1
|
Wang B, Sun L, Wang T, Cao Y, Li X, Xu W, Zhang J, Tang Y. Ordered mesoporous metal-organic frameworks directed by amphiphilic block polymer as soft-template in N,N-dimethylformamide media. J Colloid Interface Sci 2025; 691:137380. [PMID: 40154169 DOI: 10.1016/j.jcis.2025.137380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Ordered mesoporous Metal-Organic Frameworks (mesoMOFs), integrating mesopores and micropores, address mass transfer limitations characteristic of microporous materials, thus broadening their application spectrum. However, the synthesis of mesoMOFs has been predominantly achievable in aqueous media, rather than in organic solvents, which are more conducive to the growth and stabilization of MOFs. This is primarily attributed to the challenge in forming stable and uniform micelles from block copolymers within organic systems. In this work, mesoMOFs are synthesized within N,N-dimethylformamide (DMF) media for the first time, via a micellar microphase separation method facilitating by introducing trace water into the organic solvent DMF. These mesoMOFs, featuring non-exposed spherical mesopores and inherent microporosity, demonstrate significantly enhanced performance in the accumulation of reactants, and such characteristics render these materials ideal nanoreactors, endowing them with superior adsorption and degradation capabilities. The adsorptive and degradation removal of tetracycline (TC) by mMIL-101 reached 93.7%, with its efficiency in both adsorption and degradation of TC being significantly higher than that of traditional MIL-101. This synthetic approach expands the scope of mesoMOFs preparation in organic solvents, providing insights for designing a new generation of mesoMOFs with diverse compositions and structures, promising applications across various fields and advancing MOF-based technologies.
Collapse
Affiliation(s)
- Binhang Wang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, PR China
| | - Libo Sun
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, PR China
| | - Tong Wang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, PR China
| | - Yujie Cao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, PR China
| | - Xiang Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, PR China
| | - Wenhao Xu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, PR China
| | - Jie Zhang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, PR China
| | - Yun Tang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
2
|
Lv Z, Liu M, Yang Y, Chen T, Yang W, Wang Y, Zhao Z, Lan K, Zhao T, Li Q, Li X, Zhao D. Hierarchical Engineering of Single-Crystalline Mesoporous Metal-Organic Frameworks with Hollow Structures. J Am Chem Soc 2025; 147:14585-14594. [PMID: 40257329 DOI: 10.1021/jacs.5c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Although the superiority of hierarchical structure has driven extensive demand for applications, establishing hierarchy in a long-range-ordered single crystal remains a formidable challenge due to the inherent competition and contradiction between single crystallinity and controllable hierarchical structure. Herein, we demonstrate a growth and dissociation kinetics cooperative strategy for synthesizing a family of hollow single-crystalline mesoporous metal-organic frameworks (meso-MOFs) with hierarchical structures. The approach employs a dual-template method, integrating both hard and soft templates. By adjusting the HCl/CH3COOH ratio, the reaction system's pH can be tuned to regulate the dissociation kinetics of the acid-sensitive seeds serving as hard templates for the formation of hollow structure, while simultaneously modifying the concentration of the dual acids to control the growth kinetics of meso-MOF shells. The competition between maintaining a single crystallinity and achieving a well-defined hierarchical structure can be effectively balanced. Driven by the two interfacial kinetics, we successfully obtained the octahedral meso-MOF nanoparticles that not only exhibit a well-defined hollow structure with precisely controllable hollow size (∼81-1120 nm) and tunable wall thickness (∼28.6-61.3 nm) but also retain their single-crystal integrity. Specifically, the dissociation kinetics of seeds governed the formation of hollow structures, while the growth kinetics of single-crystalline meso-MOF shells ensured uniform coverage and structural integrity. Based on this strategy, we further developed a series of novel hollow meso-MOFs with hierarchical nanostructures, including hollow open-capsule meso-MOFs, 2D hollow meso-MOFs, hollow interlayer-structured meso-MOFs, macro-meso-micro trimodal porous MOFs, and so on.
Collapse
Affiliation(s)
- Zirui Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Minchao Liu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yi Yang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Tianhao Chen
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Wenyu Yang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yijin Wang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Kun Lan
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Tiancong Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Qiaowei Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaomin Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
- Shanghai Wusong Laboratory of Materials Science, Shanghai, 201999, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
- Shanghai Wusong Laboratory of Materials Science, Shanghai, 201999, P. R. China
| |
Collapse
|
3
|
Han M, Nagaura T, Nam HN, Yang Z, Alowasheeir A, Phung QM, Yanai T, Kim J, Alshehri SM, Ahamad T, Bando Y, Yamauchi Y. Selective Design of Mesoporous Bi 2Se 3 Films with Orthorhombic and Rhombohedral Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501534. [PMID: 40270330 DOI: 10.1002/smll.202501534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/05/2025] [Indexed: 04/25/2025]
Abstract
Materials with the same chemical composition can exhibit distinct properties depending on their crystal phases. Here, the synthesis of two types of mesoporous Bi2Se3 films at different reduction potentials is reported and their application in electrochemical glucose sensing. Mesoporous Bi2Se3 is synthesized by incorporating block copolymer micelle assemblies into the deposition solution and applying a reduction potential. To characterize the crystal phases accurately, Bi2Se3 films are heat-treated at 200 °C for 1 h in a nitrogen atmosphere. The results reveal that the Bi2Se3 films synthesized under different conditions exhibit clearly distinct phases: rhombohedral (R-Bi2Se3) and orthorhombic (O-Bi2Se3). The R-Bi2Se3-8 nm, featuring 8 nm pores and synthesized at a more negative reduction potential, outperforms its nonporous counterpart, achieving a glucose sensing sensitivity of 0.143 µA cm-2 µM-1 and a detection limit of 6.2 µM at pH 7.4 in 0.1 M phosphate-buffered saline solution. In contrast, the O-Bi2Se3, prepared at a relatively positive potential, exhibits no glucose-sensing activity. The inactivity of O-Bi2Se3 for glucose oxidation is likely due to the energetically unfavorable intermediates, as predicted by density functional theory calculations. These findings underscore the critical role of crystal phase control in porous nanomaterials and pave the way for developing innovative porous systems.
Collapse
Affiliation(s)
- Minsu Han
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Tomota Nagaura
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ho Ngoc Nam
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Zihao Yang
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Azhar Alowasheeir
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Saad M Alshehri
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tansir Ahamad
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yoshio Bando
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| |
Collapse
|
4
|
Li X, Chen J, Wang T, Wang B, Cao Y, Chao D, Tang Y. Ordered Co-Assembly of Soft-in-Hard Hetero-Structured Pulse Guidance Ion-Accelerator for Dendrite-Free Aqueous Zinc-Ion Battery Anodes. Angew Chem Int Ed Engl 2025:e202505855. [PMID: 40255064 DOI: 10.1002/anie.202505855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/17/2025] [Accepted: 04/20/2025] [Indexed: 04/22/2025]
Abstract
Constructing a solid electrolyte interface (SEI) layer to suppress dendrite growth is an effective approach in Zn-based aqueous batteries. Traditional SEI layers are limited by their simple structure and composition, enabling only one functionality of either providing nucleation sites or facilitating desolvation. In this study, a pulse guidance ion-accelerator is constructed by kinetics-controlled co-assembly of zincophilic micelles and zincophobic metal-organic framework (MOF). The closely packed soft micelles, in conjunction with the hard MOF host particles, form a multi-tiered soft-in-hard hetero-structure that accelerates adsorption, pre-desolvation, and subsequent desolvation processes, facilitating the (002) crystal plane dendrite-free deposition. As a result, stable cycling over 1900 h (31 mV polarization) in symmetric cell and 5200 cycles in the Zn//Cu battery (99.8% coulombic efficiency) can be achieved. These findings will effectively promote the development of stable and long-cycling aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Xiang Li
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Jiahao Chen
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Tong Wang
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Binhang Wang
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Yujie Cao
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
- Shanghai Wusong Laboratory of Materials Science, Shanghai, 201999, P.R. China
| | - Yun Tang
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian, 116045, P.R. China
- Shanghai Wusong Laboratory of Materials Science, Shanghai, 201999, P.R. China
| |
Collapse
|
5
|
Shen CH, Zhao Y, Nam HN, Zhu L, Phung QM, Austen V, Kim M, Jiang D, Wei X, Yokoshima T, Kung CW, Yamauchi Y. Unlocking coordination sites of metal-organic frameworks for high-density and accessible copper nanoparticles toward electrochemical nitrate reduction to ammonia. Chem Sci 2025; 16:7026-7038. [PMID: 40144507 PMCID: PMC11934058 DOI: 10.1039/d4sc07132h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Ordered pore engineering of metal-organic framework (MOF)-based catalysts by soft-template strategies can facilitate the mass transfer of reactants during heterogeneous electrocatalysis. Besides, the abundant open coordination sites generated by the removal of surfactants also open up a new avenue for incorporating active moieties within the framework; however, such studies are still limited. Herein, a mesoporous cerium-based MOF, MUiO-66(Ce), is synthesized by introducing a pluronic triblock copolymer as a template, where abundant open coordination sites are found to be present on the hexa-cerium nodes. By providing rich Ce-OH/Ce-OH2 sites, plenty of copper moieties are installed on the framework (denoted as Cu-MUiO-66(Ce)). After the in situ reduction process, a high density of copper nanoparticles is confined within MUiO-66(Ce), and Cu@MUiO-66(Ce) is thus obtained. With a high loading of active copper sites and efficient diffusion of reactants, the Cu@MUiO-66(Ce)-modified electrode can achieve an ammonia production rate of 1.875 mg h-1 mgcatalyst -1 and a faradaic efficiency of 88.7% for nitrate-to-ammonia reduction. Findings here shed light on the importance of pore engineering of MOF-based catalysts for unlocking open coordination sites and facilitating the mass transfer to enhance the electrocatalytic activity.
Collapse
Affiliation(s)
- Cheng-Hui Shen
- Department of Chemical Engineering, National Cheng Kung University 1 University Road Tainan City Taiwan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Yingji Zhao
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Ho Ngoc Nam
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Liyang Zhu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University Nagoya 464-8603 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Nagoya 464-8603 Japan
| | - Vic Austen
- Department of Chemistry, Graduate School of Science, Nagoya University Nagoya 464-8603 Japan
| | - Minjun Kim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
| | - Dong Jiang
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Xiaoqian Wei
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Tokihiko Yokoshima
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University 1 University Road Tainan City Taiwan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
6
|
Yu M, Hu H, Zeng Y, Liu F, Wang S, Deng S, Ding S, Chen C, Xiao W. Construction of Hierarchically Porous Metal-Organic Frameworks via A Novel Metal Ion-Modulation Approach: A Complementary Approach to Linker-Modulation. Chemistry 2025; 31:e202500258. [PMID: 40035428 DOI: 10.1002/chem.202500258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
Hierarchically porous metal-organic frameworks (HP-MOFs) always present novel and advanced performances in many applications. Herein, we demonstrated a novel mechanochemical metal modulation strategy to construct the HP-MOFs. The metal modulator bearing different coordination ability from the parent metal was incorporated into the parent metal precursor via ball milling. Then, by reacting with the ligand, the metal modulator interrupted the original metal-ligand coordination and created the defect-mesopores during the solid-state transformation process, resulting in HP-MOF. Using this approach, a series of HP-MOFs were constructed. Notably, unlike the linker modulation approach, the missing-linker defects are no longer the dominant defects in these prepared HP-MOFs. Beyond this, the metal modulators can be co-assembled into the HP-MOFs, functionalizing HP-MOFs with new metal active sites. Finally, the catalytic performances of prepared hierarchically porous ZIF-8-Pd was tested, it presented superior catalytic activities towards hydrogenation of unsaturated aldehydes.
Collapse
Affiliation(s)
- Mengting Yu
- State Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, Jiangxi, 330031, P. R. China
| | - Hui Hu
- State Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, Jiangxi, 330031, P. R. China
| | - Yunpeng Zeng
- State Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, Jiangxi, 330031, P. R. China
| | - Fanglin Liu
- State Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, Jiangxi, 330031, P. R. China
| | - Shuhua Wang
- State Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, Jiangxi, 330031, P. R. China
| | - Shengjun Deng
- State Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, Jiangxi, 330031, P. R. China
| | - Shunmin Ding
- State Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, Jiangxi, 330031, P. R. China
| | - Chao Chen
- State Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, Jiangxi, 330031, P. R. China
| | - Weiming Xiao
- State Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, Jiangxi, 330031, P. R. China
| |
Collapse
|
7
|
Chen R, Du J, Luo C, Liu L, Liang P, Zhang K, Liu Y, Zhu G. A novel hierarchical porous ZIF-8 for effective removal of three non-steroidal anti-inflammatory drugs simultaneously from environment. ENVIRONMENTAL RESEARCH 2025; 271:121078. [PMID: 39922252 DOI: 10.1016/j.envres.2025.121078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Metal organic frameworks (MOFs) adsorbents have significant advantages to remove contaminates. While their microporous structure is not conducive to entry of larger molecules, making it difficult to simultaneously utilize the inner and outer surfaces of the pores to achieve higher adsorption capacity. In this work, the hexadecyltrimethylammonium bromide was employed as soft template to prepare a novel hierarchical porous ZIF-8 (HP-ZIF-8) in water. The result showed that the developed HP-ZIF-8 has both microporous (0.59 nm) and mesoporous structures (35.59 nm), which is 33 times larger than that of initial ZIF-8 (1.08 nm). Mesoporous HP-ZIF-8 enhances adsorption, enabling simultaneous capture of diclofenac sodium (DFS), flunixin meglumine (FM), and meloxicam (ME). The adsorption process for DFS, FM, and ME was agreement with the Langmuir model, and maximum adsorption capacities were 119.33, 162.87, and 40.45 mg g-1, respectively. Moreover, the mesopores effectively enhance mass transfer rate, and the adsorption equilibrium can be reached within 10 min. Mechanistic analysis revealed that DFS, FM, and ME adsorption onto HP-ZIF-8 was driven by hydrogen bonding, π-π stacking, electrostatic and metal coordination interactions, alongside mesoporous structure-induced physical adsorption. Furthermore, HP-ZIF-8 was successfully applied in the removal of these pharmaceutical compounds from five different real water samples and three food matrices, achieving recoveries between 84.54% and 106.59%, with relative standard deviations below 4.05%. This work provides a simple and feasible method to improve the adsorption performance of MOFs, making them efficiently adsorbing and removing pollutants from the environment.
Collapse
Affiliation(s)
- Runan Chen
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Jiejie Du
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Chenshi Luo
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Lin Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Pengfei Liang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Kaige Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yongli Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
8
|
Mecheri P, Hareesh P, Menamparambath MM. Tailoring the Morphology of α-Cobalt Hydroxide Using Liquid/Liquid Interface and Its Application in Electrochemical Detection of Ascorbic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9422-9433. [PMID: 40188460 DOI: 10.1021/acs.langmuir.5c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
The exertion of nanomaterials is subjugated by factors such as size, thickness, morphology, crystallinity, and composition, however, the ability to control these parameters, particularly the morphology, through conventional synthesis methods are challenging. Nevertheless, liquid/liquid interface-assisted methods have paved the way for more precise and controlled synthesis of nanomaterials. In this study, an n-butanol/water interface was used to synthesize α-cobalt hydroxide (CH) nanostructures, and the effects of solvent ratio and stirring rate on the properties of the product were examined. The transition from pure water to pure n-butanol alters the morphology from irregular nanoflakes to flower-like structures. A 1:1 solvent ratio produced nonaggregated flower structures with an increased active surface area and minimal charge transfer resistance. The agitation speed also affected the morphology; as the stirring speed increased from zero to 150 rpm, the morphology changed from aggregated needles to flower-like structures. The sample synthesized with a 1:1 solvent ratio and 50 rpm stirring speed (BW2) exhibited enhanced electrochemical activity, which was harnessed for electrochemical sensing with minimal multiwalled carbon nanotube (MWCNT) addition. The CH/MWCNT composite effectively detected ascorbic acid (AA) across a broad linear range of 1-200 μM with a detection limit of 0.0943 μM and provided accurate AA recovery in vitamin C tablets and artificial sweat. A flexible miniature sensor was also developed for AA detection, demonstrating the potential of liquid/liquid interfaces to modulate the morphology and hence the electrochemical properties of transition metal oxides for a wide range of applications.
Collapse
Affiliation(s)
- Pranav Mecheri
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601 Kerala, India
| | - Pournamy Hareesh
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601 Kerala, India
| | - Mini Mol Menamparambath
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601 Kerala, India
| |
Collapse
|
9
|
Asgari M, Albacete P, Menon D, Lyu Y, Chen X, Fairen-Jimenez D. The structuring of porous reticular materials for energy applications at industrial scales. Chem Soc Rev 2025. [PMID: 40195939 PMCID: PMC11976391 DOI: 10.1039/d5cs00166h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Indexed: 04/09/2025]
Abstract
Reticular synthesis constructs crystalline architectures by linking molecular building blocks with robust bonds. This process gave rise to reticular chemistry and permanently porous solids. Such precise control over pore shape, size and surface chemistry makes reticular materials versatile for gas storage, separation, catalysis, sensing, and healthcare applications. Despite their potential, the transition from laboratory to industrial applications remains largely limited. Among various factors contributing to this translational gap, the challenges associated with their formulation through structuring and densification for industrial compatibility are significant yet underexplored areas. Here, we focus on the shaping strategies for porous reticular materials, particularly metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), to facilitate their industrial application. We explore techniques that preserve functionality and ensure durability under rigorous industrial conditions. The discussion highlights various configurations - granules, monoliths, pellets, thin films, gels, foams, and glasses - structured to maintain the materials' intrinsic microscopic properties at a macroscopic level. We examine the foundational theory and principles behind these shapes and structures, employing both in situ and post-synthetic methods. Through case studies, we demonstrate the performance of these materials in real-world settings, offering a structuring blueprint to inform the selection of techniques and shapes for diverse applications. Ultimately, we argue that advancing structuring strategies for porous reticular materials is key to closing the gap between laboratory research and industrial utilization.
Collapse
Affiliation(s)
- Mehrdad Asgari
- The Adsorption and Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Pablo Albacete
- The Adsorption and Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Dhruv Menon
- The Adsorption and Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Yuexi Lyu
- The Adsorption and Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Xu Chen
- The Adsorption and Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - David Fairen-Jimenez
- The Adsorption and Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| |
Collapse
|
10
|
Lv H, Li N, Zhang J, Hou Y, Fan X, Liu X, Dang F. Light-Responsive Nanoemulsion-Guided Assembly of Honeycomb Hierarchically Macro/mesoporous Metal-Organic Framework Nanoarchitectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411525. [PMID: 40025974 DOI: 10.1002/smll.202411525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Despite that soft template pathways are promising avenues for synthesizing hierarchically porous metal-organic framework (MOF) nanoparticles, smart-responsive-directed assembly strategies have been rarely extended to fabricate well-defined hierarchical macro/mesoporosities in MOF architectures. Herein, a novel light-responsive nanoemulsion-guided strategy is reported to prepare honeycomb hierarchically porous UiO-66 nanoparticles (UiO-66 HHPNPs) with macro/mesoporosities transition using poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (F127, PEO106PPO70PEO106) and azobenzene (Azo) as a light-responsive soft template. By facilely tuning the concentration of Azo and light irradiation (e.g., 365 nm ultraviolet light), the assembled UiO-66 HHPNPs varies from microporous architectures to macro/mesoporous dendritic architectures with an average pore size expanding from 14 to 135 nm. It is worth noting that the cis-trans configuration transformation of Azo under the irradiation of 475 nm blue light results in the shrunken micelles and thus rapid template removal from macro/mesoporous architectures of UiO-66 HHPNPs. Additionally, a light-responsive soft template can also alter the pore structures of other MOF nanoparticles (e.g., zirconium-based UiO-66). Importantly, the resultant macro/mesoporous UiO-66 HHPNPs reveal superior catalytic activity than the microporous UiO-66 HHPNPs in the 3,3',5,5'-tetramethylbenzidine catalytic reaction system. This newfangled light-induced template assembly technique paves an attractive way for the rational design of multimodal macro/mesoporous architectures and thus renders them broad applications.
Collapse
Affiliation(s)
- Hui Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Nan Li
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Jieling Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Yawen Hou
- Shaanxi Coal-based Special Fuel Research Institute Co. LTD, Xi'an, 710199, China
| | - Xinyu Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Xiaoran Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Fuquan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| |
Collapse
|
11
|
Xu Y, Song M, Ren Y, Pang X, Cheng J, Chen L, Lu G. Construction and Band Gap-Regulation of Ordered Macro-Microporous Single Crystals of an Amine-Linked Covalent Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8136-8146. [PMID: 39871499 DOI: 10.1021/acsami.4c15460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Heterogeneity engineering provides an effective route to manipulate the chemical and physical properties of covalent organic frameworks (COFs) but is still under development for their single-crystal form. Here, we report the strategy based on a combination of the template-assisted modulated synthesis with a one-pot crystallization-reduction method to directly construct ordered macro-microporous single crystals of an amine-linked three-dimensional (3D) COF (OM-COF-300-SR). In this strategy, the colloidal crystal-templating synthesis not only assists the formation of ordered macropores but also greatly facilitates the in situ conversion of linkages (from imine to amine) in the COF-300 single crystals. The as-synthesized OM-COF-300-SR120 exhibits a reversible symmetry change from a tetragonal I41/a to monoclinic I2/c space group after activation, which was not observed previously. On the other hand, this strategy allows for a flexible control over the degree of amination (from 0 to 100%, as determined by X-ray photoelectron spectroscopy (XPS) analysis) in COF-300 crystals to regulate their band gap (from 2.57 to 2.81 eV) for the optimization of photocatalytic activity. The high degree of amination and the embedded ordered macropores render OM-COF-300-SR120 with superior photocatalytic activity (with a reaction rate constant of 0.9572 min-1) to its nonmacroporous counterpart (NM-COF-300-SR120, 0.2303 min-1) for the degradation of rhodamine B. In addition, the significant contribution of ordered macropores to confront mass transfer resistance in COF single crystals was also confirmed by the much higher catalytic activity of Au/OM-COF-300-SR120 (with an activity parameter of 7.96 × 103 s-1 mol-1) as compared with Au/NM-COF-300-SR120 (1.43 × 103 s-1 mol-1) in the model reduction reaction of 4-nitrophenol by NaBH4.
Collapse
Affiliation(s)
- Yulong Xu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Min Song
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yixiao Ren
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Xinghan Pang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Jingtian Cheng
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Guang Lu
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Wu T, Zhang X, Cai S, Zhang W, Yang R. Prussian blue nanocages as efficient radical scavengers and photothermal agents for reducing amyloid-beta induced neurotoxicity. Colloids Surf B Biointerfaces 2025; 246:114369. [PMID: 39536606 DOI: 10.1016/j.colsurfb.2024.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The unusual accumulation of amyloid-beta 1-42 (Aβ42) is an essential pathological feature of Alzheimer's disease (AD), and development of Aβ42 nanomodulators offers a potentially therapeutic approach to AD. Here, we report facile synthesis of the hollow mesocrystalline Prussian blue nanocages (HMPBs), which serve as versatile Aβ42 modulators. Due to the hollow nanostructures and large specific surface area, they can effectively inhibit Aβ42 aggregation by adsorption. They also exhibit robust near-infrared (NIR) photothermal effect for light-to-heat transition, which promotes the depolymerization of Aβ42 fibers. Besides, they display ROS quenching ability to scavenge hydroxyl radicals (•OH) caused by Aβ42 fibers, alleviate cellular oxidative stress, and improve cell survival. This work provides a new kind of Prussian blue nanomaterial for multimodal Aβ modulation.
Collapse
Affiliation(s)
- Ting Wu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xining Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangfei Cai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Zhang
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Han X, Chen J, Zhao Y, Kang R, Wei Y, Zhou S. Dual antibody-guided drug delivery systems using MOF-PQDs nanocomposites for precise tumor diagnosis and combination therapy. CHEMICAL ENGINEERING JOURNAL 2025; 505:159275. [DOI: 10.1016/j.cej.2025.159275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
14
|
Zhao Y, Yamauchi Y. Mesoporous single-crystal metal-organic frameworks. Nat Chem 2025; 17:161-162. [PMID: 39843840 DOI: 10.1038/s41557-024-01727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Affiliation(s)
- Yingji Zhao
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
Tong Y, Yang J, Xia F, Gu J. Construction of Compartmentalized Meso/Micro Spaces in Hierarchically Porous MOFs with Long-Chain Functional Ligands Inspired by Biological Signal Amplification. JACS AU 2025; 5:178-186. [PMID: 39886565 PMCID: PMC11775693 DOI: 10.1021/jacsau.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025]
Abstract
The creation of spatially coupled meso-/microenvironments with biomimetic compartmentalized functionalities is of great significance to achieve efficient signal transduction and amplification. Herein, using a soft-template strategy, UiO-67-type hierarchically mesoporous metal-organic frameworks (HMMOFs) were constructed to satisfy the requirements of such an artificial system. The key to the successful synthesis of HMUiO-67 is rooted in the utilization of the preformed cerium-oxo clusters as metal precursors, aligning the growth of MOF crystals with the mild conditions required for the self-assembly of the soft template. The adoption of long-chain functional 2,2'-bipyridine-5,5'-dicarboxylic acid ligands not only resulted in larger microporous sizes, facilitating the transport of various cascade reaction intermediates, but also provided anchorages for the introduction of enzyme-mimicking active sites. A cascade amplification system was designed based on the developed HMUiO-67, in which enzyme cascade reactions were initiated and relayed by a target analyte in the separate but coupled meso/micro spaces. As a proof of concept, natural acetylcholinesterase (AChE) and Cu-based laccase mimetics were integrated into HMMOFs, establishing a spatially coupled nanoreactor. The activity of AChE was triggered by the target analyte of carbaryl, while the amplified products of AChE catalysis mediated the activity of biomimetic enzyme in the closely proximate microporous spaces, producing further amplification of detectable signal. This enabled the entire cascade system to respond to minimal carbaryl with a limit of detection as low as approximately 2 nM. Such a model of cascade amplification is expected to set a conceptual guideline for the rational design of various bioreactors, serving as a sensitive response system for quantifying numerous target analytes.
Collapse
Affiliation(s)
- Yao Tong
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Xia
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Li RJ, Niu WJ, Zhao WW, Yu BX, Cai CY, Xu LY, Wang FM. Achievements and Challenges in Surfactants-Assisted Synthesis of MOFs-Derived Transition Metal-Nitrogen-Carbon as a Highly Efficient Electrocatalyst for ORR, OER, and HER. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408227. [PMID: 39463060 DOI: 10.1002/smll.202408227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Metal-organic frameworks (MOFs) are excellent precursors for preparing transition metal and nitrogen co-doped carbon catalysts, which have been widely utilized in the field of electrocatalysis since their initial development. However, the original MOFs derived catalysts have been greatly limited in their development and application due to their disadvantages such as metal atom aggregation, structural collapse, and narrow pore channels. Recently, surfactants-assisted MOFs derived catalysts have attracted much attention from researchers due to their advantages such as hierarchical porous structure, increased specific surface area, and many exposed active sites. This review mainly focuses on the synthesis methods of surfactants-assisted MOFs derived catalysts and comprehensively introduces the action of surfactants in MOFs derived materials and the structure-activity relationship between the catalysts and the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction performance. Apparently, the aims of this review not only introduce the status of surfactants-assisted MOFs derived catalysts in the field of electrocatalysis but also contribute to the rational design and synthesis of MOFs derived catalysts for fuel cells, metal-air cells, and electrolysis of water toward hydrogen production.
Collapse
Affiliation(s)
- Ru-Ji Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Wen-Jun Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Wei-Wei Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Bing-Xin Yu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Chen-Yu Cai
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Li-Yang Xu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Fu-Ming Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
17
|
Kuang T, Guo H, Guo W, Liu W, Li W, Saeb MR, Vatankhah‐Varnosfaderani M, Sheiko SS. Boosting the Strength and Toughness of Polymer Blends via Ligand-Modulated MOFs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407593. [PMID: 39412093 PMCID: PMC11615806 DOI: 10.1002/advs.202407593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/13/2024] [Indexed: 12/06/2024]
Abstract
Mechanically robust and tough polymeric materials are in high demand for applications ranging from flexible electronics to aerospace. However, achieving both high toughness and strength in polymers remains a significant challenge due to their inherently contradictory nature. Here, a universal strategy for enhancing the toughness and strength of polymer blends using ligand-modulated metal-organic framework (MOF) nanoparticles is presented, which are engineered to have adjustable hydrophilicity and lipophilicity by varying the types and ratios of ligands. Molecular dynamics (MD) simulations demonstrate that these nanoparticles can effectively regulate the interfaces between chemically distinct polymers based on their amphiphilicity. Remarkably, a mere 0.1 wt.% of MOF nanoparticles with optimized amphiphilicity (ML-MOF(5:5)) delivered ≈1.1- and ≈34.1-fold increase in strength and toughness of poly (lactic acid) (PLA)/poly (butylene succinate) (PBS) blend, respectively. Moreover, these amphiphilicity-tailorable MOF nanoparticles universally enhance the mechanical properties of various polymer blends, such as polypropylene (PP)/polyethylene (PE), PP/polystyrene (PS), PLA/poly (butylene adipate-co-terephthalate) (PBAT), and PLA/polycaprolactone (PCL)/PBS. This simple universal method offers significant potential for strengthening and toughening various polymer blends.
Collapse
Affiliation(s)
- Tairong Kuang
- Functional Polymers & Advanced Materials (FPAM) LabZhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science and EngineeringZhejiang University of TechnologyHangzhouZhejiang310014P. R. China
| | - Hongxin Guo
- Functional Polymers & Advanced Materials (FPAM) LabZhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science and EngineeringZhejiang University of TechnologyHangzhouZhejiang310014P. R. China
| | - Wei Guo
- Functional Polymers & Advanced Materials (FPAM) LabZhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science and EngineeringZhejiang University of TechnologyHangzhouZhejiang310014P. R. China
| | - Wenxian Liu
- Functional Polymers & Advanced Materials (FPAM) LabZhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science and EngineeringZhejiang University of TechnologyHangzhouZhejiang310014P. R. China
| | - Wei Li
- Institute for Chemical Reaction Design and Discovery (WPI‐ICReDD)Hokkaido UniversitySapporo001–0021Japan
- Suzhou LaboratorySuzhouJiangsu215123P. R. China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical ChemistryMedical University of GdańskJ. Hallera 107Gdańsk80–416Poland
| | | | - Sergei S. Sheiko
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
18
|
Zhai W, Li J, Tian Y, Liu H, Liu Y, Guo Z, Sakthivel T, Bai L, Yu XF, Dai Z. Consolidating the Oxygen Reduction with Sub-Polarized Graphitic Fe-N 4 Atomic Sites for an Efficient Flexible Zinc-Air Battery. NANO LETTERS 2024; 24:14632-14640. [PMID: 39510844 DOI: 10.1021/acs.nanolett.4c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The effectuation of the Zn-air battery (ZAB) is appealing for active and durable catalysts to kinetically drive the sluggish cathodic oxygen reduction reaction (ORR). Atomic metal-Nx-C sites are widely witnessed with Pt-like activity, but their demetalations still severely restrict the durability in ORR. Here we have profiled an ordered hierarchical porous carbon supported Fe-N4 single-atom (FeNC) catalyst by a template derivation method for efficient ORR and flexible ZAB studies. The FeNC structure is observed with a sub-polarized graphitic Fe-N4 coordination with a shortened Fe-N bond for potentially consolidating the ORR, together with the hierarchical porous matrix for kinetical mass transfer. Resultantly, the optimized FeNC catalyst showcases Pt-beyond alkaline ORR activity (E1/2 = 0.95 V) with long-term durability for 100 h, delivering the flexible ZAB device with high power density (251 mW cm-2) and durable cycle life (80 h). This research underscores the criterion in rationalizing active and robust ORR catalysts through metal-nitrogen bond modulation.
Collapse
Affiliation(s)
- Wenfang Zhai
- Materials Interface Center, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jialei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yahui Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Hang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhixin Guo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Thangavel Sakthivel
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gyeongbuk 39177, South Korea
| | - Licheng Bai
- Materials Interface Center, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xue-Feng Yu
- Materials Interface Center, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
19
|
Liu X, Chen J, Xia F, Yang J, Feng C, Gu J. Biphasic interface templated synthesis of wrinkled MOFs for the construction of cascade sensing platform based on the encapsulated gold nanoclusters and enzymes. J Colloid Interface Sci 2024; 680:528-536. [PMID: 39522247 DOI: 10.1016/j.jcis.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The design and construction of MOFs with flower-like structure could afford sufficient space for the immobilization of guests with large size and interconnected transport channels for their mass diffusion although it remains a challenge. Herein, wrinkled Ce-based hierarchically porous UiO-66 (Ce-WUiO-66) with good crystallinity was successfully synthesized for the first time using bicontinuous emulsion composed of 1-heptanol, water and F127 (PEO106PPO70PEO106) surfactant as a template. F127 played a key role in the formation of emulsions as a stabilizer, and meanwhile its PEO segments interacted with MOF precursors to guide the evolvement of crystallized pore walls. Through controlling the ratios of heptanol to water and the salinity, the distances of the pleat openings and the morphology of the resultant Ce-WUiO-66 were facilely regulated. In virtue of its highly open radial structure, Ce-WUiO-66 could serve as an ideal platform for loading multiple substances to build a cascade sensing system. As a proof of concept, we designed an amino acid (AA) cascade probe by co-immobilizing gold nanoclusters (AuNCs) and LAA oxidase into Ce-WUiO-66. The aggregation-induced-emission enhancement resulted from the encapsulation of AuNCs into Ce-WUiO-66 significantly improved the detection sensitivity and the detection limit of corresponding substrates reached as low as 10-8 M. The proposed biphasic interface assembly strategy is hopefully to provide a new route for the rational design of MOFs with various open pore structure and broaden their potential applications with multiple large-size substances involved besides the currently exemplified cascade sensing platform.
Collapse
Affiliation(s)
- Ximeng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Xia
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chun Feng
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
20
|
Wang D, Yao H, Ye J, Gao Y, Cong H, Yu B. Metal-Organic Frameworks (MOFs): Classification, Synthesis, Modification, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404350. [PMID: 39149999 DOI: 10.1002/smll.202404350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Metal-organic frameworks (MOFs) are a new variety of solid crystalline porous functional materials. As an extension of inorganic porous materials, it has made important progress in preparation and application. MOFs are widely used in various fields such as gas adsorption storage, drug delivery, sensing, and biological imaging due to their high specific surface area, porosity, adjustable pore size, abundant active sites, and functional modification by introducing groups. In this paper, the types of MOFs are classified, and the synthesis methods and functional modification mechanisms of MOFs materials are summarized. Finally, the application prospects and challenges of metal-organic framework materials in the biomedical field are discussed, hoping to promote their application in multidisciplinary fields.
Collapse
Affiliation(s)
- Dayang Wang
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Huanchen Yao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jiashuo Ye
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yan Gao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
21
|
Chen W, Lin S, Zheng J, Ling J, Zhong N. Ultrastable hierarchically porous nucleotide-based MOFs and their use for enzyme immobilization and catalysis. Colloids Surf B Biointerfaces 2024; 245:114294. [PMID: 39368425 DOI: 10.1016/j.colsurfb.2024.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Immobilization of free enzymes facilitates their recovery and reuse, while also enhances their enzymatic characteristics. Hierarchically porous metal-organic frameworks (HP-MOFs) are promising candidates for enzyme immobilization. However, fabrication of HP-MOFs with more kinds of components as ligands is still a challenge. Herein, ultrastable crystalline MOFs with micro-, meso- and macroporous structure were constructed using guanosine 5'-monophosphate (GMP) as organic ligand through templated emulsification method. HP-MOFs crystals with the near rhomb-like, rod-like and slab-like morphology were interestingly obtained from Zn2+, Cu2+ and Cd2+ respectively. The HP-MOFs immobilized enzymes exhibited an enhanced enzymatic activity and stability. In addition, the immobilized CALB (Candida antarctica lipase B) showed great glycerolysis and esterification performances for glycerides preparation, with diacylglycerols (DAG) content over 60 wt% and triacylglycerols (TAG) content over 90 wt% obtained respectively from glycerolysis and esterification. Moreover, it retained 82.32 % of its initial glycerolysis activity after six cycles of reuse in glycerolysis. The present study will provide clues and show new horizons to explore new organic ligands for HP-MOFs fabrication, as well as to expand the applications of HP-MOFs and their supported enzymes.
Collapse
Affiliation(s)
- Wenyi Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Shuping Lin
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiawei Zheng
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jie Ling
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Nanjing Zhong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
22
|
Wu N, Bo C, Guo S. Luminescent Ln-MOFs for Chemical Sensing Application on Biomolecules. ACS Sens 2024; 9:4402-4424. [PMID: 39193912 DOI: 10.1021/acssensors.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
At present, the application of rare-earth organic frameworks (Ln-MOFs) in fluorescence sensing has entered rapid development and shown great potential in various analytical fields, such as environmental analysis, food analysis, drug analysis, and biological and clinical analysis by utilizing their internal porosity, tunable structural size, and energy transfer between rare-earth ions, ligands, and photosensitizer molecules. In addition, because the luminescence properties of rare-earth ions are highly dependent on the structural details of the coordination environment surrounding the rare-earth ions, and although their excitation lifetimes are long, they are usually not burst by oxygen and can provide an effective platform for chemical sensing. In order to further promote the development of fluorescence sensing technology based on Ln-MOFs, we summarize and review in detail the latest progress of the construction of Ln-MOF materials for fluorescence sensing applications and related sensor components, including design strategies, preparation methods, and modification considerations and initially propose the future development prospects and prospects.
Collapse
Affiliation(s)
- Ning Wu
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Shengwei Guo
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
23
|
Zhao Y, Zhu L, Kang Y, Shen CH, Liu X, Jiang D, Fu L, Guselnikova O, Huang L, Song X, Asahi T, Yamauchi Y. Nanoengineering Multilength-Scale Porous Hierarchy in Mesoporous Metal-Organic Framework Single Crystals. ACS NANO 2024; 18:22404-22414. [PMID: 39108023 DOI: 10.1021/acsnano.4c07119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Developing a reliable method for constructing mesoporous metal-organic frameworks (MOFs) with single-crystalline forms remains a challenging task despite numerous efforts. This study presents a solvent-mediated assembly method for fabricating zeolitic imidazolate framework (ZIF) single-crystal nanoparticles with a well-defined micro-mesoporous structure using polystyrene-block-poly(ethylene oxide) diblock copolymer micelles as a soft-template. The precise control of particle sizes, ranging from 85 to 1200 nm, is achieved by regulating nucleation and crystal growth rates while maintaining consistent pore diameters in mesoporous nanoparticles and a rhombohedral dodecahedron morphology. Furthermore, this study presents a robust platform for nanoarchitecturing to prepare hierarchically porous materials (e.g., core-shell and hollow structures), including microporous ZIF@mesoporous ZIF, hollow mesoporous ZIF, and mesoporous ZIF@mesoporous ZIF. Such a multimodal pore design, ranging from microporous to microporous/mesoporous and further micro-/meso-/macroporous, provides significant evidence for the future possibility of the structural design of MOFs.
Collapse
Affiliation(s)
- Yingji Zhao
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Liyang Zhu
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yunqing Kang
- International Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| | - Cheng-Hui Shen
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Xiangyang Liu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Dong Jiang
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Lei Fu
- International Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Olga Guselnikova
- International Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Centre of Electrochemical and Surface Technology, Viktor Kaplan Straße 2, 2700 Wiener Neustadt, Austria
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, P. R. China
| | - Xiaokai Song
- International Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
24
|
Ke Q, Jiang K, Li H, Zhang L, Chen B. Hierarchically Micro-, Meso-, and Macro-Porous MOF Nanosystems for Localized Cross-Scale Dual-Biomolecule Loading and Guest-Carrier Cooperative Anticancer Therapy. ACS NANO 2024; 18:21911-21924. [PMID: 39102565 DOI: 10.1021/acsnano.4c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Mass transfer of bulky molecules, e.g., bioenzymes, particularly for cross-scale multibiomolecules, imposes serious challenges for microporous metal-organic frameworks (MOFs). Here, we create a hierarchically porous MOF heterostructure featuring highly region-ordered micro-, meso-, and macro-pores by growing a microporous ZIF-8 shell onto a hollow Prussian blue core through an epitaxial growth strategy. This allows for localized loading of large bioenzyme glucose oxidase (GOx) and small drug 5-fluorouracil (5-FU) within specific pores simultaneously and triggers unique guest-carrier cooperative anticancer capabilities. The stable ZIF-8 outer layer effectively blocks the core pores, preventing the undesired leakage of GOx into normal tissues. The acidity-induced ZIF-8 degradation gradually releases Zn2+ and loaded 5-FU for chemotherapy under acidic tumor microenvironments. With the loss of the shielding effect of the ZIF-8 coating, the released GOx depletes intratumoral glucose (Glu) for starvation therapy. Notably, an accelerated cascade reaction occurs between ZIF-8 decomposition and GOx release, facilitated by the modulator factor of Glu. This culminates in the realization of synergistic cancer therapy, as comprehensively demonstrated by in vitro and in vivo experiments, as well as transcriptome sequencing analyses. Our work not only introduces a hierarchically porous MOF heterostructure with highly region-ordered pores but also provides a perspective for guest-carrier cooperative anticancer therapy.
Collapse
Affiliation(s)
- Qiaomei Ke
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ke Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Hong Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ling Zhang
- School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Banglin Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| |
Collapse
|
25
|
Shaw EV, Chester AM, Robertson GP, Castillo-Blas C, Bennett TD. Synthetic and analytical considerations for the preparation of amorphous metal-organic frameworks. Chem Sci 2024; 15:10689-10712. [PMID: 39027308 PMCID: PMC11253190 DOI: 10.1039/d4sc01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Metal-organic frameworks (MOFs) are hybrid porous materials presenting several tuneable properties, allowing them to be utilised for a wide range of applications. To date, focus has been on the preparation of novel crystalline MOFs for specific applications. Recently, interest in amorphous MOFs (aMOFs), defined by their lack of correlated long-range order, is growing. This is due to their potential favourable properties compared to their crystalline equivalents, including increased defect concentration, improved processability and gas separation ability. Direct synthesis of these disordered materials presents an alternative method of preparation to post-synthetic amorphisation of a crystalline framework, potentially allowing for the preparation of aMOFs with varying compositions and structures, and very different properties to crystalline MOFs. This perspective summarises current literature on directly synthesised aMOFs, and proposes methods that could be utilised to modify existing syntheses for crystalline MOFs to form their amorphous counterparts. It outlines parameters that could discourage the ordering of crystalline MOFs, before examining the potential properties that could emerge. Methodologies of structural characterisation are discussed, in addition to the necessary analyses required to define a topologically amorphous structure.
Collapse
Affiliation(s)
- Emily V Shaw
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Ashleigh M Chester
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Georgina P Robertson
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Celia Castillo-Blas
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Thomas D Bennett
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| |
Collapse
|
26
|
Yang Y, Yu L, Jiang X, Li Y, He X, Chen L, Zhang Y. Textural Precursor Compositions Harvested for Independent Signal Generators: Scaling Micron-Sized Flower-Like Metal-Organic Frameworks as Amplifying Units for Dual-Mode Glycoprotein Assay. Anal Chem 2024; 96:9503-9511. [PMID: 38780632 DOI: 10.1021/acs.analchem.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this work, a micron-sized flower-like metal-organic frameworks (MOFs)-based boronate-affinity sandwich-type immunoassay was fabricated for the dual-mode glycoprotein assay. For proof of concept, the flower-like MOFs were synthesized from transition Cu nodes and tetrakis (4-carboxyphenyl) porphyrin (TCPP) ligands by spontaneous standing assembly. In addition, the specificity toward glycoprotein involved the antigen recognition as well as covalent bonding via the boronate-glycan affinity, and the immediate signal responses were initiated by textural decomposition of the flower-like MOFs. Intriguingly, Cu nodes, of which the valence state is dominant by CuI species, can endow the Fenton-like catalytic reaction of the fluorogenic substrate for generating fluorescence signals. For benefits, TCPP ligands, in which each TCPP molecule has four guest donors, can provide multiple valences for the assembly of cyclodextrin-capped gold nanoparticles via host-guest interaction for colorimetry output. Albeit important, the scaling micrometer patterns for the flower-like MOFs carrying numerous Cu nodes and TCPP ligands can also function as amplifying units, signifying the output signal. The detection limit of the dual-mode glycoprotein assay can reach 10.5 nM for the fluorescence mode and 18.7 nM for the colorimetry mode, respectively. Furthermore, the merits of harvesting different signal generators toward the multimodal readout patterns can allow the mutual verification and make the analytical results more reliable. Collectively, our proposed assay may offer a new idea in combining the inherent textural merits from MOFs for dual signal generators, which can also emphasize accurate detection capability for glycoprotein assay.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Licheng Yu
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Xiaowen Jiang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| |
Collapse
|
27
|
Ying J, Yin R, Zhao Z, Zhang X, Feng W, Peng J, Liang C. Hierarchical porous carbon materials for lithium storage: preparation, modification, and applications. NANOTECHNOLOGY 2024; 35:332003. [PMID: 38744256 DOI: 10.1088/1361-6528/ad4b21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Secondary battery as an efficient energy conversion device has been highly attractive for alleviating the energy crisis and environmental pollution. Hierarchical porous carbon (HPC) materials with multiple sizes pore channels are considered as promising materials for energy conversion and storage applications, due to their high specific surface area and excellent electrical conductivity. Although many reviews have reported on carbon materials for different fields, systematic summaries about HPC materials for lithium storage are still rare. In this review, we first summarize the main preparation methods of HPC materials, including hard template method, soft template method, and template-free method. The modification methods including porosity and morphology tuning, heteroatom doping, and multiphase composites are introduced systematically. Then, the recent advances in HPC materials on lithium storage are summarized. Finally, we outline the challenges and future perspectives for the application of HPC materials in lithium storage.
Collapse
Affiliation(s)
- Jiaping Ying
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ruilian Yin
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zixu Zhao
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiaoyu Zhang
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Wen Feng
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jian Peng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Chu Liang
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
28
|
He N, Zou Y, Chen C, Tan M, Zhang Y, Li X, Jia Z, Zhang J, Long H, Peng H, Yu K, Jiang B, Han Z, Liu N, Li Y, Ma L. Constructing ordered and tunable extrinsic porosity in covalent organic frameworks via water-mediated soft-template strategy. Nat Commun 2024; 15:3896. [PMID: 38719899 PMCID: PMC11079003 DOI: 10.1038/s41467-024-48160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
As one of the most attractive methods for the synthesis of ordered hierarchically porous crystalline materials, the soft-template method has not appeared in covalent organic frameworks (COFs) due to the incompatibility of surfactant self-assembly and guided crystallization process of COF precursors in the organic phase. Herein, we connect the soft templates to the COF backbone through ionic bonds, avoiding their crystallization incompatibilities, thus introducing an additional ordered arrangement of soft templates into the anionic microporous COFs. The ion exchange method is used to remove the templates while maintaining the high crystallinity of COFs, resulting in the construction of COFs with ordered hierarchically micropores/mesopores, herein named OHMMCOFs (OHMMCOF-1 and OHMMCOF-2). OHMMCOFs exhibit significantly enhanced functional group accessibility and faster mass transfer rate. The extrinsic porosity can be adjusted by changing the template length, concentration, and ratio. Cationic guanidine-based COFs (OHMMCOF-3) are also constructed using the same method, which verifies the scalability of the soft-template strategy. This work provides a path for constructing ordered and tunable extrinsic porosity in COFs with greatly improved mass transfer efficiency and functional group accessibility.
Collapse
Affiliation(s)
- Ningning He
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Yingdi Zou
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Cheng Chen
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Minghao Tan
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Yingdan Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Xiaofeng Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, PR China
| | - Zhimin Jia
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Jie Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Honghan Long
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Haiyue Peng
- Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Kaifu Yu
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Bo Jiang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Ziqian Han
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Ning Liu
- Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Yang Li
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China.
| | - Lijian Ma
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
29
|
Xiao C, Guo X, Li J. From nano- to macroarchitectures: designing and constructing MOF-derived porous materials for persulfate-based advanced oxidation processes. Chem Commun (Camb) 2024; 60:4395-4418. [PMID: 38587500 DOI: 10.1039/d4cc00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) have gained significant attention as an effective approach for the elimination of emerging organic contaminants (EOCs) in water treatment. Metal-organic frameworks (MOFs) and their derivatives are regarded as promising catalysts for activating peroxydisulfate (PDS) and peroxymonosulfate (PMS) due to their tunable and diverse structure and composition. By the rational nanoarchitectured design of MOF-derived nanomaterials, the excellent performance and customized functions can be achieved. However, the intrinsic fine powder form and agglomeration ability of MOF-derived nanomaterials have limited their practical engineering application. Recently, a great deal of effort has been put into shaping MOFs into macroscopic objects without sacrificing the performance. This review presents recent advances in the design and synthetic strategies of MOF-derived nano- and macroarchitectures for PS-AOPs to degrade EOCs. Firstly, the strategies of preparing MOF-derived diverse nanoarchitectures including hierarchically porous, hollow, yolk-shell, and multi-shell structures are comprehensively summarized. Subsequently, the approaches of manufacturing MOF-based macroarchitectures are introduced in detail. Moreover, the PS-AOP application and mechanisms of MOF-derived nano- and macromaterials as catalysts to eliminate EOCs are discussed. Finally, the prospects and challenges of MOF-derived materials in PS-AOPs are discussed. This work will hopefully guide the design and development of MOF-derived porous materials in SR-AOPs.
Collapse
Affiliation(s)
- Chengming Xiao
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Xin Guo
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
30
|
Wang X, Mu Z, Shao P, Feng X. Hierarchically Porous Covalent Organic Frameworks: Synthesis Methods and Applications. Chemistry 2024; 30:e202303601. [PMID: 38019117 DOI: 10.1002/chem.202303601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Covalent organic frameworks (COFs) with high porosity have garnered considerable interest for various applications owing to their robust and customizable structure. However, conventional COFs are hindered by their narrow pore size, which poses limitations for applications such as heterogeneous catalysis and guest delivery that typically involve large molecules. The development of hierarchically porous COF (HP-COF), featuring a multi-scale aperture distribution, offers a promising solution by significantly enhancing the diffusion capacity and mass transfer for larger molecules. This review focuses on the recent advances in the synthesis strategies of HP-COF materials, including topological structure design, in-situ templating, monolithic COF synthesis, defect engineering, and crystalline self-transformation. The specific operational principles and affecting factors in the synthesis process are summarized and discussed, along with the applications of HP-COFs in heterogeneous catalysis, toxic component treatment, optoelectronics, and the biomedical field. Overall, this review builds a bridge to understand HP-COFs and provides guidance for further development of them on synthesis strategies and applications.
Collapse
Affiliation(s)
- Xiao Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhenjie Mu
- State Key Laboratory of Organic-Inorganic Composites, The College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100081, P. R. China
| | - Pengpeng Shao
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
31
|
Wang J, Jiang Z, Yin JF, Zhao H, Dong Q, Li K, Zhong W, Liu D, Yuan J, Yin P, Li Y, Lin Y, Chen M, Wang P. Strain-Induced Heteromorphosis Multi-Cavity Cages: Tension-Driven Self-Expansion Strategy for Controllable Enhancement of Complexity in Supramolecular Assembly. Angew Chem Int Ed Engl 2024; 63:e202317674. [PMID: 38055187 DOI: 10.1002/anie.202317674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Coordinative supramolecular cages with adjustable cavities have found extensive applications in various fields, but the cavity modification strategies for multi-functional structures are still challenging. Here, we present a tension-driven self-expansion strategy for construction of multi-cavity cages with high structural complexity. Under the regulation of strain-induced capping ligands, unprecedented heteromorphosis triple-cavity cages S2 /S4 were obtained based on a metallo-organic ligand (MOL) scaffold. The heteromorphosis cages exhibited significant higher cavity diversity than the homomorphous double-cavity cages S1 /S3 ; all of the cages were thoroughly characterized through various analytical techniques including (1D and 2D) NMR, ESI-MS, TWIM-MS, AFM, and SAXS analyses. Furthermore, the encapsulation of porphyrin in the cavities of these multi-cavity cages were investigated. This research opens up new possibilities for the architecture of heteromorphosis supramolecular cages via precisely controlled "scaffold-capping" assembly with preorganized ligands, which could have potential applications in the development of multifunctional structures with higher complexity.
Collapse
Affiliation(s)
- Jun Wang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhilong Jiang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jia-Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - He Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Qiangqiang Dong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Kaixiu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Wanying Zhong
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Die Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yifan Lin
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Mingzhao Chen
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Pingshan Wang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
32
|
Yan X, Chen K, Jia H, Zhao Q, Du G, Guo Q, Chen H, Yuan Y, Yue T. Infiltration of porcine pancreatic lipase into magnetic hierarchical mesoporous UiO-66-NH 2 metal-organic frameworks for efficient detoxification of patulin from apple juice. Food Chem 2024; 431:137172. [PMID: 37603997 DOI: 10.1016/j.foodchem.2023.137172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Patulin (PAT) is a mycotoxin known to globally contaminate fruits. The economic losses and health hazards caused by PAT desires a safe and efficient strategy for detoxifying PAT. Here, a magnetic core-shell hierarchical mesoporous metal-organic framework (Fe3O4@HMUiO-66-NH2) was synthesized via a salt-assisted nanoemulsion guided assembly method. This mesoporous structure (centered at 4.25 nm) allowed porcine pancreatic lipase (PPL) to infiltrate into the MOF shell at an immobilized amount of 255 mg/g, providing protection for PPL and enabling rapid separation and recovery. Compared with free PPL, PPL/Fe3O4@HMUiO-66-NH2 at 70 °C possessed 4.7 folds improved thermal stability in terms of half-life. The detoxification rates of immobilized enzyme for PAT in neutral water, acidic water, and apple juice were 99.6%, 60.9%, and 52.6%, respectively. Moreover, the so designed PPL/Fe3O4@HMUiO-66-NH2 showed extraordinary storage stability, reusability, and biocompatibility. Crucially, the quality of apple juice did not change significantly after PPL/Fe3O4@HMUiO-66-NH2 treatment, which facilitated its application in apple juice. The magnetic core-shell mesoporous structure along with the revealed mechanism of immobilized enzyme detoxification of PAT provide tremendous opportunity for designing a safe and efficient PAT detoxification method.
Collapse
Affiliation(s)
- Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Qiannan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710067, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710067, China.
| |
Collapse
|
33
|
Hu C, Yao W, Yang X, Shen K, Chen L, Li Y. Atomically Dispersed ZnN 4 Sites Anchored on P-Functionalized Carbon with Hierarchically Ordered Porous Structures for Boosted Electroreduction of CO 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306095. [PMID: 38059725 PMCID: PMC10811484 DOI: 10.1002/advs.202306095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/02/2023] [Indexed: 12/08/2023]
Abstract
Tuning the coordination structures of metal sites is intensively studied to improve the performances of single-atom site catalysts (SASC). However, the pore structure of SASC, which is highly related to the accessibility of active sites, has received little attention. In this work, single-atom ZnN4 sites embedded in P-functionalized carbon with hollow-wall and 3D ordered macroporous structure (denoted as H-3DOM-ZnN4 /P-C) are constructed. The creation of hollow walls in ordered macroporous structures can largely increase the external surface area to expose more active sites. The introduction of adjacent P atoms can optimize the electronic structure of ZnN4 sites through long-rang regulation to enhance the intrinsic activity and selectivity. In the electrochemical CO2 reduction reaction, H-3DOM-ZnN4 /P-C exhibits high CO Faradaic efficiency over 90% in a wide potential window (500 mV) and a large turnover frequency up to 7.8 × 104 h-1 at -1.0 V versus reversible hydrogen electrode, much higher than its counterparts without the hierarchically ordered structure or P-functionalization.
Collapse
Affiliation(s)
- Chenghong Hu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wen Yao
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xianfeng Yang
- Analytical and Testing Centre, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kui Shen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Liyu Chen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yingwei Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
34
|
Zhong G, Chen G, Han J, Sun R, Zhao B, Xu H, Wang S, Yamauchi Y, Guan B. Anisotropic Interface Successive Assembly for Bowl-Shaped Metal-Organic Framework Nanoreactors with Precisely Controllable Meso-/Microporous Nanodomains. ACS NANO 2023; 17:25061-25069. [PMID: 38085532 DOI: 10.1021/acsnano.3c07635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Colloidal metal-organic framework (MOF) nanoparticles, with tailored asymmetric nanoarchitectures and hierarchical meso-/microporosities, have significant implications in high-performance nanocatalysts, nanoencapsulation carriers, and intricate assembly architectures. However, the methodology that could achieve precise control over the anisotropic growth of asymmetric MOF particles with tailored distributions of meso- and microporous regions has not yet been established. In this study, we introduce a facile anisotropic interface successive assembly approach to synthesize asymmetric core-shell MOF (ZIF-67) nanobowls with worm-like mesopores in the core and intrinsic micropores in the shell. Our synthesis pathway relies on anisotropic nucleation of mesoporous MOF nanohemispheres on emulsion interfaces through the cooperative assembly of surfactants and MOF precursors. This is followed by the growth of microporous MOF layers on both interfaces of mesoporous cores and emulsion droplets, resulting in a hierarchically porous core-shell nanostructure. By utilizing this multi-interface-driven approach, we enable the creation of diverse geometries and distributions of mesopores and micropores in asymmetric MOF nanoarchitectures. The obtained bowl-like meso-/microporous core-shell ZIF-67 particles exhibit enhanced catalytic activity for CO2 cycloaddition, attributed to reactant accumulation within the bowl-like architecture, active site accessibility in the open mesoporous core, and improved structural stability. Overall, our study provides insights and inspiration for exploring the intricate asymmetric nanostructures of hierarchically porous MOFs with diverse potential applications.
Collapse
Affiliation(s)
- Guiyuan Zhong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ji Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ruigang Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bin Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Haidong Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Buyuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
35
|
Li X, Mao Z, He Z, Su F, Li M, Jiang M, Chao S, Zheng Y, Liang J. Hierarchical Yolk-Shell Porous Ionic Liquids with Lower Viscosity for Efficient C 3H 6/C 3H 8 Adsorption and Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37879671 DOI: 10.1021/acsami.3c10874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Yolk-shell metal-organic framework (YS-MOF) liquids are candidate materials in large-size species with high-efficiency separation, owing to their hierarchical porosity, faster mass transfer, better compatibility, and higher solution processability than MOF liquids with micropores. Nevertheless, facile synthesis strategies of yolk-shell porous ionic liquids (YSPILs) with regulations of size and morphology are an ongoing challenge. Herein, we propose a general strategy to construct YSPILs based on Z67@PDA with tunable core sizes and morphologies. Benefiting from the unique hierarchical yolk-shell structure, as-prepared YSPILs exhibit promise in C3H6/C3H8 capture and separation with the increased sizes of core in yolk-shell ZIF-67@PDA. Advanced YS-MOF liquids have improved the adsorption properties and increased our ability to tailor chemical composition and pore architecture. Impressively, the adsorption capacity of C3H6 and C3H8 of YSPILs exhibits an approximately 3-fold enhancement compared with that of the neat ILs, confirming that the accessible porosities are retained. Effective C3H6/C3H8 separation performance of YSPILs over PILs based on ZIF-67, revealing the hierarchical porosity of YS-Z67@PDA liquids, benefits larger-size gas separation. Therefore, we believe that this work can not only help us to rationally design novel hierarchically porous ionic liquids but also promote candidate applications in large-size species separation, catalysis, and nanoreactors.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| | - Zhuojun Mao
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| | - Zhongjie He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Fangfang Su
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Mingtao Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Maogang Jiang
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| | - Shuaijun Chao
- School of Mechanical Engineering, Xi'an Jiaotong University, No. 28, Xian Ning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Jiahe Liang
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| |
Collapse
|
36
|
Chafiq M, Chaouiki A, Ko YG. Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future. NANO-MICRO LETTERS 2023; 15:213. [PMID: 37736827 PMCID: PMC10516851 DOI: 10.1007/s40820-023-01180-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 09/23/2023]
Abstract
Porous organic frameworks (POFs) have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials, both in their pristine state and when subjected to various chemical and structural modifications. Metal-organic frameworks, covalent organic frameworks, and hydrogen-bonded organic frameworks are examples of these emerging materials that have gained significant attention due to their unique properties, such as high crystallinity, intrinsic porosity, unique structural regularity, diverse functionality, design flexibility, and outstanding stability. This review provides an overview of the state-of-the-art research on base-stable POFs, emphasizing the distinct pros and cons of reticular framework nanoparticles compared to other types of nanocluster materials. Thereafter, the review highlights the unique opportunity to produce multifunctional tailoring nanoparticles to meet specific application requirements. It is recommended that this potential for creating customized nanoparticles should be the driving force behind future synthesis efforts to tap the full potential of this multifaceted material category.
Collapse
Affiliation(s)
- Maryam Chafiq
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Abdelkarim Chaouiki
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Young Gun Ko
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
37
|
Komiyama M. Ce-based solid-phase catalysts for phosphate hydrolysis as new tools for next-generation nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2250705. [PMID: 37701758 PMCID: PMC10494760 DOI: 10.1080/14686996.2023.2250705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
This review comprehensively covers synthetic catalysts for the hydrolysis of biorelevant phosphates and pyrophosphates, which bridge between nanoarchitectonics and biology to construct their interdisciplinary hybrids. In the early 1980s, remarkable catalytic activity of Ce4+ ion for phosphate hydrolysis was found. More recently, this finding has been extended to Ce-based solid catalysts (CeO2 and Ce-based metal-organic frameworks (MOFs)), which are directly compatible with nanoarchitectonics. Monoesters and triesters of phosphates, as well as pyrophosphates, were effectively cleaved by these catalysts. With the use of either CeO2 nanoparticles or elegantly designed Ce-based MOF, highly stable phosphodiester linkages were also hydrolyzed. On the surfaces of all these solid catalysts, Ce4+ and Ce3+ coexist and cooperate for the catalysis. The Ce4+ activates phosphate substrates as a strong acid, whereas the Ce3+ provides metal-bound hydroxide as an eminent nucleophile. Applications of these Ce-based catalysts to practical purposes are also discussed.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Zhao D, Zhao T. Pore Engineering for High Performance Porous Materials. ACS CENTRAL SCIENCE 2023; 9:1499-1503. [PMID: 37637726 PMCID: PMC10450870 DOI: 10.1021/acscentsci.3c00916] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
39
|
Hou SL, Dong J, Zhao XY, Li XS, Ren FY, Zhao J, Zhao B. Thermocatalytic Conversion of CO 2 to Valuable Products Activated by Noble-Metal-Free Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202305213. [PMID: 37170958 DOI: 10.1002/anie.202305213] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Thermocatalysis of CO2 into high valuable products is an efficient and green method for mitigating global warming and other environmental problems, of which Noble-metal-free metal-organic frameworks (MOFs) are one of the most promising heterogeneous catalysts for CO2 thermocatalysis, and many excellent researches have been published. Hence, this review focuses on the valuable products obtained from various CO2 conversion reactions catalyzed by noble-metal-free MOFs, such as cyclic carbonates, oxazolidinones, carboxylic acids, N-phenylformamide, methanol, ethanol, and methane. We classified these published references according to the types of products, and analyzed the methods for improving the catalytic efficiency of MOFs in CO2 reaction. The advantages of using noble-metal-free MOF catalysts for CO2 conversion were also discussed along the text. This review concludes with future perspectives on the challenges to be addressed and potential research directions. We believe that this review will be helpful to readers and attract more scientists to join the topic of CO2 conversion.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jie Dong
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
40
|
Ye L, Cen W, Chu Y, Sun D. Interfacial chemistries in metal-organic framework (MOF)/covalent-organic framework (COF) hybrids. NANOSCALE 2023; 15:13187-13201. [PMID: 37539693 DOI: 10.1039/d3nr02868b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have been attracting tremendous attention in various applications due to their unique structural properties. Recent interest has been focused on their combination as hybrids to enable the engineering of new classes of frameworks with complementary properties. This review gives a comprehensive summary on the interfacial chemistries in MOF/COF hybrids, which play critical roles in their hybridization. The challenges and perspectives in the field of MOF/COF hybrids are also provided to inspire more efforts in diversifying this hybrid family and their cross-disciplinary applications.
Collapse
Affiliation(s)
- Lin Ye
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Wanglai Cen
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu, P. R. China
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, P. R. China
| | - Yinghao Chu
- College of Architecture and Environment, Sichuan University, Chengdu, P. R. China
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu, P. R. China
| | - Dengrong Sun
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, P. R. China.
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu, P. R. China
| |
Collapse
|
41
|
Zhang T, Wei F, Wu Y, Li W, Huang L, Fu J, Jing C, Cheng J, Liu S. Polyoxometalate-Bridged Synthesis of Superstructured Mesoporous Polymers and Their Derivatives for Sodium-Iodine Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301918. [PMID: 37098637 PMCID: PMC10323648 DOI: 10.1002/advs.202301918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Despite the impressive progress in mesoporous materials over past decades, for those precursors having no well-matched interactions with soft templates, there are still obstacles to be guided for mesoporous structure via soft-template strategies. Here, a polyoxometalate-assisted co-assembly route is proposed for controllable construction of superstructured mesoporous materials by introducing polyoxometalates as bifunctional bridge units, which weakens the self-nucleation tendency of the precursor through coordination interactions and simultaneously connects the template through the induced dipole-dipole interaction. By this strategy, a series of meso-structured polymers, featuring highly open radial mesopores and dendritic pore walls composed of continuous interwoven nanosheets can be facilely obtained. Further carbonization gave rise to nitrogen-doped hierarchical mesoporous carbon decorated uniformly with ultrafine γ-Mo2 N nanoparticles. Density functional theory proves that nitrogen-doped carbon and γ-Mo2 N can strongly adsorb polyiodide ions, which effectively alleviate polyiodide dissolving in organic electrolytes. Thereby, as the cathode materials for sodium-iodine batteries, the I2 -loaded carbonaceous composite shows a high specific capacity (235 mA h g-1 at 0.5 A g-1 ), excellent rate performance, and cycle stability. This work will open a new venue for controllable synthesis of new hierarchical mesoporous functional materials, and thus promote their applications toward diverse fields.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Precision SpectroscopyEngineering Research Center of Nanophotonics and Advanced InstrumentMinistry of EducationSchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241P. R. China
| | - Facai Wei
- State Key Laboratory of Precision SpectroscopyEngineering Research Center of Nanophotonics and Advanced InstrumentMinistry of EducationSchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241P. R. China
| | - Yong Wu
- State Key Laboratory of Precision SpectroscopyEngineering Research Center of Nanophotonics and Advanced InstrumentMinistry of EducationSchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241P. R. China
| | - Wenda Li
- State Key Laboratory of Precision SpectroscopyEngineering Research Center of Nanophotonics and Advanced InstrumentMinistry of EducationSchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241P. R. China
| | - Lingyan Huang
- State Key Laboratory of Precision SpectroscopyEngineering Research Center of Nanophotonics and Advanced InstrumentMinistry of EducationSchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241P. R. China
| | - Jianwei Fu
- School of Materials Science and EngineeringZhengzhou University75 Daxue RoadZhengzhou450052P. R. China
| | - Chengbin Jing
- State Key Laboratory of Precision SpectroscopyEngineering Research Center of Nanophotonics and Advanced InstrumentMinistry of EducationSchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241P. R. China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of Sciences200050ShanghaiP. R. China
| | - Shaohua Liu
- State Key Laboratory of Precision SpectroscopyEngineering Research Center of Nanophotonics and Advanced InstrumentMinistry of EducationSchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241P. R. China
| |
Collapse
|
42
|
Tang X, Zhao S, Wu J, He Z, Zhang Y, Huang K, Zou Z, Xiong X. Construction of rose flower-like NiCo-LDH electrode derived from bimetallic MOF for highly sensitive electrochemical sensing of hydrazine in food samples. Food Chem 2023; 427:136648. [PMID: 37399644 DOI: 10.1016/j.foodchem.2023.136648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
It is necessary to efficient detection hydrazine in food. Exploring highly sensitive, low-cost and fast response electrochemical hydrazine sensing methods has been a challenge in this field. In this paper, a conformal transformation method is used to prepare rose flower-like NiCo-LDH derivating from the bimetallic NiCo-MOFs, and the N2H4 sensing platform with a large electrocatalytic area, high conductivity and good stability was constructed. Based on the synergy between Ni and Co and the remarkable catalytic activity of the rough 3D flower-like structure, the N2H4 sensor has a linear response in the concentration range of 0.001-1 mmol/L and 1-7 mmol/L, with a sensitivity of 5342 μA L mmol-1 cm-2 and 2965 μA L mmol-1 cm-2 (S/N = 3), respectively, and low limit of detection of 0.043 μmol/L. This study opens a new door for the successful application of electrochemical sensors to detect N2H4 in real food samples.
Collapse
Affiliation(s)
- Xin Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, Sichuan, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Shan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Jiaying Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Zhiyuan He
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Yu Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Ke Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, Sichuan, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Zhirong Zou
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, Sichuan, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China.
| | - Xiaoli Xiong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, Sichuan, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China.
| |
Collapse
|
43
|
Niu WJ, Li RJ, Zhao WW, Yan YY, Feng EP, Chen JL, Gu BN, Liu MJ, Chueh YL. Hierarchical porous Fe-N/C@surfactant composites synthesized by a surfactant-assisted strategy as high-performance bifunctional oxygen electrodes for rechargeable zinc-air batteries. J Colloid Interface Sci 2023; 649:435-444. [PMID: 37354800 DOI: 10.1016/j.jcis.2023.06.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Herein, a soft-template strategy involving the cationic surfactants has been successfully applied to size-controlled synthesis of hierarchical porous Fe-N/C for the first time. Specifically, a small amount of Fe and cationic surfactants can be uniformly doped into the zinc-based zeolite imidazole framework (ZIF-8) crystal particles and the cationic surfactants play a critical role in the formation of hierarchically porous Fe-ZIF-8@surfactant precursors. When the Fe-ZIF-8@surfactant is subsequently pyrolyzed, atomically dispersed Fe-Nx coordination structures can be in-situ converted to Fe-N/C, while the cationic surfactants decompose to form a carbon matrix to encapsulate the active sites, thereby preventing the aggregation of nanoparticles to a certain extent. As a result, the combined Fe nanocrystals and atomically dispersed Fe-Nx in the graphitic carbon matrix generate a synergistic effect to boost the electrocatalytic behaviors with a more positive half-wave potential (0.92 V) for oxygen reduction reaction (ORR) and a lower overpotential (420 mV at 10 mA cm-2) for oxygen evolution reaction (OER). As a proof of concept, the Fe-N/C@TTAB based zinc-air batteries (ZABs) present an outstanding peak power density (107.9 mW cm-2) and a superior specific capacity (706.3 mAh g-1) with robust cycling stability over 900 cycles for 150 h, which are better than the commercial Pt/C + IrO2 based ZABs.
Collapse
Affiliation(s)
- Wen-Jun Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China.
| | - Ru-Ji Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Wei-Wei Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Ying-Yun Yan
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Er-Peng Feng
- Key Laboratory of Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, PR China
| | - Jiang-Lei Chen
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Bing-Ni Gu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Colleage of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Ming-Jin Liu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Colleage of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Colleage of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
44
|
Xu R, Zhang X, Zelekew OA, Schott E, Wu YN. Improved stability and activity of laccase through de novo and post-synthesis immobilization on a hierarchically porous metal-organic framework (ZIF-8). RSC Adv 2023; 13:17194-17201. [PMID: 37304779 PMCID: PMC10248541 DOI: 10.1039/d3ra01571h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023] Open
Abstract
Porous materials such as metal-organic frameworks (MOFs) are considered to be suitable materials for immobilizing enzymes to improve their stability. However, conventional MOFs reduce the enzymes' catalytic activity due to difficulties with mass transfer and diffusing reactants after their micropores are occupied by enzyme molecules. To address these issues, a novel hierarchically structured zeolitic imidazolate framework-8 (HZIF-8) was prepared to study the effects of different laccase immobilization approaches such as the post-synthesis (LAC@HZIF-8-P) and de novo (LAC@HZIF-8-D) immobilization of catalytic activities for removing 2,4-dichlorophenol (2,4-DCP). The results showed higher catalytic activity for the laccase-immobilized LAC@HZIF-8 prepared using different methods than for the LAC@MZIF-8 sample, with 80% of 2,4-DCP removed under optimal conditions. These results could be attributable to the multistage structure of HZIF-8. The LAC@HZIF-8-D sample was stable and superior to LAC@HZIF-8-P, maintaining a 2,4-DCP removal efficiency of 80% after three recycles and demonstrating superior laccase thermostability and storage stability. Moreover, after loading with copper nanoparticles, the LAC@HZIF-8-D approach exhibited a 2,4-DCP removal efficiency of 95%, a promising finding for its potential use in environmental purification.
Collapse
Affiliation(s)
- Ran Xu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
| | - Xujie Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
| | - Osman Ahmend Zelekew
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
- Department of Materials Science and Engineering, Adama Science and Technology University Adama Ethiopia
| | - Eduardo Schott
- Department of Inorganic Chemistry of the Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile Vicuña Mackenna 4860, Macul Santiago Chile
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
| |
Collapse
|
45
|
Wu Y, Wang L, Chen L, Li Y, Shen K. Morphology-Engineering Construction of Anti-Aggregated Co/N-Doped Hollow Carbon from Metal-Organic Frameworks for Efficient Biomass Upgrading. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207689. [PMID: 36843277 DOI: 10.1002/smll.202207689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/07/2023] [Indexed: 05/18/2023]
Abstract
The controlled pyrolysis of metal/carbon-containing precursors is commonly used for fabricating multifunctional metal/carbon-based catalysts, nevertheless, the inevitable agglomeration of these precursors in pyrolysis is extremely negative for efficient catalysis. This study reports the first example of suppressing the interfacial fusion and agglomeration of metal/carbon-based catalyst in its pyrolysis-involved fabrication process by developing a facile morphology-engineering strategy. Metal-organic framework precursors are chosen as a proof of concept and five Co/N-doped hollow carbons with different morphologies (rhombic dodecahedron, cube, plate, interpenetration twin, and rod) are synthesized via the pyrolysis of their corresponding core-shell ZIF-8@ZIF-67 precursors. It is demonstrated that the interpenetration twin precursor shows the minimum interfacial contact of interparticles due to its partly-concave morphology with abundant facets, which endows it with the best resistibility from interfacial fusion and thus aggregation of interparticles during pyrolysis. Benefiting from its unique anti-aggregated structure with high specific surface area, abundant fully-exposed active sites, and good dispersibility, the resultant 36-facet Co/N-doped hollow carbon exhibit remarkably improved catalytic property for biomass upgrading as compared with its aggregated counterparts. This study highlights the crucial role of engineering morphology to prevent metal/carbon-containing precursors from detrimental agglomeration during pyrolysis, demonstrating a new approach to constructing anti-aggregated metal/carbon-based catalysts.
Collapse
Affiliation(s)
- Yaohui Wu
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Li Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Liyu Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kui Shen
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
46
|
Li C, Pan Y, Xiao T, Xiang L, Li Q, Tian F, Manners I, Mai Y. Metal Organic Framework Cubosomes. Angew Chem Int Ed Engl 2023; 62:e202215985. [PMID: 36647212 DOI: 10.1002/anie.202215985] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
We demonstrate a general strategy for the synthesis of ordered bicontinuous-structured metal organic frameworks (MOFs) by using polymer cubosomes (PCs) with a double primitive structure (Im 3 ‾ ${\bar{3}}$ m symmetry) as the template. The filling of MOF precursors in the open channel of PCs, followed by their coordination and removal of the template, generates MOF cubosomes with a single primitive topology (Pm 3 ‾ ${\bar{3}}$ m) and average mesopore diameters of 60-65 nm. Mechanism study reveals that the formation of ZIF-8 cubosomes undergoes a new MOF growth process, which involves the formation of individual MOF seeds in the template, their growth and eventual fusion into the cubosomes. Their growth kinetics follows the Avrami equation with an Avrami exponent of n=3 and a growth rate of k=1.33×10-4 , indicating their fast 3D heterogeneous growth mode. Serving as a bioreactor, the ZIF-8 cubosomes show high loading of trypsin enzyme, leading to a high catalytic activity in the proteolysis of bovine serum albumin.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Chemistry, Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianyu Xiao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Ian Manners
- Department of Chemistry, Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
47
|
Liu T, Zhao Y, Song M, Pang X, Shi X, Jia J, Chi L, Lu G. Ordered Macro-Microporous Single Crystals of Covalent Organic Frameworks with Efficient Sorption of Iodine. J Am Chem Soc 2023; 145:2544-2552. [PMID: 36661080 DOI: 10.1021/jacs.2c12284] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fashioning microporous covalent organic frameworks (COFs) into single crystals with ordered macropores allows for an effective reduction of the mass transfer resistance and the maximum preservation of their intrinsic properties but remains unexplored. Here, we report the first synthesis of three-dimensional (3D) ordered macroporous single crystals of the imine-linked 3D microporous COFs (COF-300 and COF-303) via a template-assisted modulated strategy. In this strategy, COFs crystallized within the sacrificial colloidal crystal template, assembled from monodisperse polystyrene microspheres, and underwent an aniline-modulated amorphous-to-crystalline transformation to form large single crystals with 3D interconnected macropores. The effects of the introduced macroporous structure on the sorption performances of COF-300 single crystals were further probed by iodine. Our results indicate that iodine adsorption occurred in micropores of COF-300 but not in the introduced macropores. Accordingly, the iodine adsorption capacity of COF single crystals was governed by their micropore accessibility. The relatively long diffusion path in the non-macroporous COF-300 single crystals resulted in a limited micropore accessibility (48.4%) and thus a low capacity in iodine adsorption (1.48 g·g-1). The introduction of 3D ordered macropores can greatly shorten the microporous diffusion path in COF-300 single crystals and thus render all their micropores fully accessible in iodine adsorption with a capacity (3.15 g·g-1) that coincides well with the theoretical one.
Collapse
Affiliation(s)
- Tong Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yi Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Min Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xinghan Pang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xiaofei Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jingjing Jia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Guang Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
48
|
The Advanced Synthesis of MOFs-Based Materials in Photocatalytic HER in Recent Three Years. Catalysts 2022. [DOI: 10.3390/catal12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the advent of metal–organic frameworks (MOFs), researchers have paid extensive attention to MOFs due to their determined structural composition, controllable pore size, and diverse physical and chemical properties. Photocatalysis, as a significant application of MOFs catalysts, has developed rapidly in recent years and become a research hotspot continuously. Various methods and approaches to construct and modify MOFs and their derivatives can not only affect the structure and morphology, but also largely determine their properties. Herein, we summarize the advanced synthesis of MOFs-based materials in the field of the photocatalytic decomposition of water to produce hydrogen in the recent three years. The main contents include the overview of the novel synthesis strategies in four aspects: internal modification and structure optimization of MOFs materials, MOFs/semiconductor composites, MOFs/COFs-based hybrids, and MOFs-derived materials. In addition, the problems and challenges faced in this direction and the future development goals were also discussed. We hope this review will help deepen the reader’s understanding and promote continued high-quality development in this field.
Collapse
|
49
|
Fabrication of Multilayered Two-Dimensional Micelles and Fibers by Controlled Self-Assembly of Rod-Coil Block Copolymers. Polymers (Basel) 2022; 14:polym14194125. [PMID: 36236073 PMCID: PMC9571386 DOI: 10.3390/polym14194125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022] Open
Abstract
Fabricating hierarchical nanomaterials by self-assembly of rod-coil block copolymers attracts great interest. However, the key factors that affect the formation of the hierarchical nanomaterials have not been thoroughly researched. Herein, we have synthesized two diblock copolymers composed of poly(3-hexylthiophene) (P3HT) and polyethylene glycol (PEG). Through a heating, cooling, and aging process, a series of multilayered hierarchical micelles and fibers were prepared in alcoholic solutions. The transition from fibers to hierarchical micelles are strictly influenced by the strength of the π-π stacking interaction, the PEG chain length, and solvent. In isopropanol, the P3HT22-b-PEG43 could self-assemble into hierarchical micelles composed of several two-dimensional (2D) laminar layers, driven by the π-π stacking interaction and van der Waals force. The P3HT22-b-PEG43 could not self-assemble into well-defined nanostructures in methanol and ethanol, but could self-assemble into fibers in isobutanol. However, the P3HT22-b-PEG113 with a longer corona block only self-assembled into fibers in four alcoholic solutions, due to the increase in dissolving capacity and steric hindrance. The sizes and the size distributions of the nanostructures both increased with the increase in polymer concentration and the decrease in solvent polarity. This study shows a method to fabricate the hierarchical micelles.
Collapse
|