1
|
Chen HA, Okuda T, Lenz AK, Scheitl CPM, Schindelin H, Höbartner C. Structure and catalytic activity of the SAM-utilizing ribozyme SAMURI. Nat Chem Biol 2025:10.1038/s41589-024-01808-w. [PMID: 39779902 DOI: 10.1038/s41589-024-01808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Ribozymes that catalyze site-specific RNA modification have recently gained increasing interest for their ability to mimic methyltransferase enzymes and for their application to install molecular tags. Recently, we reported SAMURI as a site-specific alkyltransferase ribozyme using S-adenosylmethionine (SAM) or a stabilized analog to transfer a methyl or propargyl group to N3 of an adenosine. Here, we report the crystal structures of SAMURI in the postcatalytic state. The structures reveal a three-helix junction with the catalytic core folded into four stacked layers, harboring the cofactor and the modified nucleotide. Detailed structure-activity analyses explain the cofactor scope and the structural basis for site selectivity. A structural comparison of SAMURI with SAM riboswitches sheds light on how the synthetic ribozyme overcomes the strategies of natural riboswitches to avoid self-methylation. Our results suggest that SAM and its analogs may serve as substrates for various RNA-catalyzed reactions, for which the corresponding ribozymes remain to be identified.
Collapse
Affiliation(s)
- Hsuan-Ai Chen
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Takumi Okuda
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ann-Kathrin Lenz
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Carolin P M Scheitl
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| | - Claudia Höbartner
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Miyazaki Y, Nakane R, Tanishi S, Matsumura S, Ikawa Y. Catalytic cleave of an RNA substrate that bypasses the reorganization of its secondary structure during substrate recognition by a trans-acting VS ribozyme. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-16. [PMID: 39470222 DOI: 10.1080/15257770.2024.2421307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/22/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Varkud satellite ribozyme (VS ribozyme) is a class of catalytic RNA with self-cleavage activity. The wild-type VS ribozyme has structural modularity with a relatively large catalytic module (H2-H6 elements) and a small substrate module (H1 element). The two modules can be dissected physically, and the substrate H1 RNA is recognized and then cleaved by the rest of the parent ribozyme serving as catalytic RNA. We characterized the catalytic properties of a bimolecular VS ribozyme developed and employed for an in-droplet evolution experiment of the VS ribozyme. We examined the effects of polyamines and several divalent metal ions. The results obtained in this study would be useful for the optimization of laboratory evolution of the VS ribozyme.
Collapse
Affiliation(s)
- Yuki Miyazaki
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama, Japan
| | - Ryu Nakane
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Shogo Tanishi
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama, Japan
| | - Shigeyoshi Matsumura
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama, Japan
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Yoshiya Ikawa
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama, Japan
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| |
Collapse
|
3
|
Parra-Meneses V, Silva-Galleguillos V, Cepeda-Plaza M. Exploring the catalytic mechanism of the 10-23 DNAzyme: insights from pH-rate profiles. Org Biomol Chem 2024; 22:6833-6840. [PMID: 39115293 DOI: 10.1039/d4ob01125b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The 10-23 DNAzyme, a catalytic DNA molecule with RNA-cleaving activity, has garnered significant interest for its potential therapeutic applications as a gene-silencing agent. However, the lack of a detailed understanding about its mechanism has hampered progress. A recent structural analysis has revealed a highly organized conformation thanks to the stabilization of specific interactions within the catalytic core of the 10-23 DNAzyme, which facilitate the cleavage of RNA. In this configuration, it has been shown that G14 is in good proximity to the cleavage site which suggests its role as a general base, by activating the 2'-OH nucleophile, in the catalysis of the 10-23 DNAzyme. Also, the possibility of a hydrated metal acting as a general acid has been proposed. In this study, through activity assays, we offer evidence of the involvement of general acid-base catalysis in the mechanism of the 10-23 DNAzyme by analyzing its pH-rate profiles and the role of G14, and metal cofactors like Mg2+ and Pb2+. By substituting G14 with its analogue 2-aminopurine and examining the resultant pH-rate profiles, we propose the participation of G14 in a catalytically relevant proton transfer event, acting as a general base. Further analysis, using Pb2+ as a cofactor, suggests the capability of the hydrated metal ion to act as a general acid. These functional results provide critical insights into the catalytic strategies of RNA-cleaving DNAzymes, revealing common mechanisms among nucleic acid enzymes that cleave RNA.
Collapse
|
4
|
DasGupta S. Synthetic antibodies for accelerated RNA crystallography. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1869. [PMID: 39187256 DOI: 10.1002/wrna.1869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024]
Abstract
RNA structure is crucial to a wide range of cellular processes. The intimate relationship between macromolecular structure and function necessitates the determination of high-resolution structures of functional RNA molecules. X-ray crystallography is the predominant technique used for macromolecular structure determination; however, solving RNA structures has been more challenging than their protein counterparts, as reflected in their poor representation in the Protein Data Bank (<1%). Antibody-assisted RNA crystallography is a relatively new technique that promises to accelerate RNA structure determination by employing synthetic antibodies (Fabs) as crystallization chaperones that are specifically raised against target RNAs. Antibody chaperones facilitate the formation of ordered crystal lattices by minimizing RNA flexibility and replacing unfavorable RNA-RNA contacts with contacts between chaperone molecules. Atomic coordinates of these antibody fragments can also be used as search models to obtain phase information during structure determination. Antibody-assisted RNA crystallography has enabled the structure determination of 15 unique RNA targets, including 11 in the last 6 years. In this review, I cover the historical development of antibody fragments as crystallization chaperones and their application to diverse RNA targets. I discuss how the first structures of antibody-RNA complexes informed the design of second-generation antibodies and led to the development of portable crystallization modules that have greatly reduced the uncertainties associated with RNA crystallography. Finally, I outline unexplored avenues that can increase the impact of this technology in structural biology research and discuss potential applications of antibodies as affinity reagents for interrogating RNA biology outside of their use in crystallography. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Saurja DasGupta
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
5
|
Spirov A. Evolution of the RNA world: From signals to codes. Biosystems 2023; 234:105043. [PMID: 37852409 DOI: 10.1016/j.biosystems.2023.105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
The accumulated material in evolutionary biology, greatly enhanced by the achievements of modern synthetic biology, allows us to envision certain key hypothetical stages of prebiotic (chemical) evolution. This is often understood as the further evolution in the RNA World towards the RNA-protein World. It is a path towards the emergence of translation and the genetic code (I), signaling pathways with signaling molecules (II), and the appearance of RNA-based components of future gene regulatory networks (III). We believe that these evolutionary paths can be constructively viewed from the perspective of the concept of biological codes (Barbieri, 2003). Crucial evolutionary events in these directions would involve the emergence of RNA-based adaptors. Such adaptors connect two families of functionally and chemically distinct molecules into one functional entity. The emergence of primitive translation processes is undoubtedly the major milestone in the evolutionary path towards modern life. The key aspect here is the appearance of adaptors between amino acids and their cognate triplet codons. The initial steps are believed to involve the emergence of proto-transfer RNAs capable of self-aminoacylation. The second significant evolutionary breakthrough is the development of biochemical regulatory networks based on signaling molecules of the RNA World (ribonucleotides and their derivatives), as well as receptors and effectors (riboswitches) for these messengers. Some authors refer to this as the "lost language of the RNA World." The third evolutionary step is the emergence of signal sequences for ribozymes on the molecules of their RNA targets. This level of regulation in the RNA World is comparable to the gene regulatory networks of modern organisms. We believe that the signal sequences on target molecules have been rediscovered and developed by evolution into the gene regulatory networks of modern cells. In conclusion, the immense diversity of modern biological codes, in some of its key characteristics, can be traced back to the achievements of prebiotic evolution.
Collapse
Affiliation(s)
- Alexander Spirov
- The Institute of Scientific Information for Social Sciences RAS, Moscow, Russia.
| |
Collapse
|
6
|
Gulzar A, Noetzel J, Forbert H, Marx D. Elucidating the Self-cleavage Dynamics of Hairpin Ribozyme by Mode-decomposed Infrared Spectroscopy. J Phys Chem Lett 2023; 14:7940-7945. [PMID: 37646493 DOI: 10.1021/acs.jpclett.3c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
While catalytic reactions of biomolecular processes play an indispensable role in life, extracting the underlying molecular picture often remains challenging. Based on ab initio simulations of the self-cleavage reaction of hairpin ribozyme, mode-decomposed infrared spectra, and cosine similarity analysis to correlate the product with reactant IR spectra, we demonstrate a strategy to extract molecular details from characteristic spectral changes. Our results are in almost quantitative agreement with the experimental IR band library of nucleic acids and suggest that the spectral range of 800-1200 cm-1 is particularly valuable to monitor self-cleavage. Importantly, the cosine similarities also disclose that IR peaks subject to slight shifts due to self-cleavage might be unrelated, while strongly shifting resonances can correspond to the same structural dynamics. This framework of correlating complex IR spectra at the molecular level along biocatalytic reaction pathways is broadly applicable.
Collapse
Affiliation(s)
- Adnan Gulzar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jan Noetzel
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Harald Forbert
- Center for Solvation Science ZEMOS, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
7
|
DasGupta S, Zhang S, Szostak JW. Molecular Crowding Facilitates Ribozyme-Catalyzed RNA Assembly. ACS CENTRAL SCIENCE 2023; 9:1670-1678. [PMID: 37637737 PMCID: PMC10451029 DOI: 10.1021/acscentsci.3c00547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 08/29/2023]
Abstract
Catalytic RNAs or ribozymes are considered to be central to primordial biology. Most ribozymes require moderate to high concentrations of divalent cations such as Mg2+ to fold into their catalytically competent structures and perform catalysis. However, undesirable effects of Mg2+ such as hydrolysis of reactive RNA building blocks and degradation of RNA structures are likely to undermine its beneficial roles in ribozyme catalysis. Further, prebiotic cell-like compartments bounded by fatty acid membranes are destabilized in the presence of Mg2+, making ribozyme function inside prebiotically relevant protocells a significant challenge. Therefore, we sought to identify conditions that would enable ribozymes to retain activity at low concentrations of Mg2+. Inspired by the ability of ribozymes to function inside crowded cellular environments with <1 mM free Mg2+, we tested molecular crowding as a potential mechanism to lower the Mg2+ concentration required for ribozyme-catalyzed RNA assembly. Here, we show that the ribozyme-catalyzed ligation of phosphorimidazolide RNA substrates is significantly enhanced in the presence of the artificial crowding agent polyethylene glycol. We also found that molecular crowding preserves ligase activity under denaturing conditions such as alkaline pH and the presence of urea. Additionally, we show that crowding-induced stimulation of RNA-catalyzed RNA assembly is not limited to phosphorimidazolide ligation but extends to the RNA-catalyzed polymerization of nucleoside triphosphates. RNA-catalyzed RNA ligation is also stimulated by the presence of prebiotically relevant small molecules such as ethylene glycol, ribose, and amino acids, consistent with a role for molecular crowding in primordial ribozyme function and more generally in the emergence of RNA-based cellular life.
Collapse
Affiliation(s)
- Saurja DasGupta
- Department
of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Howard
Hughes Medical Institute, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Stephanie Zhang
- Department
of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Jack W. Szostak
- Department
of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Howard
Hughes Medical Institute, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Yoon S, Ollie E, York DM, Piccirilli JA, Harris ME. Rapid Kinetics of Pistol Ribozyme: Insights into Limits to RNA Catalysis. Biochemistry 2023; 62:2079-2092. [PMID: 37294744 PMCID: PMC10330772 DOI: 10.1021/acs.biochem.3c00160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pistol ribozyme (Psr) is a distinct class of small endonucleolytic ribozymes, which are important experimental systems for defining fundamental principles of RNA catalysis and designing valuable tools in biotechnology. High-resolution structures of Psr, extensive structure-function studies, and computation support a mechanism involving one or more catalytic guanosine nucleobases acting as a general base and divalent metal ion-bound water acting as an acid to catalyze RNA 2'-O-transphosphorylation. Yet, for a wide range of pH and metal ion concentrations, the rate of Psr catalysis is too fast to measure manually and the reaction steps that limit catalysis are not well understood. Here, we use stopped-flow fluorescence spectroscopy to evaluate Psr temperature dependence, solvent H/D isotope effects, and divalent metal ion affinity and specificity unconstrained by limitations due to fast kinetics. The results show that Psr catalysis is characterized by small apparent activation enthalpy and entropy changes and minimal transition state H/D fractionation, suggesting that one or more pre-equilibrium steps rather than chemistry is rate limiting. Quantitative analyses of divalent ion dependence confirm that metal aquo ion pKa correlates with higher rates of catalysis independent of differences in ion binding affinity. However, ambiguity regarding the rate-limiting step and similar correlation with related attributes such as ionic radius and hydration free energy complicate a definitive mechanistic interpretation. These new data provide a framework for further interrogation of Psr transition state stabilization and show how thermal instability, metal ion insolubility at optimal pH, and pre-equilibrium steps such as ion binding and folding limit the catalytic power of Psr suggesting potential strategies for further optimization.
Collapse
Affiliation(s)
- Suhyun Yoon
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Edward Ollie
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Darrin M York
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Joseph A Piccirilli
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
9
|
Egger M, Bereiter R, Mair S, Micura R. Scaling Catalytic Contributions of Small Self-Cleaving Ribozymes. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202207590. [PMID: 38505292 PMCID: PMC10946891 DOI: 10.1002/ange.202207590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/08/2022]
Abstract
Nucleolytic ribozymes utilize general acid-base catalysis to perform phosphodiester cleavage. In most ribozyme classes, a conserved active site guanosine is positioned to act as general base, thereby activating the 2'-OH group to attack the scissile phosphate (γ-catalysis). Here, we present an atomic mutagenesis study for the pistol ribozyme class. Strikingly, "general base knockout" by replacement of the guanine N1 atom by carbon results in only 2.7-fold decreased rate. Therefore, the common view that γ-catalysis critically depends on the N1 moiety becomes challenged. For pistol ribozymes we found that γ-catalysis is subordinate in overall catalysis, made up by two other catalytic factors (α and δ). Our approach allows scaling of the different catalytic contributions (α, β, γ, δ) with unprecedented precision and paves the way for a thorough mechanistic understanding of nucleolytic ribozymes with active site guanines.
Collapse
Affiliation(s)
- Michaela Egger
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Raphael Bereiter
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Stefan Mair
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
10
|
Egger M, Bereiter R, Mair S, Micura R. Scaling Catalytic Contributions of Small Self-Cleaving Ribozymes. Angew Chem Int Ed Engl 2022; 61:e202207590. [PMID: 35982640 PMCID: PMC9826390 DOI: 10.1002/anie.202207590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 01/11/2023]
Abstract
Nucleolytic ribozymes utilize general acid-base catalysis to perform phosphodiester cleavage. In most ribozyme classes, a conserved active site guanosine is positioned to act as general base, thereby activating the 2'-OH group to attack the scissile phosphate (γ-catalysis). Here, we present an atomic mutagenesis study for the pistol ribozyme class. Strikingly, "general base knockout" by replacement of the guanine N1 atom by carbon results in only 2.7-fold decreased rate. Therefore, the common view that γ-catalysis critically depends on the N1 moiety becomes challenged. For pistol ribozymes we found that γ-catalysis is subordinate in overall catalysis, made up by two other catalytic factors (α and δ). Our approach allows scaling of the different catalytic contributions (α, β, γ, δ) with unprecedented precision and paves the way for a thorough mechanistic understanding of nucleolytic ribozymes with active site guanines.
Collapse
Affiliation(s)
- Michaela Egger
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Raphael Bereiter
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Stefan Mair
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|