1
|
Beeman EA, Jiang Z, Ford J, Pikul JH. Scalable Fabrication of Thick Opals through Drop-Casting Concentrated Suspensions with In-Solution Ordering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10789-10796. [PMID: 40258245 DOI: 10.1021/acs.langmuir.4c04778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Self-assembled materials, studied for optical, mechanical, and fluidic applications, have not yet been widely adopted due to slow manufacturing times. We demonstrate a drop-casting process that provides a rapid approach to fabricate large and thick opals from 40 to 55% w/v solutions of charged polystyrene particles. The high concentration allows for rapid drying, leading to fast assembly times, and the charged particles repel in solution and partially order prior to evaporation. Cryo-FIB SEM images of frozen solutions combined with inverse opals fabricated from still-wet templates visualize the particle ordering prior to assembly. This method produces well-ordered opals with areas of 6.25-100 cm2 and thickness of 100-150 μm, which take 0.5-1.25 h to assemble. In addition, the procedure enables continuous fabrication using a doctor blade to spread the material across the substrate. We demonstrate feasible and scalable opal and inverse opal fabrication.
Collapse
Affiliation(s)
- Emily A Beeman
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhimin Jiang
- Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jamie Ford
- Singh Center for Nanotechnology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - James H Pikul
- Department of Mechanical Engineering, University of Wisconsin Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
2
|
Routh PK, Liu X, Redekop E, Lim JS, Prodinger S, van der Hoeven JES, Aizenberg J, Nachtegaal M, Clark AH, Sautet P, Frenkel AI. Unraveling the Kinetics of Hydride Formation and Decomposition at Pd-Au Bimetallic Interfaces: A Combined Spectroscopic and Computational Study. J Am Chem Soc 2025; 147:11378-11389. [PMID: 40130660 DOI: 10.1021/jacs.5c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Supported Pd-Au bimetallic nanoparticles make up a promising class of catalysts used for hydrogenation and oxidation reactions. Recently, the role of dynamic restructuring of Pd regions at and near the nanoparticle surface in response to modulating gas (H2 and O2) concentrations was highlighted for controlling the surface Pd oxide stoichiometry. Here, we investigate the mechanism of formation and decomposition of Pd hydride (PdHx) at and near the bimetallic nanoparticle surfaces, a key species for controlling the activity, selectivity, and stability of Pd catalysts in many hydrogenation reactions. We employ modulation excitation X-ray absorption spectroscopy (ME-XAS) to directly observe the time scale of PdHx formation and decomposition on the surface of Pd-Au nanoparticles. Density functional theory (DFT) calculations provide additional insights into the stability and energetics of PdHx formation under varying H fractions and Pd substructures. Our results reveal a complex interplay between Pd ensemble size, surface structure, and hydrogen environment in determining the kinetics and thermodynamics of PdHx formation. By elucidating the mechanisms underlying surface PdHx formation and decomposition, the rational design of dynamic catalysts with controlled Pd hydride stoichiometries can become possible.
Collapse
Affiliation(s)
- Prahlad K Routh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Xihan Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Evgeniy Redekop
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Jin Soo Lim
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Sebastian Prodinger
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Jessi E S van der Hoeven
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Joanna Aizenberg
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Maarten Nachtegaal
- Center for Photon Science, PSI, CH-5232 Villigen, Switzerland
- Center for Energy and Environmental Sciences, PSI, CH-5232 Villigen, Switzerland
- Department of Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Adam H Clark
- Center for Photon Science, PSI, CH-5232 Villigen, Switzerland
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
3
|
Li A, Tan Y, Wang Y, Shen S, Jia R, Cheng Y, Cong C, Zhang Y, Guan C, Cheng C. A General Sol-Gel Route to Fabricate Large-Area Highly-Ordered Metal Oxide Arrays Toward High-Performance Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409620. [PMID: 39654338 DOI: 10.1002/smll.202409620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/18/2024] [Indexed: 02/06/2025]
Abstract
A universal method is demonstrated for the fabrication of large-area highly ordered microporous arrayed metal oxides based on a high-quality self-assembly opal template combined with a sucrose-assisted sol-gel technique. Sucrose as a chelating agent optimizes precursor infiltration and regulates both oxide formation and the melting process of polystyrene templates, thus preventing crack formation during infiltration and calcination. As a result, over 20 metal element-based 3DOM oxides with arbitrary compositions are successfully prepared. Therein, a champion electrocatalyst RuCoOx-IO exhibits outstanding bifunctional oxygen activity with an ultra-narrow oxygen potential gap of 0.598 V, and the Zn-air batteries based on RuCoOx-IO air cathode operates for 1380 h under fast-charging cycling (50 mA cm-2), and reaches a high energy efficiency of 69.5% in discharge-charge cycling. In situ spectroscopy characterizations and density functional theory reveal that the rational construction of Ru─O─Co heterointerface with decoupled multi-active sites and mutual coupling of RuO2 and Co3O4 facilitate interfacial electron transfer, leading to an optimized d-band centers of active Ru/Co and a weakened spin interaction between oxygen intermediates and Co sites, so as to enhance the adsorption ability of *OOH on interfacial Co sites for fast ORR kinetics while favoring the desorption of oxygen intermediates on interfacial Ru during OER.
Collapse
Affiliation(s)
- Aoshuang Li
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yan Tan
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yijie Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shuwen Shen
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Runlong Jia
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yiwen Cheng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chunxiao Cong
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yuzhong Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Cao Guan
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chuanwei Cheng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
4
|
Lim KRG, Kaiser SK, Herring CJ, Kim TS, Perich MP, Garg S, O’Connor CR, Aizenberg M, van der Hoeven JES, Reece C, Montemore MM, Aizenberg J. Partial PdAu nanoparticle embedding into TiO 2 support accentuates catalytic contributions from the Au/TiO 2 interface. Proc Natl Acad Sci U S A 2025; 122:e2422628122. [PMID: 39786932 PMCID: PMC11745314 DOI: 10.1073/pnas.2422628122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Despite the broad catalytic relevance of metal-support interfaces, controlling their chemical nature, the interfacial contact perimeter (exposed to reactants), and consequently, their contributions to overall catalytic reactivity, remains challenging, as the nanoparticle and support characteristics are interdependent when catalysts are prepared by impregnation. Here, we decoupled both characteristics by using a raspberry-colloid-templating strategy that yields partially embedded PdAu nanoparticles within well-defined SiO2 or TiO2 supports, thereby increasing the metal-support interfacial contact compared to nonembedded catalysts that we prepared by attaching the same nanoparticles onto support surfaces. Between nonembedded PdAu/SiO2 and PdAu/TiO2, we identified a support effect resulting in a 1.4-fold higher activity of PdAu/TiO2 than PdAu/SiO2 for benzaldehyde hydrogenation. Notably, partial nanoparticle embedding in the TiO2 raspberry-colloid-templated support increased the metal-support interfacial perimeter and consequently, the number of Au/TiO2 interfacial sites by 5.4-fold, which further enhanced the activity of PdAu/TiO2 by an additional 4.1-fold. Theoretical calculations and in situ surface-sensitive desorption analyses reveal facile benzaldehyde binding at the Au/TiO2 interface and at Pd ensembles on the nanoparticle surface, explaining the connection between the number of Au/TiO2 interfacial sites (via the metal-support interfacial perimeter) and catalytic activity. Our results demonstrate partial nanoparticle embedding as a synthetic strategy to produce thermocatalytically stable catalysts and increase the number of catalytically active Au/TiO2 interfacial sites to augment catalytic contributions arising from metal-support interfaces.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Selina K. Kaiser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Connor J. Herring
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA70118
| | - Taek-Seung Kim
- Rowland Institute at Harvard, Harvard University, Cambridge, MA02142
| | - Marta Perxés Perich
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht3584 CG, Netherlands
| | - Sadhya Garg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | | | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Jessi E. S. van der Hoeven
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht3584 CG, Netherlands
| | - Christian Reece
- Rowland Institute at Harvard, Harvard University, Cambridge, MA02142
| | - Matthew M. Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA70118
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| |
Collapse
|
5
|
Lim KRG, Aizenberg M, Aizenberg J. Colloidal Templating in Catalyst Design for Thermocatalysis. J Am Chem Soc 2024; 146:22103-22121. [PMID: 39101642 PMCID: PMC11328140 DOI: 10.1021/jacs.4c07167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Conventional catalyst preparative methods commonly entail the impregnation, precipitation, and/or immobilization of nanoparticles on their supports. While convenient, such methods do not readily afford the ability to control collective ensemble-like nanoparticle properties, such as nanoparticle proximity, placement, and compartmentalization. In this Perspective, we illustrate how incorporating colloidal templating into catalyst design for thermocatalysis confers synthetic advantages to facilitate new catalytic investigations and augment catalytic performance, focusing on three colloid-templated catalyst structures: 3D macroporous structures, hierarchical macro-mesoporous structures, and discrete hollow nanoreactors. We outline how colloidal templating decouples the nanoparticle and support formation steps to devise modular catalyst platforms that can be flexibly tuned at different length scales. Of particular interest is the raspberry colloid templating (RCT) method which confers high thermomechanical stability by partially embedding nanoparticles within its support, while retaining high levels of reactant accessibility. We illustrate how the high modularity of the RCT approach allows one to independently control collective nanoparticle properties, such as nanoparticle proximity and localization, without concomitant changes to other catalytic descriptors that would otherwise confound analyses of their catalytic performance. We next discuss how colloidal templating can be employed to achieve spatially disparate active site functionalization while directing reactant transport within the catalyst structure to enhance selectivity in multistep catalytic cascades. Throughout this Perspective, we highlight developments in advanced characterization that interrogate transport phenomena and/or derive new insights into these catalyst structures. Finally, we offer our outlook on the future roles, applications, and challenges of colloidal templating in catalyst design for thermocatalysis.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
6
|
Bijl M, Lim KRG, Garg S, Nicolas NJ, Visser NL, Aizenberg M, van der Hoeven JES, Aizenberg J. Controlling nanoparticle placement in Au/TiO 2 inverse opal photocatalysts. NANOSCALE 2024; 16:13867-13873. [PMID: 38979601 DOI: 10.1039/d4nr01200c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Gold nanoparticle-loaded titania (Au/TiO2) inverse opals are highly ordered three-dimensional photonic structures with enhanced photocatalytic properties. However, fine control over the placement of the Au nanoparticles in the inverse opal structures remains challenging with traditional preparative methods. Here, we present a multi-component co-assembly strategy to prepare high-quality Au/TiO2 inverse opal films in which Au nanoparticles are either located on, or inside the TiO2 matrix, as verified using electron tomography. We report that Au nanoparticles embedded in the TiO2 support exhibit enhanced thermal and mechanical stability compared to non-embedded nanoparticles that are more prone to both leaching and sintering.
Collapse
Affiliation(s)
- Marianne Bijl
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Kang Rui Garrick Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Sadhya Garg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Natalie J Nicolas
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Nienke L Visser
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Jessi E S van der Hoeven
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| |
Collapse
|
7
|
Wang L, Ding X, Fan L, Filppula AM, Li Q, Zhang H, Zhao Y, Shang L. Self-Healing Dynamic Hydrogel Microparticles with Structural Color for Wound Management. NANO-MICRO LETTERS 2024; 16:232. [PMID: 38954118 PMCID: PMC11219637 DOI: 10.1007/s40820-024-01422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 07/04/2024]
Abstract
Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances. It is vital to develop multifunctional hydrogel dressings, with well-designed morphology and structure to enhance flexibility and effectiveness in wound management. To achieve these, we propose a self-healing hydrogel dressing based on structural color microspheres for wound management. The microsphere comprised a photothermal-responsive inverse opal framework, which was constructed by hyaluronic acid methacryloyl, silk fibroin methacryloyl and black phosphorus quantum dots (BPQDs), and was further re-filled with a dynamic hydrogel. The dynamic hydrogel filler was formed by Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran (DEX-CA and DEX-BA). Notably, the composite microspheres can be applied arbitrarily, and they can adhere together upon near-infrared irradiation by leveraging the BPQDs-mediated photothermal effect and the thermoreversible stiffness change of dynamic hydrogel. Additionally, eumenitin and vascular endothelial growth factor were co-loaded in the microspheres and their release behavior can be regulated by the same mechanism. Moreover, effective monitoring of the drug release process can be achieved through visual color variations. The microsphere system has demonstrated desired capabilities of controllable drug release and efficient wound management. These characteristics suggest broad prospects for the proposed composite microspheres in clinical applications.
Collapse
Affiliation(s)
- Li Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Xiaoya Ding
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Lu Fan
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520, Turku, Finland
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Anne M Filppula
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Qinyu Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Hongbo Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China.
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520, Turku, Finland.
| | - Yuanjin Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China.
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Luoran Shang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China.
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
8
|
Lim KRG, Kaiser SK, Wu H, Garg S, O'Connor CR, Reece C, Aizenberg M, Aizenberg J. Deconvoluting the Individual Effects of Nanoparticle Proximity and Size in Thermocatalysis. ACS NANO 2024; 18:15958-15969. [PMID: 38836504 DOI: 10.1021/acsnano.4c04193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Nanoparticle (NP) size and proximity are two physical descriptors applicable to practically all NP-supported catalysts. However, with conventional catalyst design, independent variation of these descriptors to investigate their individual effects on thermocatalysis remains challenging. Using a raspberry-colloid-templating approach, we synthesized a well-defined catalyst series comprising Pd12Au88 alloy NPs of three distinct sizes and at two different interparticle distances. We show that NP size and interparticle distance independently control activity and selectivity, respectively, in the hydrogenation of benzaldehyde to benzyl alcohol and toluene. Surface-sensitive spectroscopic analysis indicates that the surfaces of smaller NPs expose a greater fraction of reactive Pd dimers, compared to inactive Pd single atoms, thereby increasing intrinsic catalytic activity. Computational simulations reveal how a larger interparticle distance improves catalytic selectivity by diminishing the local benzyl alcohol concentration profile between NPs, thus suppressing its readsorption and consequently, undesired formation of toluene. Accordingly, benzyl alcohol yield is maximized using catalysts with smaller NPs separated by larger interparticle distances, overcoming activity-selectivity trade-offs. This work exemplifies the high suitability of the modular raspberry-colloid-templating method as a model catalyst platform to isolate individual descriptors and establish clear structure-property relationships, thereby bridging the materials gap between surface science and technical catalysts.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Selina K Kaiser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Haichao Wu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sadhya Garg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christopher R O'Connor
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142, United States
| | - Christian Reece
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142, United States
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
9
|
Kim M, Kim JB, Kim SH. Hyperreflective photonic crystals created by shearing colloidal dispersions at ultrahigh volume fraction. MICROSYSTEMS & NANOENGINEERING 2024; 10:21. [PMID: 38298552 PMCID: PMC10827709 DOI: 10.1038/s41378-024-00651-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 02/02/2024]
Abstract
Colloidal crystallization serves as one of the most economic and scalable production methods for photonic crystals. However, insufficient optical performance, nonuniformity and low reproducibility remain challenges for advanced high-value applications. In this study, we optimally formulate a photocurable dispersion of silica particles and apply shear flow to unify the orientation of the colloidal crystals, ensuring high optical performance and uniformity. The silica particles experience strong repulsion at ultrahigh volume fractions of 50% but demonstrate low mobility, leading to polycrystalline structures. Applying shear flow to the dispersions allows the silica particles to rearrange into larger crystalline domains with a unidirectional orientation along the flow. This shear-induced structural change produces absolute reflectivity at the stopband as high as 90% and a high transparency of 90% at off-resonant wavelengths with minimal diffusive scattering. Furthermore, the strong interparticle repulsion ensures a uniform volume fraction of particles throughout the dispersion, reducing deviations in the optical properties. We intricately micropattern the photocurable dispersions using photolithography. Additionally, the photonic films and patterns can be stacked to form multiple layers, displaying mixed structural colors and multiple reflectance peaks without sacrificing reflectivity. These superior photonic materials hold promise for various optical applications, including optical components and anticounterfeiting patches.
Collapse
Affiliation(s)
- Minji Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Jong Bin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| |
Collapse
|
10
|
Papiano I, De Zio S, Hofer A, Malferrari M, Mínguez Bacho I, Bachmann J, Rapino S, Vogel N, Magnabosco G. Nature-inspired functional porous materials for low-concentration biomarker detection. MATERIALS HORIZONS 2023; 10:4380-4388. [PMID: 37465878 DOI: 10.1039/d3mh00553d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Nanostructuration is a promising tool for enhancing the performance of sensors based on electrochemical transduction. Nanostructured materials allow for increasing the surface area of the electrode and improving the limit of detection (LOD). In this regard, inverse opals possess ideal features to be used as substrates for developing sensors, thanks to their homogeneous, interconnected pore structure and the possibility to functionalize their surface. However, overcoming the insulating nature of conventional silica inverse opals fabricated via sol-gel processes is a key challenge for their application as electrode materials. In this work, colloidal assembly, atomic layer deposition and selective surface functionalization are combined to design conductive inverse opals as an electrode material for novel glucose sensing platforms. An insulating inverse opal scaffold is coated with uniform layers of conducting aluminum zinc oxide and platinum, and subsequently functionalized with glucose oxidase embedded in a polypyrrole layer. The final device can sense glucose at concentrations in the nanomolar range and is not affected by the presence of common interferents gluconolactone and pyruvate. This method may also be applied to different conductive materials and enzymes to generate a new class of highly efficient biosensors.
Collapse
Affiliation(s)
- Irene Papiano
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Simona De Zio
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - André Hofer
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Marco Malferrari
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Ignacio Mínguez Bacho
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Julien Bachmann
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Stefania Rapino
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Nicolas Vogel
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| | - Giulia Magnabosco
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| |
Collapse
|
11
|
Wang X, Bai H, Li Z, Tian Y, Zhao T, Cao M. Designing a slippery/superaerophobic hierarchical open channel for reliable and versatile underwater gas delivery. MATERIALS HORIZONS 2023; 10:3351-3359. [PMID: 37461371 DOI: 10.1039/d3mh00898c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Achieving long-term and stable gas manipulation in an aqueous environment is necessary to improve multiphase systems relating to gas/liquid interaction. Inspired by the Pitcher plant and the hummingbird beak, we report a slippery/superaerophobic (SLSO) hierarchical fluid channel for continuous, durable, and flexible gas transport. The immiscible lubricant layer inside the SLSO channel promotes one-year stability of gas transport, and the maximum flux of this open channel can reach 3000 mL h-1. Further integration of a CO2 capturing microchip demonstrates the availability and potential of this gas-manipulating interface, which should provide a valuable platform to develop advanced materials and devices.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, P. R. China.
| | - Haoyu Bai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, P. R. China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhe Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, P. R. China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yaru Tian
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, P. R. China.
| | - Tianhong Zhao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, P. R. China.
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
12
|
Morozova SM, Gevorkian A, Kumacheva E. Design, characterization and applications of nanocolloidal hydrogels. Chem Soc Rev 2023. [PMID: 37464914 DOI: 10.1039/d3cs00387f] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Nanocolloidal gels (NCGs) are an emerging class of soft matter, in which nanoparticles act as building blocks of the colloidal network. Chemical or physical crosslinking enables NCG synthesis and assembly from a broad range of nanoparticles, polymers, and low-molecular weight molecules. The synergistic properties of NCGs are governed by nanoparticle composition, dimensions and shape, the mechanism of nanoparticle bonding, and the NCG architecture, as well as the nature of molecular crosslinkers. Nanocolloidal gels find applications in soft robotics, bioengineering, optically active coatings and sensors, optoelectronic devices, and absorbents. This review summarizes currently scattered aspects of NCG formation, properties, characterization, and applications. We describe the diversity of NCG building blocks, discuss the mechanisms of NCG formation, review characterization techniques, outline NCG fabrication and processing methods, and highlight most common NCG applications. The review is concluded with the discussion of perspectives in the design and development of NCGs.
Collapse
Affiliation(s)
- Sofia M Morozova
- N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, 105005, Moscow, Russia
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
| | - Albert Gevorkian
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
| | - Eugenia Kumacheva
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
- Department of Chemical Engineering and Applied Chemistry University of Toronto, 200 College street, Toronto, Ontario M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
13
|
Li C, Yu Y, Li H, Lin H, Cui H, Pan Y, Zhang R, Song Y, Shum HC. Heterogeneous Self-Assembly of a Single Type of Nanoparticle Modulated by Skin Formation. ACS NANO 2023. [PMID: 37307592 DOI: 10.1021/acsnano.3c02082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembly of colloidal nanoparticles has generated tremendous interest due to its widespread applications in structural colorations, sensors, and optoelectronics. Despite numerous strategies being developed to fabricate sophisticated structures, the heterogeneous self-assembly of a single type of nanoparticle in one step remains challenging. Here, facilitated by spatial confinement induced by a skin layer in a drying droplet, we achieve the heterogeneous self-assembly of a single type of nanoparticle by quickly evaporating a colloid-poly (ethylene glycol) (PEG) droplet. During the drying process, a skin layer forms at the droplet surface. The resultant spatial confinement assembles nanoparticles into face-centered-cubic (FCC) lattices with (111) and (100) plane orientations, generating binary bandgaps and two structural colors. The self-assembly of nanoparticles can be regulated by varying the PEG concentration so that FCC lattices with homo- or heterogeneous orientation planes can be prepared on demand. Besides, the approach is applicable for diverse droplet shapes, various substrates, and different nanoparticles. The one-pot general strategy breaks the requirements for multiple types of building blocks and predesigned substrates, extending the fundamental understanding underlying colloidal self-assembly.
Collapse
Affiliation(s)
- Chang Li
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
| | - Yafeng Yu
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
| | - Huizeng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haisong Lin
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Center, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Huanqing Cui
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
| | - Yi Pan
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
| | - Ruotong Zhang
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Center, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| |
Collapse
|
14
|
Lourdu Madanu T, Chaabane L, Mouchet SR, Deparis O, Su BL. Manipulating multi-spectral slow photons in bilayer inverse opal TiO 2@BiVO 4 composites for highly enhanced visible light photocatalysis. J Colloid Interface Sci 2023; 647:233-245. [PMID: 37253292 DOI: 10.1016/j.jcis.2023.05.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Manipulation of light has been proved to be a promising strategy to increase light harvesting in solar-to-chemical energy conversion, especially in photocatalysis. Inverse opal (IO) photonic structures are highly promising for light manipulation as their periodic dielectric structures enable them to slow down light and localize it within the structure, thereby improving light harvesting and photocatalytic efficiency. However, slow photons are confined to narrow wavelength ranges and hence limit the amount of energy that can be captured through light manipulation. To address this challenge, we synthesized bilayer IO TiO2@BiVO4 structures that manifested two distinct stop band gap (SBG) peaks, arising from different pore sizes in each layer, with slow photons available at either edge of each SBG. In addition, we achieved precise control over the frequencies of these multi-spectral slow photons through pore size and incidence angle variations, that enabled us to tune their wavelengths to the electronic absorption of the photocatalyst for optimal light utilization in aqueous phase visible light photocatalysis. This first proof of concept involving multi-spectral slow photon utilization enabled us to achieve up to 8.5 times and 2.2 times higher photocatalytic efficiencies than the corresponding non-structured and monolayer IO photocatalysts respectively. Through this work, we have successfully and significantly improved light harvesting efficiency in slow photon-assisted photocatalysis, the principles of which can be extended to other light harvesting applications.
Collapse
Affiliation(s)
- Thomas Lourdu Madanu
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Laroussi Chaabane
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Sébastien R Mouchet
- Solid-State Physics Laboratory (LPS) & Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium; School of Physics, University of Exeter, Physics Building, Stocker Road, Exeter EX4 4QL, UK
| | - Olivier Deparis
- Solid-State Physics Laboratory (LPS) & Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium; State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| |
Collapse
|
15
|
Liu M, Yang M, Wan X, Tang Z, Jiang L, Wang S. From Nanoscopic to Macroscopic Materials by Stimuli-Responsive Nanoparticle Aggregation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208995. [PMID: 36409139 DOI: 10.1002/adma.202208995] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Indexed: 05/19/2023]
Abstract
Stimuli-responsive nanoparticle (NP) aggregation plays an increasingly important role in regulating NP assembly into microscopic superstructures, macroscopic 2D, and 3D functional materials. Diverse external stimuli are widely used to adjust the aggregation of responsive NPs, such as light, temperature, pH, electric, and magnetic fields. Many unique structures based on responsive NPs are constructed including disordered aggregates, ordered superlattices, structural droplets, colloidosomes, and bulk solids. In this review, the strategies for NP aggregation by external stimuli, and their recent progress ranging from nanoscale aggregates, microscale superstructures to macroscale bulk materials along the length scales as well as their applications are summarized. The future opportunities and challenges for designing functional materials through NP aggregation at different length scales are also discussed.
Collapse
Affiliation(s)
- Mingqian Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Man Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Chen H, Miao S, Zhao Y, Luo Z, Shang L. Rotary Structural Color Spindles from Droplet Confined Magnetic Self-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207270. [PMID: 36651011 PMCID: PMC10015863 DOI: 10.1002/advs.202207270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Structural colors materials are profoundly explored owing to their fantastic optical properties and widespread applications. Development of structural color materials bearing flexible morphologies and versatile functionalities is highly anticipated. Here, a droplet-confined, magnetic-induced self-assembly strategy for generating rotary structural color spindles (SCSPs) by fast solvent extraction is proposed. The as-prepared SCSPs exhibit an orderly close-packed lattice structure, thus appearing brilliant structural colors that serve as encoding tags for multiplexed bioassays. Besides, benefitting from the abundant specific surface area, biomarkers can be labeled on the SCSPs with high efficiency for specific detection of analytes in clinical samples. Moreover, the directional magnetic moment arrangement enables contactless magnetic manipulation of the SCSPs, and the resultant rotary motions of the SCSPs generates turbulence in the detection solution, thus significantly improving the detection efficiency and shortening the detection time. Based on these merits, a portable point-of-care-testing strip integrating the rotary SCSPs is further constructed and the capability and advantages of this platform for multiplexed detection of tumor-related exosomes in clinical samples are demonstrated. This study offers a new way for the control of bottom-up self-assembly and extends the configuration and application values of colloidal crystal structural colors materials.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Shuangshuang Miao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Zhiqiang Luo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Luoran Shang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Shanghai Xuhui Central Hospital, Zhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
17
|
Stein A. Achieving Functionality and Multifunctionality through Bulk and Interfacial Structuring of Colloidal-Crystal-Templated Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2890-2910. [PMID: 36757136 DOI: 10.1021/acs.langmuir.2c03297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Over the past 25 years, the field of colloidal crystal templating of inverse opal or three-dimensionally ordered macroporous (3DOM) structures has made tremendous progress. The degree of structural control over multiple length scales, understanding of mechanical properties, and complexity of systems in which 3DOM materials are a component have increased substantially. In addition, we are now seeing applications of 3DOM materials that make use of multiple features of their architecture at the same time. This Feature Article focuses on the different properties of 3DOM materials that provide functionality, including a relatively large surface area, the interconnectedness of the pores and the resulting good accessibility of the internal surface, the nanostructured features of the walls, the structural hierarchy and periodicity, well-defined surface roughness, and relative mechanical robustness at low density. It provides representative examples that illustrate the properties of interest related to applications including energy storage and conversion systems, sensors, catalysts, sorbents, photonics, actuators, and biomedical materials or devices.
Collapse
Affiliation(s)
- Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
18
|
Raspberry Colloid Templated Catalysts Fabricated Using Spray Drying Method. Catalysts 2022. [DOI: 10.3390/catal13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The majority of industrial chemical processes—from production of organic and inorganic compounds to air and water treatment—rely on heterogeneous catalysts. The performance of these catalysts has improved over the past several decades; in parallel, many innovations have been presented in publications, demonstrating increasingly higher efficiency and selectivity. One common challenge to adopting novel materials in real-world applications is the need to develop robust and cost-effective synthetic procedures for their formation at scale. Herein, we focus on the scalable production of a promising new class of materials—raspberry-colloid-templated (RCT) catalysts—that have demonstrated exceptional thermal stability and high catalytic activity. The unique synthetic approach used for the fabrication of RCT catalysts enables great compositional flexibility, making these materials relevant to a wide range of applications. Through a series of studies, we identified stable formulations of RCT materials that can be utilized in the common industrial technique of spray drying. Using this approach, we demonstrate the production of highly porous Pt/Al2O3 microparticles with high catalytic activity toward complete oxidation of toluene as a model reaction.
Collapse
|
19
|
Li W, Cheng B, Xiao P, Chen T, Zhang J, Yu J. Low-Temperature-Processed Monolayer Inverse Opal SnO 2 Scaffold for Efficient Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205097. [PMID: 36310128 DOI: 10.1002/smll.202205097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Organic-inorganic halide perovskite solar cells (PSCs) have attracted tremendous attention in the photovoltaic field due to their excellent optical properties and simple fabrication process. However, the recombination of photogenerated electron-hole pairs at the interface severely affects the power conversion efficiency (PCE) of the PSCs. Herein, a monolayer of inverse opal SnO2 (IO-SnO2 ) is synthesized via a template-assisted method and used as a scaffold for perovskite layer (PSK). The porous IO-SnO2 scaffold increases the contact area and shortens the transport distance between the electron transport layer (ETL) and PSK. Ultraviolet photoelectron spectroscopy and Kelvin probe force microscopy results indicate that the built-in electric field is enhanced with IO-SnO2 scaffold, strengthening the driving force for charge separation. Femtosecond transient absorption spectroscopy measurements reveal that the IO-SnO2 scaffold facilitates interfacial electron transfer from PSK to ETL. Based on the above superiorities, the IO-SnO2 -based PSCs exhibit boosted PCE and device stability compared with the pristine PSCs. This work provides insights into the development of novel scaffold layers for high-performance PSCs.
Collapse
Affiliation(s)
- Wenjia Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Peng Xiao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
20
|
Open-channel metal particle superlattices. Nature 2022; 611:695-701. [DOI: 10.1038/s41586-022-05291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
|