1
|
Wang Q, Hu Y, Gu Y. Molecular Mechanism Behind the Capture of Fluorinated Gases by Metal-Organic Frameworks. NANO-MICRO LETTERS 2025; 17:118. [PMID: 39869273 PMCID: PMC11772676 DOI: 10.1007/s40820-024-01584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/01/2024] [Indexed: 01/28/2025]
Abstract
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired. Recently, as a highly designable porous adsorbents, metal-organic frameworks (MOFs) exhibit excellent selective sorption performance toward F-gases, especially for the recognition and separation of different F-gases with highly similar properties, showing their great potential in F-gases control and recovery. In this review, we discuss the capture and separation of F-gases and their azeotropic, near-azeotropic, and isomeric mixtures in various application scenarios by MOFs, specifically classify and analyze molecular interaction between F-gases and MOFs, and interpret the mechanisms underlying their high performance regarding both adsorption capacity and selectivity, providing a repertoire for future materials design. Challenges faced in the transformation research roadmap of MOFs adsorbent separation technologies toward F-gases are also discussed, and areas for future research endeavors are highlighted.
Collapse
Affiliation(s)
- Qian Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, People's Republic of China
| | - Yifan Gu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
- Key Laboratory of Cities' Mitigation and Adaptation to Climate Change, China Meteorological Administration (CMA), Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
2
|
Guo Y, Di W, Qin C, Liu R, Cao H, Gao X. Covalent Organic Framework-Involved Sensors for Efficient Enrichment and Monitoring of Food Hazards: A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23053-23081. [PMID: 39382449 DOI: 10.1021/acs.jafc.4c06755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The food safety issues caused by environmental pollution have posed great risks to human health that cannot be ignored. Hence, the precise monitoring of hazard factors in food has emerged as a critical concern for the food safety sector. As a novel porous material, covalent organic frameworks (COFs) have garnered significant attention due to their large specific surface area, excellent thermal and chemical stability, modifiability, and abundant recognition sites. This makes it a potential solution for food safety issues. In this research, the synthesis and regulation strategies of COFs were reviewed. The roles of COFs in enriching and detecting food hazards were discussed comprehensively and extensively. Taking representative hazard factors in food as the research object, the expression forms and participation approaches of COFs were explored, along with the effectiveness of corresponding detection methods. Finally, the development directions of COFs in the future as well as the problems existing in practical applications were discussed, which was beneficial to promote the application of COFs in food safety and beyond.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Wenli Di
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Chuan Qin
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Rui Liu
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Hongqian Cao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Xibao Gao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| |
Collapse
|
3
|
Shen J, Wahiduzzaman M, Kumar A, Barpaga D, Peter McGrail B, Thallapally PK, Maurin G, Kishan Motkuri R. Molecular-Level Insight into the Chlorofluorocarbons Adsorption by Defective Covalent Organic Polymers. Chemphyschem 2024; 25:e202400283. [PMID: 38634178 DOI: 10.1002/cphc.202400283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
Halocarbons have important industrial applications, but because of their contribution to global warming and the fact that they can cause ozone depletion, they are considered highly toxic. Hence, the techniques that can capture and recover the used halocarbons with energy-efficient methods have been recently received greater attention. In this contribution, we report the capture of dichlorodifluoromethane (R12), which has high global warming and ozone depletion potential, using covalent organic polymers (COPs). The defect-engineered COPs were synthesized and demonstrated outstanding sorption capacities, ~226 wt % of R12 combined with linear-shaped adsorption isotherms. We further identified the plausible microscopic adsorption mechanism of the investigated COPs via grand canonical Monte Carlo simulations applied to non-defective and a collection of atomistic models of the defective COPs. The modeling work suggests that significant R12 adsorption performance is attributed to a gradual increment of porosities due to isolated/interconnected micro-/meso-pore channels and the change of the long-range ordering of both COPs. The successive hierarchical-pore-filling mechanism promotes R12 molecular adsorption via moderate van der Waals adsorbate-adsorbent interactions in the micropores of both COPs at low pressure followed by adsorbate-adsorbate interactions in the extra-voids created at moderate to high pressure ranges. This continuous pore-filling mechanism makes defective COPs as promising sorbents for halocarbon adsorption.
Collapse
Affiliation(s)
- Jian Shen
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, P.R. China
| | | | - Abhishek Kumar
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States
| | - Dushyant Barpaga
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States
| | - B Peter McGrail
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States
| | - Praveen K Thallapally
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34095, France
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States
| |
Collapse
|
4
|
Shen J, Kumar A, Wahiduzzaman M, Barpaga D, Maurin G, Motkuri RK. Engineered Nanoporous Frameworks for Adsorption Cooling Applications. Chem Rev 2024; 124:7619-7673. [PMID: 38683669 DOI: 10.1021/acs.chemrev.3c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The energy demand for traditional vapor-compressed technology for space cooling continues to soar year after year due to global warming and the increasing human population's need to improve living and working conditions. Thus, there is a growing demand for eco-friendly technologies that use sustainable or waste energy resources. This review discusses the properties of various refrigerants used for adsorption cooling applications followed by a brief discussion on the thermodynamic cycle. Next, sorbents traditionally used for cooling are reviewed to emphasize the need for advanced capture materials with superior properties to improve refrigerant sorption. The remainder of the review focus on studies using engineered nanoporous frameworks (ENFs) with various refrigerants for adsorption cooling applications. The effects of the various factors that play a role in ENF-refrigerant pair selection, including pore structure/dimension/shape, morphology, open-metal sites, pore chemistry and possible presence of defects, are reviewed. Next, in-depth insights into the sorbent-refrigerant interaction, and pore filling mechanism gained through a combination of characterization techniques and computational modeling are discussed. Finally, we outline the challenges and opportunities related to using ENFs for adsorption cooling applications and provide our views on the future of this technology.
Collapse
Affiliation(s)
- Jian Shen
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, P.R. China
| | - Abhishek Kumar
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Dushyant Barpaga
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Guillaume Maurin
- ICGM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
5
|
Xiong X, Song L, Wang W, Zheng H, Zhang L, Meng L, Chen C, Jiang J, Wei Z, Su C. Capture Fluorocarbon and Chlorofluorocarbon from Air Using DUT-67 for Safety and Semi-Quantitative Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308123. [PMID: 38240582 PMCID: PMC10987145 DOI: 10.1002/advs.202308123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/09/2024] [Indexed: 04/04/2024]
Abstract
Fluoro- and chlorofluorocabons (FC/CFCs) are important refrigerants, solvents, and fluoropolymers in industry while being toxic and carrying high global warming potential. Detection and reclamation of FC/CFCs based on adsorption technology with highly selective adsorbents is important to labor safety and environmental protection. Herein, the study reports an integrated method to combine capture, separation, enrichment, and analysis of representative FC/CFCs (chlorodifluoromethane(R22) and 1,1,1,2-tetrafluoroethane (R134a)) by using the highly stable and porous Zr-MOF, DUT-67. Gas adsorption and breakthrough experiments demonstrate that DUT-67 has high R22/R134a uptake (124/116 cm3 g-1) and excellent R22/R134a/CO2 separation performance (IAST selectivities of R22/CO2 and R134a/CO2 ranging from 51.4 to 33.3, and 31.1 to 25.8), even in rather low concentration and humid conditions. A semi-quantitative analysis protocol is set up to analyze the low concentrations of R22/R134a based on the high selective R22/R134a adsorption ability, fast adsorption kinetics, water-resistant utility, facile regeneration, and excellent recyclability of DUT-67. In situ single-crystal X-ray diffraction, theoretical calculations, and in situ diffuse reflectance infrared Fourier transform spectra have been employed to understand the adsorption mechanism. This work may provide a potential adsorbent for purge and trap technique under room temperature, thus promoting the application of MOFs for VOCs sampling and quantitative analysis.
Collapse
Affiliation(s)
- Xiao‐Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic ChemistryGBRCE for Functional Molecular EngineeringLIFMIGCMESchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Liang Song
- MOE Laboratory of Bioinorganic and Synthetic ChemistryGBRCE for Functional Molecular EngineeringLIFMIGCMESchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Wei Wang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryGBRCE for Functional Molecular EngineeringLIFMIGCMESchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Hui‐Ting Zheng
- MOE Laboratory of Bioinorganic and Synthetic ChemistryGBRCE for Functional Molecular EngineeringLIFMIGCMESchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Liang Zhang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryGBRCE for Functional Molecular EngineeringLIFMIGCMESchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Liu‐Li Meng
- MOE Laboratory of Bioinorganic and Synthetic ChemistryGBRCE for Functional Molecular EngineeringLIFMIGCMESchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Cheng‐Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic ChemistryGBRCE for Functional Molecular EngineeringLIFMIGCMESchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Ji‐Jun Jiang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryGBRCE for Functional Molecular EngineeringLIFMIGCMESchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Zhang‐Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic ChemistryGBRCE for Functional Molecular EngineeringLIFMIGCMESchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic ChemistryGBRCE for Functional Molecular EngineeringLIFMIGCMESchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| |
Collapse
|
6
|
Pattanshetti A, Koli A, Dhabbe R, Yu XY, Motkuri RK, Chavan VD, Kim DK, Sabale S. Polymer Waste Valorization into Advanced Carbon Nanomaterials for Potential Energy and Environment Applications. Macromol Rapid Commun 2024; 45:e2300647. [PMID: 38243849 DOI: 10.1002/marc.202300647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/23/2023] [Indexed: 01/22/2024]
Abstract
The rise in universal population and accompanying demands have directed toward an exponential surge in the generation of polymeric waste. The estimate predicts that world-wide plastic production will rise to ≈590 million metric tons by 2050, whereas 5000 million more tires will be routinely abandoned by 2030. Handling this waste and its detrimental consequences on the Earth's ecosystem and human health presents a significant challenge. Converting the wastes into carbon-based functional materials viz. activated carbon, graphene, and nanotubes is considered the most scientific and adaptable method. Herein, this world provides an overview of the various sources of polymeric wastes, modes of build-up, impact on the environment, and management approaches. Update on advances and novel modifications made in methodologies for converting diverse types of polymeric wastes into carbon nanomaterials over the last 5 years are given. A remarkable focus is made to comprehend the applications of polymeric waste-derived carbon nanomaterials (PWDCNMs) in the CO2 capture, removal of heavy metal ions, supercapacitor-based energy storage and water splitting with an emphasis on the correlation between PWDCNMs' properties and their performances. This review offers insights into emerging developments in the upcycling of polymeric wastes and their applications in environment and energy.
Collapse
Affiliation(s)
- Akshata Pattanshetti
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| | - Amruta Koli
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| | - Rohant Dhabbe
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, 99354, USA
| | - Vijay D Chavan
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, South Korea
| | - Deok-Kee Kim
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, South Korea
| | - Sandip Sabale
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| |
Collapse
|
7
|
Koli A, Kumar A, Pattanshetti A, Supale A, Garadkar K, Shen J, Shaikh J, Praserthdam S, Motkuri RK, Sabale S. Hierarchical Porous Activated Carbon from Wheat Bran Agro-Waste: Applications in Carbon Dioxide Capture, Dye Removal, Oxygen and Hydrogen Evolution Reactions. Chempluschem 2024; 89:e202300373. [PMID: 37909792 DOI: 10.1002/cplu.202300373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
This work reports an efficient method for facile synthesis of hierarchically porous carbon (WB-AC) utilizing wheat bran waste. Obtained carbon showed 2.47 mmol g-1 CO2 capture capacity with good CO2 /N2 selectivity and 27.35 to 29.90 kJ mol-1 isosteric heat of adsorption. Rapid removal of MO dye was observed with a capacity of ~555 mg g-1 . Moreover, WB-AC demonstrated a good OER activity with 0.35 V low overpotential at 5 mA cm-2 and a Tafel slope of 115 mV dec-1 . It also exhibited high electrocatalytic HER activity with 57 mV overpotential at 10 mA cm-2 and a Tafel slope of 82.6 mV dec-1 . The large SSA (757 m2 g-1 ) and total pore volume (0.3696 cm3 g-1 ) result from N2 activation contributing to selective CO2 uptake, high and rapid dye removal capacity and superior electrochemical activity (OER/HER), suggesting the use of WB-AC as cost effective adsorbent and metal free electrocatalyst.
Collapse
Affiliation(s)
- Amruta Koli
- Department of Chemistry, Jaysingpur College, Jaysingpur, 416101, India
| | - Abhishek Kumar
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Amit Supale
- Dr. Patangrao Kadam Mahavidhyalaya College, Sangli, 416416, India
| | | | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Jasmin Shaikh
- Department of Chemical Engineering Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supareak Praserthdam
- Department of Chemical Engineering Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sandip Sabale
- Department of Chemistry, Jaysingpur College, Jaysingpur, 416101, India
| |
Collapse
|
8
|
Usuda H, Mishima Y, Kawamoto T, Minami K. Desorption of Ammonia Adsorbed on Prussian Blue Analogs by Washing with Saturated Ammonium Hydrogen Carbonate Solution. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248840. [PMID: 36557972 PMCID: PMC9781891 DOI: 10.3390/molecules27248840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Prussian blue analogs (PBAs) have been reported as promising ammonia (NH3) adsorbents with a high capacity compared to activated carbon, zeolite, and ion exchange resins. The adsorbed NH3 was desorbed by heating and washing with water or acid. Recently, we demonstrated that desorption was also possible by washing with a saturated ammonium hydrogen carbonate solution (sat. NH4HCO3aq) and recovered NH3 as an NH4HCO3 solid by introducing CO2 into the washing liquid after desorption. However, this has only been proven for copper ferrocyanide and the relationship between the adsorption/desorption behavior and metal ions in PBAs has not been identified. In this study, we investigated the adsorption/desorption behavior of PBAs that are complexes of first row transition metals with hexacyanometalate anions. Six types of PBAs were tested in this study and copper ferricyanide exhibited the highest desorption/adsorption ratio. X-ray diffraction results revealed high structural stability for cobalt hexacyanocobaltate (CoHCC) and nickel ferricyanide (NiHCF). The Fourier transform infrared spectroscopy results showed that the NH3 adsorbed on the vacancy sites tended to desorb compared to the NH3 adsorbed on the interstitial sites as ammonium ions. Interestingly, the desorption/adsorption ratio exhibited the Irving-Williams order.
Collapse
|
9
|
Theoretical studies of metal-organic frameworks: Calculation methods and applications in catalysis, gas separation, and energy storage. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Xiong JB, Ban DD, Zhou YJ, Du HJ, Zhao AW, Xie LG, Liu GQ, Chen SR, Mi LW. Fluorescent porous organic polymers for detection and adsorption of nitroaromatic compounds. Sci Rep 2022; 12:15876. [PMID: 36151250 PMCID: PMC9508238 DOI: 10.1038/s41598-022-20024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
A fluorescent porous organic polymer (FPOP) with strong fluorescence and tunable emission colors, was synthesized through a simple cost-effective method via Scholl coupling reaction. Experiments proved the stability and excellent detection and adsorption ability, and microporous nature of the material. Luminescence of FPOP was quenched when addition of nitroaromatic compounds. The properties along with large-scale and low-cost preparation make these FPOP potential candidates for fluorescence detection of nitroaromatic compounds. Additionally, FPOP shows higher adsorption capacity and rate than other reported adsorbents, and has the possibility of being an effective adsorbent for industrial usage. Moreover, a fluorescent test paper was further developed and is found to be sensitive to 10-8 M level, complete with a rapid response time and visual detection. This newly developed strategy may open up an avenue for exploring porous polymers, particularly those with a strong fluorescence, for the large-scale fabrication of FPOP for various advanced applications.
Collapse
Affiliation(s)
- Jia-Bin Xiong
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, People's Republic of China. .,College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Ding-Ding Ban
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, People's Republic of China
| | - Yong-Juan Zhou
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, People's Republic of China
| | - Hui-Jun Du
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, People's Republic of China
| | - Ai-Wei Zhao
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, People's Republic of China
| | - Lan-Ge Xie
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, People's Republic of China
| | - Guo-Qun Liu
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, People's Republic of China.
| | - Si-Ru Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, People's Republic of China.
| | - Li-Wei Mi
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, People's Republic of China.
| |
Collapse
|
11
|
Riley BJ, Chong S, Schmid J, Marcial J, Nienhuis ET, Bera MK, Lee S, Canfield NL, Kim S, Derewinski MA, Motkuri RK. Role of Zeolite Structural Properties toward Iodine Capture: A Head-to-head Evaluation of Framework Type and Chemical Composition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18439-18452. [PMID: 35412785 DOI: 10.1021/acsami.2c01179] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study evaluated zeolite-based sorbents for iodine gas [I2(g)] capture. Based on the framework structures and porosities, five zeolites, including two faujasite (FAU), one ZSM-5 (MFI), one mesoMFI, one ZSM-22 (TON), as well as two mesoporous materials, were evaluated for I2(g) capture at room temperature and 150 °C in an iodine-saturated environment. From these preliminary studies, the three best-performing zeolites were ion-exchanged with Ag+ and evaluated for I2(g) capture under similar conditions. Energy-dispersive X-ray spectroscopy data suggest that Ag-FAU frameworks were the materials with the highest capacity for I2(g) in this study, showing ∼3× higher adsorption compared to Ag-mordenite (Ag-MOR) at room temperature, but X-ray diffraction measurements show that the faujasite structure collapsed during the adsorption studies because of dealumination. The Ag-MFI zeolites are decent sorbents in real-life applications, showing both good sorption capacities and higher stability. In-depth analyses and characterizations, including synchrotron X-ray absorption spectroscopy, revealed the influence of structural and chemical properties of zeolites on the performance for iodine adsorption from the gas phase.
Collapse
Affiliation(s)
- Brian J Riley
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Saehwa Chong
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Julian Schmid
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - José Marcial
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Emily T Nienhuis
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mrinal K Bera
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Sungsik Lee
- X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nathan L Canfield
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sungmin Kim
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Miroslaw A Derewinski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Cracow, Poland
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
12
|
Liu X, Liu W, Yang X, Kou Y, Chen WM, Liu WS. Construction of a series of Ln-MOFs Luminescent sensors based a functional “V” shaped ligand. Dalton Trans 2022; 51:12549-12557. [DOI: 10.1039/d2dt01381a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract: It is necessary for decreasing application cost of luminescent Ln-MOFs sensors to develop multiple functionalities. The ingenious design of ligands and the rational dope of Ln3+ ions are main...
Collapse
|