35289615 DOI: 10.1021/jacs.2c01674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Daphenylline is a structurally unique member of the triterpenoid Daphniphyllum natural alkaloids, which exhibit intriguing biological activities. Six total syntheses have been reported, five of which utilize aromatization approaches. Herein, we report a concise protecting-group-free total synthesis by means of a novel intramolecular oxidative dearomatization reaction, which concurrently generates the critical seven-membered ring and the quaternary-containing vicinal stereocenters. Other notable transformations include a tandem reductive amination/amidation double cyclization reaction, to assemble the cage-like architecture, and installation of the other two chiral stereocenters via a highly enantioselective rhodium-catalyzed challenging hydrogenation of the diene intermediate (90% e.e.) and an unprecedented remote acid-directed Mukaiyama-Michael reaction of the complex benzofused cyclohexanone (13:1 d.r.).
Collapse
Affiliation(s)
- Meng-Yue Cao
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bin-Jie Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Qing-Xiu Gu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bei Fu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hai-Hua Lu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
25
|
Harwood SJ, Palkowitz MD, Gannett CN, Perez P, Yao Z, Sun L, Abruña HD, Anderson SL, Baran PS. Modular terpene synthesis enabled by mild electrochemical couplings. Science 2022; 375:745-752. [PMID: 35175791 PMCID: PMC9248352 DOI: 10.1126/science.abn1395] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synthesis of terpenes is a large field of research that is woven deeply into the history of chemistry. Terpene biosynthesis is a case study of how the logic of a modular design can lead to diverse structures with unparalleled efficiency. This work leverages modern nickel-catalyzed electrochemical sp2-sp3 decarboxylative coupling reactions, enabled by silver nanoparticle-modified electrodes, to intuitively assemble terpene natural products and complex polyenes by using simple modular building blocks. The step change in efficiency of this approach is exemplified through the scalable preparation of 13 complex terpenes, which minimized protecting group manipulations, functional group interconversions, and redox fluctuations. The mechanistic aspects of the essential functionalized electrodes are studied in depth through a variety of spectroscopic and analytical techniques.
Collapse
Affiliation(s)
| | | | - Cara N. Gannett
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA
| | - Paulo Perez
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT, 84112, USA
| | - Zhen Yao
- Asymchem Life Sciences (Tianjin) Co., Ltd. No. 71, 7 Ave., TEDA Tianjin, 300457, P.R. China
| | - Lijie Sun
- Asymchem Life Sciences (Tianjin) Co., Ltd. No. 71, 7 Ave., TEDA Tianjin, 300457, P.R. China
| | - Hector D. Abruña
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA,Correspondence to: , ,
| | - Scott L. Anderson
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT, 84112, USA,Correspondence to: , ,
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, 92037, USA.,Correspondence to: , ,
| |
Collapse
|
26
|
Leblond A, Houari I, Beauxis Y, Leblanc K, Poupon E, Beniddir MA. Chemoinformatic Exploration of "Bioinspired Metabolomes" Illuminates Diacetyl Assembly Pathways Toward Nesteretal A-Like Cage Molecules. Org Lett 2022; 24:1247-1252. [PMID: 35112872 DOI: 10.1021/acs.orglett.2c00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An appealing and challenging cage structure along with an unusual biosynthetic pathway prompted us to explore an expeditious bioinspired one-pot total synthesis of nesteretal A. An unconventional strategy was chosen, and a cascade reaction starting from diacetyl was studied. Under organocatalytic conditions mimicking an aldolase, nesteretal A and a related cage analogue were anticipated by in silico metabolization, detected, targeted, and characterized.
Collapse
Affiliation(s)
- Axel Leblond
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Inès Houari
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Yann Beauxis
- Université de Paris, CNRS, CiTCoM, F-75006 Paris, France
| | - Karine Leblanc
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Erwan Poupon
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Mehdi A Beniddir
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| |
Collapse
|
27
|
Xu Y, Gan Q, Samkian AE, Ko JH, Grubbs RH. Bulky Cyclometalated Ruthenium Nitrates for Challenging
Z
‐Selective Metathesis: Efficient One‐Step Access to α‐Oxygenated
Z
‐Olefins from Acrylates and Allyl Alcohols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yan Xu
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena California 91125 United States
| | - Quan Gan
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena California 91125 United States
| | - Adrian E. Samkian
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena California 91125 United States
| | - Jeong Hoon Ko
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena California 91125 United States
| | - Robert H. Grubbs
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena California 91125 United States
| |
Collapse
|
28
|
Javed S, Ganguly A, Dissanayake GC, Hanson PR. An Iterative Phosphate Tether Mediated Approach for the Synthesis of Complex Polyol Subunits. Org Lett 2022; 24:16-21. [PMID: 34898227 DOI: 10.1021/acs.orglett.1c03350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A pot-economical approach to advanced polyol subunits is reported. The key reactions involved are iterative use of a phosphate tether-mediated one-pot sequential RCM/CM/H2 with subsequent utilization of either a regio-/diasteroselective cuprate addition or a Pd-catalyzed reductive allylic transposition. This method highlights the asymmetric synthesis of 12 complex polyol subunits in 4-6 one-pot sequential operations with a total of 12-14 reactions, of which 4-5 are catalytic, with minimal workup and purification procedures.
Collapse
Affiliation(s)
- Salim Javed
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| | - Arghya Ganguly
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Gihan C Dissanayake
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Paul R Hanson
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
29
|
Fuwa H. Total Synthesis of (−)-Exiguolide, a Potent Anticancer Marine Macrolide. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Cuan Y, Li W, Dou Y, Yang G. Facile and scalable synthesis of baphicacanthin A by a two-pot procedure. Nat Prod Res 2021; 37:1439-1443. [PMID: 34852687 DOI: 10.1080/14786419.2021.2011275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Facile two-pot total synthesis of baphicacanthin A, a natural phenoxazinone alkaloid isolated from the roots of Baphicacanthus cusia which has been utilized as a traditional chinese medicine to effectively treat disease caused by coronavirus, has been developed from simple and commercially available starting materials. Catalytic aerobic oxidative cross-cyclocondensation of equimolar 2-aminophenol and 3-methoxy-2-hydroxylphenol in water was used to construct the key molecular skeleton 2-hydroxy-3H-phenoxazin-3-one. Gram scale synthesis was realized in 80% overall yield with practical convenience.
Collapse
Affiliation(s)
- Yalong Cuan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Wenhao Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Yingchao Dou
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Guanyu Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Xu Y, Gan Q, Samkian AE, Ko JH, Grubbs RH. Bulky Cyclometalated Ruthenium Nitrates for Challenging Z-Selective Metathesis: Efficient One-Step Access to α-Oxygenated Z-Olefins from Acrylates and Allyl Alcohols. Angew Chem Int Ed Engl 2021; 61:e202113089. [PMID: 34779113 DOI: 10.1002/anie.202113089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 11/09/2022]
Abstract
α-Oxygenated Z-olefins are ubiquitous in biologically active molecules and serve as versatile handles for organic synthesis, but their syntheses are often tedious and less selective. Here we report the efficient Z-selective metathesis of various terminal acrylates and allyl alcohols, which enables facile and selective construction of high value-added α-oxygenated Z-olefins from readily available feedstock chemicals. These challenging metathesis transformations are enabled by novel cyclometalated Ru-carbene-nitrate complexes bearing bulky-yet-flexible side arms, whose assembly was unlocked by new organometallic syntheses.
Collapse
Affiliation(s)
- Yan Xu
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Quan Gan
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Adrian E Samkian
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Jeong Hoon Ko
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Robert H Grubbs
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| |
Collapse
|
32
|
Abstract
Natural products are constructed by organisms in impressive ways through various highly selective enzyme-catalyzed chemical reactions. Over the past century, there has been considerable interest in understanding and emulating the underlying biosynthetic logic for the target molecule. The successful implementation of a biomimetic strategy usually has some uniquely valuable benefits over other abiotic routes in total synthesis by (1) corroborating the chemical feasibility of a given biogenetic hypothesis and further unraveling some insightful implications for future biosynthetic studies and (2) providing remarkably more concise access to not only the original synthetic target but also diversified biogenetically related congeners, which may result in either the structural reassignment of previously disclosed natural products or the anticipation of undiscovered natural products. However, for the devised essential biomimetic transformation, fine-tuning the optimization of the substrates and the reaction conditions can sometimes be painstakingly challenging. Turning to nature for inspiration can provide additional impetus for methodological innovations.Previously used as oral veterinary drugs, lankacidins have potential as next-generation antibiotics to tackle the problems caused by multidrug-resistant bacteria with novel modes of action (MoAs). The hypersensitive and densely functionalized lactonic core within this family of macrocyclic polyketides poses a formidable challenge for chemical total synthesis and derivatization. In this account, we summarized the evolution of a unified biomimetic approach toward 10 lankacidin antibiotics and their linear biosynthetic intermediates in the longest linear 7-12 steps from readily available starting materials. Our endeavor commenced with an intermolecular bioinspired amido sulfone-based Mannich reaction approach to assemble 2 advanced fragments under mild biphasic organocatalytic conditions. It successfully gave rise to stereodivergent access to 4 C2/C18-isomeric lankacyclinols but failed to efficiently deliver lactone-containing congeners through Stille macrocyclization. Facilitated by the thermolysis chemistry of N,O-acetal to generate the requisite N-acyl-1-azahexatriene species, we realized the projected Mannich macrocyclization and eight macrocyclic lankacidins can be produced by orchestrated desilylative manipulations. In this process, we were able to perform structural reassignments of isolankacidinol (7 to 50) and isolankacyclinol (104 to 83) and, for the first time, elucidate the natural occurrence of 2,18-bis-epi-lankacyclinol (84). Moreover, the inability of the current biomimetic route to cofurnish the reported structure of 2,18-seco-lankacidinol A (15) triggered a proposed structural revision that is rooted in reconsidered biogenesis and was confirmed by a divergent synthesis that enabled us to identify the correct isomer (116). Finally, the modular, diversity-oriented design also provided streamlined entries to acyclic 2,18-seco-lankacidinol B (120) and the biosynthetic intermediate LC-KA05 (17) together with its C7-O-deacetylated congeners in all C4/C5-stereochemical variations (18, 127-129), culminating in a need for structural revision to the six-membered lactonic segment in LC-KA05-2. The selection and execution of biomimetic strategies in lankacidin total synthesis give rise to all the previously mentioned advantages at the current stage. The modular-based, late-stage diversified complex construction offers an exceptionally high level of synthetic flexibility for future synthetic forays toward newly isolated or chemically modified congeners within the lankacidin family.
Collapse
Affiliation(s)
- Kuan Zheng
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, PR China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, PR China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| |
Collapse
|
33
|
Wang Z, Hui C. Contemporary advancements in the semi-synthesis of bioactive terpenoids and steroids. Org Biomol Chem 2021; 19:3791-3812. [PMID: 33949606 DOI: 10.1039/d1ob00448d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many natural products have intriguing biological properties that arise from their fascinating chemical structures. However, the intrinsic complexity of the structural skeleton and the reactive functional groups on natural products pose tremendous challenges to chemical syntheses. Semi-synthesis uses chemical compounds isolated from natural sources as the starting materials to produce other novel compounds with distinct chemical and medicinal properties. In particular, advancements in various types of sp3 C-H bond functionalization reactions and skeletal rearrangement methods have contributed to the re-emergence of semi-synthesis as an efficient approach for the synthesis of structurally complex bioactive natural products. Here, we begin with a brief discussion of several bioactive natural products that were obtained via a semi-synthetic approach between 2008 and 2015 and we then discuss in-depth contemporary advancements in the semi-synthesis of bioactive terpenoids and steroids reported during 2016-2020.
Collapse
Affiliation(s)
- Zhuo Wang
- Southern University of Science and Technology, School of Medicine, Shenzhen, 518055, People's Republic of China.
| | - Chunngai Hui
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
34
|
Cohen Y, Augustin AU, Levy L, Jones PG, Werz DB, Marek I. Regio- and Diastereoselective Copper-Catalyzed Carbomagnesiation for the Synthesis of Penta- and Hexa-Substituted Cyclopropanes. Angew Chem Int Ed Engl 2021; 60:11804-11808. [PMID: 33742749 DOI: 10.1002/anie.202102509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 11/07/2022]
Abstract
Despite the highly strained nature of cyclopropanes possessing three vicinal quaternary carbon stereocenters, the regio- and diastereoselective copper-catalyzed carbomagnesiation reaction of cyclopropenes provides an easy and efficient access to these novel persubstituted cyclopropyl cores with a complete regio- and diastereoselectivity.
Collapse
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - André U Augustin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - Laura Levy
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - Peter G Jones
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| |
Collapse
|
35
|
Cohen Y, Augustin AU, Levy L, Jones PG, Werz DB, Marek I. Regio‐ and Diastereoselective Copper‐Catalyzed Carbomagnesiation for the Synthesis of Penta‐ and Hexa‐Substituted Cyclopropanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - André U. Augustin
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Laura Levy
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Ilan Marek
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| |
Collapse
|