1
|
Alshehab A, Ismael AK. Does Kirchhoff's Law Work in Molecular-Scale Structures? ACS OMEGA 2025; 10:9314-9320. [PMID: 40092794 PMCID: PMC11904646 DOI: 10.1021/acsomega.4c09854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
This study aims to theoretically and comprehensively investigate the single-molecule electrical conductance of symmetric and asymmetric alkane cyclic (SAC and AAC) molecules and their corresponding linear chains with three different terminal end groups including thiol (-SH), direct carbon (-C), and amine (-NH 2). Here, we examine the validity of Kirchhoff's law concerning sigma nonconjugated molecules at the nanoscale level. Counterintuitively, the electrical conductance (G) of symmetric and asymmetric alkane cyclic molecules with two parallel conductance paths is lower than that of their corresponding single chains with only one conductance path. This completely contradicts classical rules for combining conductances in parallel, regardless of the anchor group type, in light of this study's use of symmetric and asymmetric cyclic molecules. A comparison of the DFT prediction trends with scanning tunneling microscopy measurements indicates that they are well-supported. The results of this investigation demonstrate an excellent correlation between our simulations and experimental measurements, for both SAC and AAC structures of different cavity size n,m = 3,3; 4,4; 5,5···10,10 and n,m = 3,5; 4,6; 5,7; 6,8; 7,9; 8,10; and 9,11 and for three different terminal end groups.
Collapse
Affiliation(s)
- Abdullah Alshehab
- Physics
Department, College of Science, King Faisal
University, Al Ahsa 31982, Saudi Arabia
| | - Ali K. Ismael
- Department
of Physics, Lancaster University, Lancaster LA1 4YB, U.K.
| |
Collapse
|
2
|
He P, Jang J, Kang H, Yoon HJ. Thermoelectricity in Molecular Tunnel Junctions. Chem Rev 2025. [PMID: 39908450 DOI: 10.1021/acs.chemrev.4c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The growing interest in thermoelectric energy conversion technologies has recently extended to the molecular scale, with molecular tunnel junctions emerging as promising platforms for energy harvesting from heat in a quantum-tunneling regime. This Review explores the advances in thermoelectricity within molecular junctions, highlighting the unique ability of these junctions to exploit charge tunneling and controlled molecular structure to enhance thermoelectric performance. Molecular thermoelectrics, which bridge nanoscale material design and thermoelectric applications, utilize tunneling mechanisms, such as coherent tunneling and hopping processes, including coherent and incoherent pathways, to facilitate energy conversion. Complementing these mechanisms is an array of high-precision fabrication techniques for molecular junctions, from single-molecule break junctions to large-area liquid metal-based systems, each tailored to optimize heat and charge transfer properties. With novel design strategies such as the incorporation of electron-dense ligands, customizable anchor groups, and advanced junction architectures, molecular tunnel junctions hold promise for addressing challenging targets in thermoelectricity. This Review focuses on theoretical models, experimental methodologies, and design principles aimed at understanding the thermoelectric function in molecular junctions and enhancing the performance.
Collapse
Affiliation(s)
- Peng He
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiung Jang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hungu Kang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
3
|
Yoshida K, Takasaki F, Uebe M, Seki S, Ito A. Impact of Double-π-Bridge on Bis(Triarylamine)-Based Organic Mixed-Valence System: A Case Study of Diaza[1.1](4,4")ortho-Terphenylophane Radical Cation. Chemistry 2025; 31:e202403945. [PMID: 39714822 DOI: 10.1002/chem.202403945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/28/2024] [Accepted: 12/22/2024] [Indexed: 12/24/2024]
Abstract
A bis(triarylamine) (BTA) radical cation, bridged by two o-terphenylene moieties, was prepared and characterized to explore the impact of the double-π-bridge on the intramolecular charge/spin transfer process in the 2-site organic mixed-valence (MV) compound. Spectroscopic analyses on optically and thermally assisted intervalence charge-transfer (IVCT) processes revealed that the doubly π-bridging enhanced the charge delocalization between two nitrogen redox-active centers, whereas the electronic coupling was not so strengthened, in comparison with the singly π-bridging reference compound.
Collapse
Affiliation(s)
- Koshi Yoshida
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Fumiya Takasaki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masashi Uebe
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Akihiro Ito
- Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
4
|
Pan H, Dong Y, Wang Y, Li J, Zhang Y, Gao S, Wang Y, Hou S. Conformational Control of σ-Interference Effects in the Conductance of Permethylated Oligosilanes. J Am Chem Soc 2024; 146:34617-34627. [PMID: 39520402 DOI: 10.1021/jacs.4c12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
As silicon-based integrated circuits continue to shrink, their molecular characteristics become more pronounced. However, the structure-property relationship of silicon-based molecular junctions remains to be elucidated. Here, an intuitive explanation of the effects of backbone dihedral angles on transport properties in permethylated oligosilanes is presented employing the Ladder C model Hamiltonian combined with nonequilibrium Green's function formalism. Backbone dihedral angles modulate quantum interference (QI), resulting in the change of the transmission coefficient at the Fermi energy (EF) by up to 6 orders of magnitude in Si4Me10. Because the types of QI (constructive or destructive) between molecular conductance orbitals (MCOs) are unchanged, the relative magnitudes of contributions from QI are critical. This quantitative aspect of QI is often neglected in previous theoretical studies. Small backbone dihedral angles lead to localized MCOs near EF and delocalized MCOs further away from EF. As a result, the constructive QI between the MCOs near EF is suppressed, while the destructive QI between other MCOs is enhanced. This insight opens an avenue to harness QI to realize ultrainsulating molecular devices.
Collapse
Affiliation(s)
- Haoyang Pan
- Spin-X Institute, South China University of Technology, Guangzhou 511442, China
| | - Yangyu Dong
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
- Centre for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yudi Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Jie Li
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Yajie Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Song Gao
- Spin-X Institute, South China University of Technology, Guangzhou 511442, China
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Shimin Hou
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
- Centre for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Zhou Y, Ji S, Zhu Y, Liu H, Wang J, Zhang Y, Bai J, Li X, Shi J, Su W, Huang R, Liu J, Hong W. Nanoscale Evolution of Charge Transport Through C-H···π Interactions. J Am Chem Soc 2024; 146:33378-33385. [PMID: 39584785 DOI: 10.1021/jacs.4c08975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
C-H···π interactions, a prevalent intermolecular force, play a pivotal role in chemistry, materials science, and life sciences. Despite extensive studies of their influence on intermolecular binding configurations and energetics, their impact on intermolecular coupling and charge transport remains unexplored. Here, we investigate the charge transport within supramolecular junctions connected by C-H···π and π-π interactions, respectively, and find that C-H···π interactions exhibit conductances that are 3.5 times those of π-π interactions. Angstrom-scale distance-dependent experiments indicate that the conductance of C-H···π supramolecular junctions experiences initial decay under stretching, followed by gradual convergence, in contrast with the periodic fluctuations in π-π stacked supramolecular junctions. Theoretical calculations show that charge transport within C-H···π interactions transitions from destructive to constructive quantum interference under stretching, with a larger range of constructive quantum interference compared with π-π stacking. This study establishes that C-H···π interactions facilitate efficient intermolecular charge transport and elucidates the evolution of quantum interference effects with assembly configuration, offering critical insights for the design of supramolecular materials and devices.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Shurui Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yixuan Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Huanhuan Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Juejun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yanxi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Wenqiu Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Ruiyun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Jang J, Yoon HJ. Long-Range Charge Transport in Molecular Wires. J Am Chem Soc 2024; 146:32206-32221. [PMID: 39540553 DOI: 10.1021/jacs.4c11431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Long-range charge transport (LRCT) in molecular wires is crucial for the advancement of molecular electronics but remains insufficiently understood due to complex transport mechanisms and their dependencies on molecular structure. While short-range charge transport is typically dominated by off-resonant tunneling, which decays exponentially with molecular length, recent studies have highlighted certain molecular structures that facilitate LRCT with minimal attenuation over several nanometers. This Perspective reviews the latest progress in understanding LRCT, focusing on chemical designs and mechanisms that enable this phenomenon. Key strategies include π-conjugation, redox-active centers, and stabilization of radical intermediates, which support LRCT through mechanisms such as coherent resonant tunneling or incoherent hopping. We discuss how the effects of molecular structure, length, and temperature influence charge transport, and highlight emerging techniques like the Seebeck effect for distinguishing between transport mechanisms. By clarifying the principles behind LRCT and outlining future challenges, this work aims to guide the design of molecular systems capable of sustaining efficient long-distance charge transport, thereby paving the way for practical applications in molecular electronics and beyond.
Collapse
Affiliation(s)
- Jiung Jang
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| |
Collapse
|
7
|
Wang M, Zhou Q, Xu Z, Zhang GP. Azaindole: A Candidate Anchor for Regulating Charge Polarity and Inducing Resonance Transmission at the Fermi Level via Dehydrogenation. J Phys Chem A 2024; 128:9861-9868. [PMID: 39540284 DOI: 10.1021/acs.jpca.4c05203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tuning the polarity of charge carriers is essential for designing molecular logic devices in molecular electronics. In this study, the electrical transport properties of a family of azaindole-anchored single-molecule junctions have been investigated using density functional theory combined with the nonequilibrium Green's function method. The obtained results reveal that dehydrogenation is an effective method for reversing the polarity of charge carriers. The molecular junctions based on the entire azaindole unit are n-type and contain electrons as the principal charge carriers, whereas the dehydrogenated junctions are p-type and contain holes as the main carriers. Furthermore, the azaindole anchors undergo a transition from an electron-rich to an electron-deficient state due to dehydrogenation, which is the original cause of the charge carrier polarity conversion. Dehydrogenated molecular junctions also exhibit the Fermi pinning effect and a sharp highest occupied molecular orbital (HOMO) resonance peak at the Fermi level. In addition, using Pt electrodes instead of Au electrodes is a means of producing a HOMO resonance peak a for azaindole-based molecular junctions. This work demonstrates the enormous potential of utilizing azaindole-anchored molecular junctions for the implementation of molecular logic and multifunctional molecular devices.
Collapse
Affiliation(s)
- Minglang Wang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Qi Zhou
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Zirui Xu
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Guang-Ping Zhang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
8
|
Li P, Bera S, Kumar-Saxena S, Pecht I, Sheves M, Cahen D, Selzer Y. Electron transport through two interacting channels in Azurin-based solid-state junctions. Proc Natl Acad Sci U S A 2024; 121:e2405156121. [PMID: 39110736 PMCID: PMC11331140 DOI: 10.1073/pnas.2405156121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
The fundamental question of "what is the transport path of electrons through proteins?" initially introduced while studying long-range electron transfer between localized redox centers in proteins in vivo is also highly relevant to the transport properties of solid-state, dry metal-protein-metal junctions. Here, we report conductance measurements of such junctions, Au-(Azurin monolayer ensemble)-Bismuth (Bi) ones, with well-defined nanopore geometry and ~103 proteins/pore. Our results can be understood as follows. (1) Transport is via two interacting conducting channels, characterized by different spatial and time scales. The slow and spatially localized channel is associated with the Cu center of Azurin and the fast delocalized one with the protein's polypeptide matrix. Transport via the slow channel is by a sequential (noncoherent) process and in the second one by direct, off-resonant tunneling. (2) The two channels are capacitively coupled. Thus, with a change in charge occupation of the weakly coupled (metal center) channel, the broad energy level manifold, responsible for off-resonance tunneling, shifts, relative to the electrodes' Fermi levels. In this process, the off-resonance (fast) channel dominates transport, and the slow (redox) channel, while contributing only negligibly directly, significantly affects transport by intramolecular gating.
Collapse
Affiliation(s)
- Ping’an Li
- Department of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv69978, Israel
| | - Sudipta Bera
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| | - Shailendra Kumar-Saxena
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur603203, Tamil Nadu, India
| | - Israel Pecht
- Department of Regenerative Biology and Immunology, Weizmann Institute of Science, Rehovot76100, Israel
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| | - David Cahen
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| | - Yoram Selzer
- Department of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
9
|
Alotaibi T, Alshahrani M, Alshammari M, Alotaibi M, Taha TAM, Al-Jobory AA, Ismael A. Orientational Effects and Molecular-Scale Thermoelectricity Control. ACS OMEGA 2024; 9:29537-29543. [PMID: 39005829 PMCID: PMC11238236 DOI: 10.1021/acsomega.4c02141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
The orientational effect concept in a molecular-scale junction is established for asymmetric junctions, which requires the fulfillment of two conditions: (1) design of an asymmetric molecule with strong distinct terminal end groups and (2) construction of a doubly asymmetric junction by placing an asymmetric molecule in an asymmetric junction to form a multicomponent system such as Au/Zn-TPP+M/Au. Here, we demonstrate that molecular-scale junctions that satisfy the conditions of these effects can manifest Seebeck coefficients whose sign fluctuates depending on the orientation of the molecule within the asymmetric junction in a complete theoretical investigation. Three anthracene-based compounds are investigated in three different scenarios, one of which displays a bithermoelectric behavior due to the presence of strong anchor groups, including pyridyl and thioacetate. This bithermoelectricity demonstration implies that if molecules with alternating orientations can be placed between an asymmetric source and drain, they can be potentially utilized for increasing the thermovoltage in molecular-scale thermoelectric energy generators (TEGs).
Collapse
Affiliation(s)
- Turki Alotaibi
- Department
of Physics, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Maryam Alshahrani
- Department
of Physics, College of Science, University
of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Majed Alshammari
- Department
of Physics, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Moteb Alotaibi
- Department
of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Taha Abdel Mohaymen Taha
- Physics
and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
| | - Alaa A. Al-Jobory
- Department
of Physics, College of Science, University
of Anbar, Anbar 31001, Iraq
| | - Ali Ismael
- Department
of Physics, Lancaster University, Lancaster LA1 4YB, U.K.
- Department
of Physics, College of Education for Pure Science, Tikrit University, Tikrit 3400, Iraq
| |
Collapse
|
10
|
Ismael AK, Mohaymen Taha TA, Al-Jobory A. Three distinct conductance states in polycyclic aromatic hydrocarbon derivatives. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231734. [PMID: 39100174 PMCID: PMC11295833 DOI: 10.1098/rsos.231734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 08/06/2024]
Abstract
Tight-binding model (TBM) and density functional theory (DFT) calculations were employed. Both simulations have demonstrated that the electrical conductance for eight polycyclic aromatic hydrocarbons (PAHs) can be modulated by varying the number of aromatic rings (NAR) within the aromatic derivatives. TBM simulations reveal three distinct conductance states: low, medium and high for the studied PAH derivatives. The three distinct conductance states suggested by TBM are supported by DFT transmission curves, where the low conductance evidenced by T(E) = 0, for benzene, naphthalene, pyrene and anthracene. While azulene and anthanthrene exhibit a medium conductance as T(E) = 1, and tetracene and dibenzocoronene possess a high conductance with T(E) = 2. Low, medium and high values were elucidated according to the energy gap E g and E g gaps are strongly dependent on the NAR in the PAH derivatives. This study also suggests that any PAH molecules are a conductor if E g < 0.20 eV. A linear relationship between the conductance and NAR (G ∝ NAR) was found and conductance follows the order G (benzene, 1 NAR) < G (anthanthrene, 4 NAR) < G (dibenzocoronene, 9 NAR). The proposed study suggests a relevant step towards the practical application of molecular electronics and future device application.
Collapse
Affiliation(s)
- Ali K. Ismael
- Department of Physics, Lancaster University, LancasterLA1 4YB, UK
- Department of Physics, College of Education for Pure Science, Tikrit University, Tikrit, Iraq
| | - Taha Abdel Mohaymen Taha
- Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf32952, Egypt
| | - Alaa Al-Jobory
- Department of Physics, Lancaster University, LancasterLA1 4YB, UK
- Department of Physics, College of Science, University of Anbar, Anbar, Iraq
| |
Collapse
|
11
|
Almughathawi R, Hou S, Wu Q, Lambert CJ. Signatures of Topological States in Conjugated Macrocycles. NANO LETTERS 2024; 24. [PMID: 38591962 PMCID: PMC11057032 DOI: 10.1021/acs.nanolett.3c04796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Single-molecule electrical junctions possess a molecular core connected to source and drain electrodes via anchor groups, which feed and extract electricity from specific atoms within the core. As the distance between electrodes increases, the electrical conductance typically decreases, which is a feature shared by classical Ohmic conductors. Here we analyze the electrical conductance of cycloparaphenylene (CPP) macrocycles and demonstrate that they can exhibit a highly nonclassical increase in their electrical conductance as the distance between electrodes increases. We demonstrate that this is due to the topological nature of the de Broglie wave created by electrons injected into the macrocycle from the source. Although such topological states do not exist in isolated macrocycles, they are created when the molecule is in contact with the source. They are predicted to be a generic feature of conjugated macrocycles and open a new avenue to implementing highly nonclassical transport behavior in molecular junctions.
Collapse
Affiliation(s)
- Renad Almughathawi
- Physics
Department, Lancaster University, LA1 4YB Lancaster, United Kingdom
- Physics
Department, Faculty of science, Taibah University, Medina 42353, Saudi Arabia
| | - Songjun Hou
- Physics
Department, Lancaster University, LA1 4YB Lancaster, United Kingdom
| | - Qingqing Wu
- Physics
Department, Lancaster University, LA1 4YB Lancaster, United Kingdom
| | - Colin J. Lambert
- Physics
Department, Lancaster University, LA1 4YB Lancaster, United Kingdom
| |
Collapse
|
12
|
Pal S, Bhattacharya M, Lee SS, Chakraborty C. Quantum Computing in the Next-Generation Computational Biology Landscape: From Protein Folding to Molecular Dynamics. Mol Biotechnol 2024; 66:163-178. [PMID: 37244882 PMCID: PMC10224669 DOI: 10.1007/s12033-023-00765-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 05/29/2023]
Abstract
Modern biological science is trying to solve the fundamental complex problems of molecular biology, which include protein folding, drug discovery, simulation of macromolecular structure, genome assembly, and many more. Currently, quantum computing (QC), a rapidly emerging technology exploiting quantum mechanical phenomena, has developed to address current significant physical, chemical, biological issues, and complex questions. The present review discusses quantum computing technology and its status in solving molecular biology problems, especially in the next-generation computational biology scenario. First, the article explained the basic concept of quantum computing, the functioning of quantum systems where information is stored as qubits, and data storage capacity using quantum gates. Second, the review discussed quantum computing components, such as quantum hardware, quantum processors, and quantum annealing. At the same time, article also discussed quantum algorithms, such as the grover search algorithm and discrete and factorization algorithms. Furthermore, the article discussed the different applications of quantum computing to understand the next-generation biological problems, such as simulation and modeling of biological macromolecules, computational biology problems, data analysis in bioinformatics, protein folding, molecular biology problems, modeling of gene regulatory networks, drug discovery and development, mechano-biology, and RNA folding. Finally, the article represented different probable prospects of quantum computing in molecular biology.
Collapse
Affiliation(s)
- Soumen Pal
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha, 756020, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
13
|
Skipper HE, Lawson B, Pan X, Degtiareva V, Kamenetska M. Manipulating Quantum Interference between σ and π Orbitals in Single-Molecule Junctions via Chemical Substitution and Environmental Control. ACS NANO 2023; 17:16107-16114. [PMID: 37540771 DOI: 10.1021/acsnano.3c04963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Understanding and manipulating quantum interference (QI) effects in single molecule junction conductance can enable the design of molecular-scale devices. Here we demonstrate QI between σ and π molecular orbitals in an ∼4 Å molecule, pyrazine, bridging source and drain electrodes. Using single molecule conductance measurements, first-principles analysis, and electronic transport calculations, we show that this phenomenon leads to distinct patterns of electron transport in nanoscale junctions, such as destructive interference through the para position of a six-membered ring. These QI effects can be tuned to allow conductance switching using environmental pH control. Our work lays out a conceptual framework for engineering QI features in short molecular systems through synthetic and external manipulation that tunes the energies and symmetries of the σ and π channels.
Collapse
Affiliation(s)
- Hannah E Skipper
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Brent Lawson
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Xiaoyun Pan
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Vera Degtiareva
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Maria Kamenetska
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
- Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
14
|
Peng W, Chen N, Wang C, Xie Y, Qiu S, Li S, Zhang L, Li Y. Fine-Tuning the Molecular Design for High-Performance Molecular Diodes Based on Pyridyl Isomers. Angew Chem Int Ed Engl 2023; 62:e202307733. [PMID: 37401826 DOI: 10.1002/anie.202307733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
Better control of molecule-electrode coupling (Γ) to minimize leakage current is an effective method to optimize the functionality of molecular diodes. Herein we embedded 5 isomers of phenypyridyl derivatives, each with an N atom placed at a different position, in two electrodes to fine-tune Γ between self-assembled monolayers (SAMs) and the top electrode of EGaIn (eutectic Ga-In terminating in Ga2 O3 ). Combined with electrical tunnelling results, characterizations of electronic structures, single-level model fittings, and DFT calculations, we found that the values of Γ of SAMs formed by these isomers could be regulated by nearly 10 times, thereby contributing to the leakage current changing over about two orders of magnitude and switching the isomers from resistors to diodes with a rectification ratio (r+ =|J(+1.5 V)/J(-1.5 V)|) exceeding 200. We demonstrated that the N atom placement can be chemically engineered to tune the resistive and rectifying properties of the molecular junctions, making it possible to convert molecular resistors into rectifiers. Our study provides fundamental insights into the role of isomerism in molecular electronics and offers a new avenue for designing functional molecular devices.
Collapse
Affiliation(s)
- Wuxian Peng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ningyue Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Caiyun Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu Xie
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shengzhe Qiu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuwei Li
- Center for Combustion Energy, Tsinghua University, Beijing, 100084, China
- School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Liang Zhang
- Center for Combustion Energy, Tsinghua University, Beijing, 100084, China
- School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|